3,172 research outputs found

    Metrological performance of a single-channel brain-computer interface based on motor imagery

    Get PDF
    In this paper, the accuracy in classifying Motor Imagery (MI) tasks for a Brain-Computer Interface (BCI) is analyzed. Electroencephalographic (EEG) signals were taken into account, notably by employing one channel per time. Four classes were to distinguish, i.e. imagining the movement of left hand, right hand, feet, or tongue. The dataset '2a' of BCI Competition IV (2008) was considered. Brain signals were processed by applying a short-time Fourier transform, a common spatial pattern filter for feature extraction, and a support vector machine for classification. With this work, the aim is to give a contribution to the development of wearable MI-based BCIs by relying on single channel EEG

    An improved model using convolutional sliding window-attention network for motor imagery EEG classification

    Get PDF
    IntroductionThe classification model of motor imagery-based electroencephalogram (MI-EEG) is a new human-computer interface pattern and a new neural rehabilitation assessment method for diseases such as Parkinson's and stroke. However, existing MI-EEG models often suffer from insufficient richness of spatiotemporal feature extraction, learning ability, and dynamic selection ability.MethodsTo solve these problems, this work proposed a convolutional sliding window-attention network (CSANet) model composed of novel spatiotemporal convolution, sliding window, and two-stage attention blocks.ResultsThe model outperformed existing state-of-the-art (SOTA) models in within- and between-individual classification tasks on commonly used MI-EEG datasets BCI-2a and Physionet MI-EEG, with classification accuracies improved by 4.22 and 2.02%, respectively.DiscussionThe experimental results also demonstrated that the proposed type token, sliding window, and local and global multi-head self-attention mechanisms can significantly improve the model's ability to construct, learn, and adaptively select multi-scale spatiotemporal features in MI-EEG signals, and accurately identify electroencephalogram signals in the unilateral motor area. This work provided a novel and accurate classification model for MI-EEG brain-computer interface tasks and proposed a feasible neural rehabilitation assessment scheme based on the model, which could promote the further development and application of MI-EEG methods in neural rehabilitation

    Identification of Anisomerous Motor Imagery EEG Signals Based on Complex Algorithms

    Get PDF
    Motor imagery (MI) electroencephalograph (EEG) signals are widely applied in brain-computer interface (BCI). However, classified MI states are limited, and their classification accuracy rates are low because of the characteristics of nonlinearity and nonstationarity. This study proposes a novel MI pattern recognition system that is based on complex algorithms for classifying MI EEG signals. In electrooculogram (EOG) artifact preprocessing, band-pass filtering is performed to obtain the frequency band of MI-related signals, and then, canonical correlation analysis (CCA) combined with wavelet threshold denoising (WTD) is used for EOG artifact preprocessing. We propose a regularized common spatial pattern (R-CSP) algorithm for EEG feature extraction by incorporating the principle of generic learning. A new classifier combining the K-nearest neighbor (KNN) and support vector machine (SVM) approaches is used to classify four anisomerous states, namely, imaginary movements with the left hand, right foot, and right shoulder and the resting state. The highest classification accuracy rate is 92.5%, and the average classification accuracy rate is 87%. The proposed complex algorithm identification method can significantly improve the identification rate of the minority samples and the overall classification performance

    A Computationally Efficient Multiclass Time-Frequency Common Spatial Pattern Analysis on EEG Motor Imagery

    Full text link
    Common spatial pattern (CSP) is a popular feature extraction method for electroencephalogram (EEG) motor imagery (MI). This study modifies the conventional CSP algorithm to improve the multi-class MI classification accuracy and ensure the computation process is efficient. The EEG MI data is gathered from the Brain-Computer Interface (BCI) Competition IV. At first, a bandpass filter and a time-frequency analysis are performed for each experiment trial. Then, the optimal EEG signals for every experiment trials are selected based on the signal energy for CSP feature extraction. In the end, the extracted features are classified by three classifiers, linear discriminant analysis (LDA), na\"ive Bayes (NVB), and support vector machine (SVM), in parallel for classification accuracy comparison. The experiment results show the proposed algorithm average computation time is 37.22% less than the FBCSP (1st winner in the BCI Competition IV) and 4.98% longer than the conventional CSP method. For the classification rate, the proposed algorithm kappa value achieved 2nd highest compared with the top 3 winners in BCI Competition IV.Comment: Accepted by 42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society in conjunction with the 43rd Annual Conference of the Canadian Medical and Biological Engineering Society, 202

    An Optimized SWCSP Technique for Feature Extraction in EEG-based BCI System

    Get PDF
    Brain-computer interface (BCI) is an evolving technology having huge potential for rehabilitation of patients suffering from disorders of the nervous system, besides  many other nonmedical applications. Multichannel electroencephalography (EEG) is widely used to provide input signals to a BCI system. Significant research in methodology employed to implement different stages of BCI system, has led to discovery of new issues and challenges. The raw EEG data includes artifacts from environmental and physiological sources, which is eliminated in preprocessing phase of BCI system. It is then followed by a feature extraction stage to isolate a few relevant features for further classification to a particular motor imagery (MI) activity. A feature extraction approach based on spectrally weighted common spatial pattern (SWCSP) is proposed in this paper to improve overall accuracy of a BCI system. The reported literature uses SWCSP for feature extraction, as it has outperformed other techniques. The proposed approach enhances its performance by optimizing its parameters. The independent component analysis (ICA) method is used for detection and removal of irrelevant data, while linear discriminant analysis (LDA) is used as a classifier. The proposed approach is executed on benchmark data-set 2a of BCI competition IV. It yielded classification accuracy of 70.6% across nine subjects, which is higher than all the reported approaches.&nbsp

    Translation of EEG spatial filters from resting to motor imagery using independent component analysis.

    Get PDF
    Electroencephalogram (EEG)-based brain-computer interfaces (BCIs) often use spatial filters to improve signal-to-noise ratio of task-related EEG activities. To obtain robust spatial filters, large amounts of labeled data, which are often expensive and labor-intensive to obtain, need to be collected in a training procedure before online BCI control. Several studies have recently developed zero-training methods using a session-to-session scenario in order to alleviate this problem. To our knowledge, a state-to-state translation, which applies spatial filters derived from one state to another, has never been reported. This study proposes a state-to-state, zero-training method to construct spatial filters for extracting EEG changes induced by motor imagery. Independent component analysis (ICA) was separately applied to the multi-channel EEG in the resting and the motor imagery states to obtain motor-related spatial filters. The resultant spatial filters were then applied to single-trial EEG to differentiate left- and right-hand imagery movements. On a motor imagery dataset collected from nine subjects, comparable classification accuracies were obtained by using ICA-based spatial filters derived from the two states (motor imagery: 87.0%, resting: 85.9%), which were both significantly higher than the accuracy achieved by using monopolar scalp EEG data (80.4%). The proposed method considerably increases the practicality of BCI systems in real-world environments because it is less sensitive to electrode misalignment across different sessions or days and does not require annotated pilot data to derive spatial filters
    • …
    corecore