962 research outputs found

    Nanocrystalline and Thin Film Germanium Electrodes with High Lithium Capacity and High Rate Capabilities

    Get PDF
    Germanium nanocrystals (12 nm mean diam) and amorphous thin films (60-250 nm thick) were prepared as anodes for lithium secondary cells. Amorphous thin film electrodes prepared on planar nickel substrates showed stable capacities of 1700 mAh/g over 60 cycles. Germanium nanocrystals showed reversible gravimetric capacities of up to 1400 mAh/g with 60% capacity retention after 50 cycles. Both electrodes were found to be crystalline in the fully lithiated state. The enhanced capacity, rate capability (1000C), and cycle life of nanophase germanium over bulk crystalline germanium is attributed to the high surface area and short diffusion lengths of the active material and the absence of defects in nanophase materials

    Engineering Heteromaterials to Control Lithium Ion Transport Pathways.

    Get PDF
    Safe and efficient operation of lithium ion batteries requires precisely directed flow of lithium ions and electrons to control the first directional volume changes in anode and cathode materials. Understanding and controlling the lithium ion transport in battery electrodes becomes crucial to the design of high performance and durable batteries. Recent work revealed that the chemical potential barriers encountered at the surfaces of heteromaterials play an important role in directing lithium ion transport at nanoscale. Here, we utilize in situ transmission electron microscopy to demonstrate that we can switch lithiation pathways from radial to axial to grain-by-grain lithiation through the systematic creation of heteromaterial combinations in the Si-Ge nanowire system. Our systematic studies show that engineered materials at nanoscale can overcome the intrinsic orientation-dependent lithiation, and open new pathways to aid in the development of compact, safe, and efficient batteries

    Visualization of lithium-ion transport and phase evolution within and between manganese oxide nanorods.

    Get PDF
    Multiple lithium-ion transport pathways and local phase changes upon lithiation in silver hollandite are revealed via in situ microscopy including electron diffraction, imaging and spectroscopy, coupled with density functional theory and phase field calculations. We report unexpected inter-nanorod lithium-ion transport, where the reaction fronts and kinetics are maintained within the neighbouring nanorod. Notably, this is the first time-resolved visualization of lithium-ion transport within and between individual nanorods, where the impact of oxygen deficiencies is delineated. Initially, fast lithium-ion transport is observed along the long axis with small net volume change, resulting in two lithiated silver hollandite phases distinguishable by orthorhombic distortion. Subsequently, a slower reaction front is observed, with formation of polyphase lithiated silver hollandite and face-centred-cubic silver metal with substantial volume expansion. These results indicate lithium-ion transport is not confined within a single nanorod and may provide a paradigm shift for one-dimensional tunnelled materials, particularly towards achieving high-rate capability

    The mechanics of interface fracture in layered composite materials: (4) buckling driven delamination of thin layer materials

    Get PDF
    Analytical theories were developed for studying post-local buckling-driven delamination of thin layer materials under in-plane compressive stresses which can arise from externally applied mechanical loads, thermal stresses due to mismatch of coefficients of thermal expansion between the thin layer material and the thick substrates, the intercalation stresses due to electrochemical lithiation and delithiation, and etc. The development was based on three mixed mode partition theories. They are Euler beam or classical plate, Timoshenko beam or shear deformable plate [1-5] and 2D-elasticity [6-8] theories. Independent experimental tests [9] show that, in general, the analytical partitions based on the Euler beam or classical plate theory predicts the propagation behaviour very well and much better than the partitions based on the Timoshenko beam and 2D-elasticity theories

    The influence of compact and ordered carbon coating on solid-state behaviors of silicon during electrochemical processes

    Get PDF
    To address the issues of large volume change and low conductivity of silicon (Si) materials, carbon coatings have been widely employed as surface protection agent and conductive medium to encapsulate the Si materials, which can improve the electrochemical performance of Si-based electrodes. There has been a strong demand to gain a deeper understanding of the impact of efficient carbon coating over the lithiation and delithiation process of Si materials. Here, we report the first observation of the extended two-phase transformation of carbon-coated Si nanoparticles (Si/C) during electrochemical processes. The Si/C nanoparticles were prepared by sintering Si nanoparticles with polyvinylidene chloride precursor. The Si/C electrode underwent a two-phase transition during the first 20 cycles at 0.2 C, but started to engage in solid solution reaction when the ordered compact carbon coating began to crack. Under higher current density conditions, the electrode was also found to be involved in solid solution reaction, which, however, was due to the overwhelming demand of kinetic property rather than the breaking of the carbon coating. In comparison, the Si/C composites prepared with sucrose possessed more disordered and porous carbon structures, and presented solid solution reaction throughout the entire cycling process
    • …
    corecore