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Introduction: The classification model of motor imagery-based

electroencephalogram (MI-EEG) is a new human-computer interface pattern and

a new neural rehabilitation assessment method for diseases such as Parkinson’s

and stroke. However, existing MI-EEG models often su�er from insu�cient

richness of spatiotemporal feature extraction, learning ability, and dynamic

selection ability.

Methods: To solve these problems, this work proposed a convolutional sliding

window-attention network (CSANet) model composed of novel spatiotemporal

convolution, sliding window, and two-stage attention blocks.

Results: The model outperformed existing state-of-the-art (SOTA) models in

within- and between-individual classification tasks on commonly used MI-EEG

datasets BCI-2a and Physionet MI-EEG, with classification accuracies improved

by 4.22 and 2.02%, respectively.

Discussion: The experimental results also demonstrated that the proposed

type token, sliding window, and local and global multi-head self-attention

mechanisms can significantly improve the model’s ability to construct, learn,

and adaptively select multi-scale spatiotemporal features in MI-EEG signals, and

accurately identify electroencephalogram signals in the unilateral motor area.

This work provided a novel and accurate classification model for MI-EEG brain-

computer interface tasks and proposed a feasible neural rehabilitation assessment

scheme based on the model, which could promote the further development and

application of MI-EEG methods in neural rehabilitation.

KEYWORDS

EEG, motor imagery, brain computer interface, deep learning, CNN, attention

1. Introduction

The electroencephalogram (EEG) is a non-invasive diagnostic technique that records
brain activity by placing electrodes on the scalp to detect electrical signals from neurons
in the brain. It can be used to diagnose various neurological disorders, such as epilepsy,
sleep disorders, and cerebrovascular accidents. Additionally, it can decode and analyze the
intentions of the brain for controlling external mechanical devices. The brain-computer
interface (BCI) represents a new generation of human-computer interaction that harnesses
the power of EEG devices to capture human neural signals, which are then analyzed
and classified using pattern recognition algorithms to control computers (Vaid et al.,
2015). Motor imagery is a type of EEG signal that arises from the mental simulation or
imagination of movements, resulting in neural patterns like those observed during actual
physical movement. This EEG signal can be utilized for brain-machine communication,

Frontiers inNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1204385
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1204385&domain=pdf&date_stamp=2023-08-15
mailto:wang.zijian@dhu.edu.cn
mailto:fenghua8888@vip.163.com
https://doi.org/10.3389/fnins.2023.1204385
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2023.1204385/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Huang et al. 10.3389/fnins.2023.1204385

such as controlling prosthetics or wheelchairs, and also holds
potential applications in neurorehabilitation (Abiri et al., 2019).

MI is now widely used in various neurorehabilitation training
programs (Jeunet et al., 2015; Ron-Angevin et al., 2017; Paris-
Alemany et al., 2019). In the training program, motor imagery
promotes the regeneration of brain neurons and connectivity
by internally simulating the movements of specific muscles. MI
could also improve the coordination patterns during the formation
process of motor skills and provide muscles with additional
opportunities for skill practice, which aids in learning or regaining
control of actual movements. It has been utilized to improve the
muscle control and recovery abilities of patients with Parkinson’s
disease, post-stroke sequelae, post-brain injury sequelae, and joint
diseases (Williams et al., 2004; Moseley, 2006; Tamir et al.,
2007; Zimmermann-Schlatter et al., 2008). The classification of
MI signals recorded by EEG (MI-EEG) was also used in the
neurorehabilitation assessment in the training programs, which was
limited by the classification performance of theMI-EEG algorithms
(Chen et al., 2022; Cuomo et al., 2022; Binks et al., 2023).

The traditional classification frameworks have utilized feature
extraction techniques to manually extract features in the time-
frequency domain of MI-EEG signals and subsequently classified
the signals using machine learning algorithms, such as Filter Bank
Common Spatial Pattern (FBCSP) (Chin et al., 2009), Fast Fourier
Transform (FFT) (Wang et al., 2018b), Wavelet Transform (Qin
andHe, 2005), Support VectorMachines (SVM) (Selim et al., 2018),
Linear Discriminant Analysis (LDA) (Steyrl et al., 2014), and K-
Nearest Neighbor (KNN) (Bhattacharyya et al., 2010). However,
these methods have high requirements for manual feature design
and are greatly affected by designers and data, which is not
conducive to the application and promotion of various scenarios,
including neurorehabilitation assessment.

In recent years, deep learning algorithms, which have excelled
in the fields of vision and language research, have significantly
improved the classification performance of MI-EEG classification.
Using deep learning algorithms, classifiers could automatically
extract features without manual feature extraction or reliance on
specific MI-EEG data. Deep learning methods such as Multi-
Layer Perceptron (MLP) (Chatterjee and Bandyopadhyay, 2016;
Samuel et al., 2017), Convolutional Neural Networks (CNN)
(Dai et al., 2019; Hou et al., 2020; Li et al., 2020; Zancanaro
et al., 2021; Altuwaijri et al., 2022), Deep Belief Networks (DBN)
(Xu and Plataniotis, 2016), Recurrent Neural Networks (RNN)
(Luo et al., 2018; Kumar et al., 2021), as well as Long Short-
Term Memory (LSTM) in combination with CNN or RNN for
spatiotemporal features (Wang et al., 2018a; Khademi et al.,
2022), have been successfully proposed for MI-EEG tasks. The
classification performance of these methods could far outperform
traditional machine learning methods.

Nowadays, attention mechanisms with dynamic spatio-
temporal feature extraction for deep learning are demonstrated
to have strong adaptive feature extraction capabilities, which
have been shown to help improve performance in various
machine learning tasks (Bahdanau et al., 2014). Within attention
mechanisms, the multi-head self-attention model has dominated
the development of the most advanced artificial intelligence

algorithms (Vaswani et al., 2017). Currently, a few attention-
based deep learning algorithms have been proposed for EEG
signal processing, and have been found to have breakthrough
performance in epilepsy detection, emotion recognition, MI
classification, and other tasks (Zhang et al., 2020; Amin et al.,
2022). For example, Xie et al. (2022) have proposed a novel
approach that utilizes multi-head self-attention combined with
position embedding to enhance the classification performance
of EEG on the Physionet dataset, achieving an accuracy of
68.54%. Furthermore, Altuwaijri and Muhammad (2022) have
employed channel attention and spatial attention mechanisms
to capture temporal and spatial features from EEG signals on
the BCI-2a dataset, resulting in an accuracy of 83.63%. However,
these methods lack comprehensive integration of multi-scale
spatiotemporal features and also neglect adaptive attention
selection for global features (Al-Saegh et al., 2021; Altaheri et al.,
2021). Both defects may reduce the feature learning and selection
abilities of the MI-EEG model and affect its performance.

To solve these problems, this article proposes a model for

MI-EEG classification called the convolutional sliding window-

attention network (CSANet). The model consists of three
components. First, a convolution block consisting of multi-layered

convolutional, pooling, and normalization layers for extracting

spatiotemporal features was proposed to extract the spatiotemporal

features of the EEG signal preliminarily. Second, a sliding window

block with continuous and dilated sliding windows was proposed
to further combine the feature tokens with local and global
context information and the token of window type. Finally, an

attention block with local and global attention mechanisms was

proposed to highlight effective features, which was followed by
a classifier consisting of fully connected layers. The CASNet

was evaluated in two commonly used MI-EEG datasets and was

demonstrated to outperform the state-of-the-art (SOTA) models.
The plausible application framework of the accurate CSANet
model in neurorehabilitation assessment was also proposed in the
discussion chapter. The main contributions to this work are listed
as follows:

1. This article proposes a novel deep learning model for MI-
EEG tasks that utilize multi-scale feature extraction modules
with convolutional layers and sliding windows and feature
optimization selection modules using attention mechanisms.
The proposed model outperformed SOTA models in two
commonly used MI-EEG datasets.

2. The spatiotemporal convolutional, continuous, and dilated
sliding windows were proposed to extract effective correlated
features from EEG signals to solve the problem of simple
feature scale.

3. Local and global multi-head self-attention mechanisms were
utilized to enhance the adaptive feature selection ability
of different scale information associations in EEG signals
between individuals.

4. A plausible application framework of the CASNet
model was proposed to provide a possible solution
for the neurorehabilitation assessment based on the
brain-computer interface.
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2. Methods

The framework of the proposed CSANet model is
demonstrated in Figure 1. The model comprises three sequential
blocks: the convolutional block, the sliding window block, and
the attention block. The convolutional block consists of three
convolutional layers and two pooling layers. It extracts features
from EEG signals in the time domain using convolutional layers
for temporal, channel, and local feature extraction. The output
feature sequence is then input into the sliding window block, which
is composed of continuous and dilated sliding windows. This
block extracts the local and global context information of feature
sequences through two different sliding windows to improve
the richness of feature expression. Finally, the features in sliding
windows are adaptively selected in the attention block, in which
the features in each sliding window are adaptively weighted using
local attention according to the feature relationships within the
window. After features in all windows are merged, global attention
is utilized to weigh the features again according to the relationships
between all features. The effective features are highlighted through
the two-stage attention sub-blocks. Finally, two fully connected
layers with SoftMax activation are used to convert the input EEG
signals into the probability of each category.

2.1. Convolution block

This convolution block is similar to the feature extraction
module in the ACTNet (Altaheri et al., 2022). The convolution
block is composed of temporal, channel, and spatial convolutional
layers and two average pooling layers, as shown in Figure 2.
The three convolutional layers sequentially extract and fuse the
temporal, channel, and spatial features of EEG signals to form the
effective feature sequence.

The temporal convolutional layer receives the raw EEG signal
with T time points and C channels in the time domain and
extracts features along the time points in every single channel. It
uses F1 convolutional kernel with a kernel size of 1× Fs/4. Fs
is the sampling rate of the EEG signals, which means that each
convolutional kernel extracts the temporal patterns within 1/4
seconds. The filters in this layer slide over the time axis and extract
low-level temporal features at all the time points, which lays the
foundation for the construction of high-level temporal features in
the sliding window block. A batch normalization layer follows the
temporal convolutional layer.

The channel convolutional slayer receives the normalized
low-level temporal features. The layer utilized the depth-wise
convolutional layer to extract channel-spatial features from the
input features for all the temporal features from the same time
points. This layer used B depth-wise convolutional kernels with a
kernel size of C × 1, where C represents the number of channels.
Each depth-wise convolutional kernel is applied to each input
feature map and outputs B feature maps, which means that for
the input F1 feature maps, the layer outputs F2 = F1 × B feature
maps. This approach allows the channel convolutional layer to
capture the valuable information of inter-channel dependencies in
the EEG signals. A batch normalization layer and an Exponential

Linear Unit (ELU) activation function follow the convolutional
layer. Then, an average pooling layer with a pooling size of 1 × P1
is used to compress the features. This layer reduces the spatial
dimensionality of the features obtained from the previous layer
while retaining important information.

The local convolutional layer is designed to integrate the local
spatiotemporal features with a convolutional kernel size of 1 ×
16. A batch normalization, an ELU activation function, and an
averaging pooling layer process the output feature sequence after
the local convolutional layer. The pooling layer is set with a pooling
size of 1 × P2. The size of output features is F2 × Tz , where Tz =
T/(P1P2). The output features could be deemed as Tz sequential
embedding token with F2 features. The token embedding sequence
zc is defined as:

zc = [E1,E2,· · ·,ETz ]

Ei ∈ R
F2 , 1 ≤ i ≤ Tz (1)

Ei are the extracted token embeddings for ith token. The token
embedding sequence is then input into the sliding window block to
extract the high-level temporal features.

2.2. Sliding window block

The sliding window block with two types of sliding windows is
proposed to further integrate the high-level spatiotemporal features
from the output token embedding sequence of the convolution
block, shown in Figure 3. Parallel continuous sliding windows and
dilated sliding windows are proposed in the sliding window block
to extract different high-level token sequences from the token
embedding sequence zc.

The continuous sliding windows are proposed to find some
high-level local effective information by extracting continuous
token sequence zis1 with continuous type token T1. T1 token is the
trainable type embedding with F2 features, which is set as the first
token of zis1. z

i
s1 is defined by:

zis1 = [Et1,E
2i−1,E2i,· · ·,E2i+Tz/2−2], 1 ≤ i ≤ Tz/4 (2)

zis1 is the ith continuous token sequence with Tz/2 tokens.
The first token Et1 is the type embedding for continuous sliding
windows. There are totally Tz/4 identical Et1 locating at the first
token of Tz/4 continuous token sequences.

The dilated sliding windows are proposed to find effective
global integrated information by extracting the discontinuous
token sequence zis2, which is calculated by:

zis2=

{

[

Et2,E1,E3,· · ·,ETz−1
]

, i = 1
[

Et2,E2,E4,· · ·,ETz
]

, i = 2
(3)

zis2 is the ith discontinuous token sequence with Tz/2 tokens.
Tokens in the sequence are interval selected. The first token Et2
in the sequence is the trainable type embedding for a dilated
sliding window, with F2 features. Combining the two types of token
sequences extracted by the sliding window block, the combined
sequence zs = [zs1, zs2], containing Tz/4 continuous and 2
discontinuous token sequences, is the output to the attention block.
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FIGURE 1

The structure of the proposed CSANet. It includes three blocks, which are the convolution block, the sliding window block, and the attention block.

FIGURE 2

The input of the convolution block is a two-dimensional matrix with channels (C) and time points (T), which goes through three convolution layers,

which are temporal, channel, and local convolutional layers, and two pooling layers.

2.3. Attention block

The attention mechanism is a powerful structure for capturing
dependencies in images or sequential data, including EEG data.
The attention block in the CSANet is proposed with a two-
stage attention mechanism, including local attention and global
attention, as shown in Figure 4. The local and global attention
subnetworks are based on EEG classification. We first classify the
data using two types of sliding windows. The continuous sliding

window splits the data continuously and in sequence, enhancing
the characteristics of continuous data. The dilated sliding window
splits the data at intervals, which allows for the extraction of data
characteristics over larger spaces and longer time periods. The
segmented data is then passed through local attention to extract
small-scale local features. After merging these features, they go
through global attention to extract global features. Global attention
and local attention differ not only in the data they analyze but also
structurally. Both use Multi-head Attention, but the difference lies
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FIGURE 3

Sliding window block consists of two types of sliding windows, which are continuous sliding window and dilated sliding window.

FIGURE 4

The structure of the attention block. Local attention subnetworks are used to weight the tokens within each sequence. Then global attention is

employed to adaptively weight all the tokens in all sequences.

in the additional MLP layer in the global attention module because
the data is classified after global attention.

The local attention subnetwork is designed to adaptively weight
the tokens in each sequence by capturing local dependencies
among the tokens. The global attention subnetwork is designed to
adaptively weight all the tokens according to the global attention of
all tokens in all sequences.

The local attention subnetwork is composed of L parallel
encoders. Each of the encoders contains a layer-normalization and
a multi-head self-attention (MSA) layer, as shown in Figure 5. The
local attention subnetwork processes the input token embedding
sequence zi by:

zil = MSA(LN(zi)+ zi, zi ∈ zs, 1 ≤ i ≤ L, L = Tz/4 + 2 (4)

zi
l
is the weighted token sequence by the local attention

subnetwork. L is the number of sequences. zi is a raw sequence
extracted in the sliding window block. LN is the layer normalization
operation. MSA is the multi-head self-attention function, which is
composed of several self-attention encoders. A single self-attention
encoder calculates the correlation weights of all the features in the
token embedding. For each self-attention, three trainable matrices
Wq,Wk,Wv ∈ R

F2×F2 were defined. These matrices transform the
input features z into q, k, and v vectors, respectively.

q = zWq, k = zWk, v = zWv

For each head ih, the matrices q, k, v are further transformed by
linear transformations matrices Wq,i, Wk,i, Wv,i R

F2×Dh to obtain
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FIGURE 5

Structures of the multi-head self-attention encoder and the self-attention encoder.

qih , kih , vih , respectively. The dimension of the head is Dh.

qih = qWq,i, kih = kWk,i, vih = vWv,i (5)

For each head ih, qih and kih calculate the scaled dot-product
attention by dividing by the square of Dh and then by the SoftMax
function. Finally, the output weights in one head are obtained by
multiplying with vih :

A(z) = SoftMax

(

qihkih
⊤

√
Dh

)

vih (6)

A(z) is the self-attention weight for one head self-attention
encoder. The weights of the multi-head self-attentions are
composed of each head of self-attention weight. The weight is used
to scale the raw token embedding sequence by:

MSA(z) = z ·
[

A1(z);A2(z); · · · ;Ah(z)
]

(7)

MSA(z) is the weighted token sequence of multi-head self-
attention. Ai(z) is the self-attention weight calculated by the self-
attention encoder. h is the number of heads.

All the weighted token embedding sequences zi
l
are then

concatenated into one token sequence za with Tz/2 × (Tz/4 +
2) tokens. All the tokens are weighted by the local attention
subnetwork and put into the global attention subnetwork.

The global attention subnetwork contains two layers of
normalization, namely, a MSA and a fully connected layer. The
structure of the multi-head self-attention is identical to the
structure of the local attention subnetwork, which weights the
tokens by:

z′a = MSA(LN(za))+ za (8)

za is the global token sequence. z′a is the output global token
sequence weighted by the global attention subnetwork. Finally, a
layer normalization layer, a fully connected layer with the ELU
function, and a fully connected layer with the SoftMax function

are used to calculate the probabilities of different MI categories
as follows:

y = sofmax(MLP(MLP(LN(z′a)))+ z′a) (9)

MLP is the linear projection operation of the fully connected
layers. y is the output probability of MI categories.

2.4. Experimental settings

CSANet was trained and evaluated in the within- and
between-individual classification tasks in two public MI-EEG
four classification datasets: the BCI Competition IV-2a (BCI-2a)
dataset (Brunner et al., 2008) and the Physionet MI-EEG dataset
(Goldberger et al., 2000). The details of the two datasets are
presented in Table 1, and the electrodes used in the two datasets
are depicted in Figure 6.

The BCI-2a dataset was created by Graz University of
Technology in 2008. It consists of recordings from nine healthy
subjects who underwent two sessions. The first session was used for
training, while the second session was used for testing. Each session
contained 288 trials, with each trial comprising one of four motor
imagery tasks: movements of the left hand, right hand, foot, and
tongue.MI-EEG signals were recorded using 22 Ag/AgCl electrodes
(10–20 international standard lead system) and were sampled at
250Hz with a bandpass filter between 0.5Hz and 100Hz (with a
50Hz notch filter enabled). In the within-individual classification
task, the same training and testing data as the original competition
were used, with the first session as the training set and the second
session as the test set. In the between-individual classification
task, the second session of all the subjects was used to be trained
and tested. Leave-one-out cross-validation was employed in the
classification task. At each validation, the data of one subject
was selected as the test dataset, and the data of the other eight
individuals were selected as the training dataset. The performance
metrics were calculated across all individuals.
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TABLE 1 Two datasets and the methods within and between individual classification tasks of the two experiments.

BCI-2a dataset Physionet dataset

Created in 2008 2004

Subjects 9 109

Sessions 2 (one for training, one for testing) 1

Trials 288 84

MI task types Left hand, right hand, foot, and tongue Left hand, right hand, foot, and tongue

Electrodes 22 18 of 64

Sampling rate 250Hz 160 Hz

Time of one motion 4.5s 4s

Time points 1,125 640

Within-individual classification task Training set First session 90% data

Test set Second session 10% data

Method - 10-fold cross-validation

Between-individual classification task Training set All subject second session Data of 9 or 10 individual

Test set Second session Data of the other 100 or 99 individuals

Method Leave-one-out cross-validation 11-fold cross-validation

FIGURE 6

The electrodes used in the two MI-EEG datasets. (A) The BCI Competition IV-2a dataset collected EEG signals from 22 electrodes. (B) The Physionet

MI-EEG dataset collected signals from 64 electrodes. In total 18 of them were used for MI classification.

The Physionet MI-EEG dataset was recorded using the
BCI2000 system according to the international 10-10 system
and consists of recordings from 109 individuals. Each individual
performed 84 trials comprising four types of MI tasks involving
the left fist, right fist, both fists, and feet. There are 21 trails for
each type of MI task. Each MI event lasted for 4 s, and the signals
were sampled at 160Hz. Each MI event had 640 time points. In
the experiments, we used the electrode methods referenced in two
papers (Singh et al., 2019; Xie et al., 2022). For motor imagery, the
main location where the brain generates responses is the motor
cortex, which is where the 18 electrodes we selected are located.
Signals from 18 electrodes near the motor cortex (C1–C6, CP1–
CP6, P1–P6) were used in the model training and testing. In the
within-individual classification task, 10-fold cross-validation was
conducted for the data of each individual. At each validation, 10%

of the data was used as the test dataset, and the remaining 90% was
set as the training set. The classification accuracy was computed
for each test set, and the average test metrics were calculated
and reported. In the between-individual classification task, 11-fold
cross-validation was conducted to evaluate the performance of the
proposed model. In each validation, the data of 9 or 10 individuals
were taken as the test set, and the data of the other 100 or 99
individuals were taken as the training set. The average performance
metrics were calculated and reported.

Besides the performance experiments of within- and between-
individual classification tasks, an ablation experiment was also
conducted to test the effects of the proposed type token,
sliding window, local attention subnetworks, and global attention
subnetwork on the proposed CSANet. We also compared the
performance of the proposed model with that of SOTA models in
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TABLE 2 The hyperparameters of three blocks used in the BCI-2a and the

Physionet MI-EEG datasets.

Convolutional block

Temporal filters (F1) 16

Depth multiplier (B) 2

Channel conv filters (F2) 32

First pooling size (P1) 8

Second pooling size (P2) 7

Dropout rate 0.3

Sliding window block

Number of windows (Tz/4+ 2) 7

Dropout rate 0.3

Attention block

Head size (Dh) 8

Dropout rate 0.5

the same within- and between-individual classification tasks. We
also extracted the extracted features and utilized the t-distributed
Stochastic Neighbor Embedding to evaluate if the extracted features
could be distinct in different types of MI tasks.

All the experiments were conducted on a machine with 12 CPU
cores, one NVIDIA GeForce RTX 3090, Ubuntu 18.04, Python
3.8, and TensorFlow 2.4. The hyperparameters used in the two
datasets are shown in Table 2. Table 3 shows the detailed structures
of the proposedmodels for different datasets and the output of each
layer in the BCI dataset and Physionet model. All the models were
trained for 1,000 epochs with an Adam optimizer at a learning rate
of 0.009 and a batch size of 64. The cross-entropy was used as the
loss function in all experiments. These training hyperparameters
are determined by manual tuning in the training sets.

2.5. Performance metrics

The accuracy and Kappa scores were used as the evaluation
metrics of the performance in all performances, which were
commonly used in the EEG signal classification tasks. The accuracy
is calculated by:

ACC =
∑Nc

i=1 TPi

N
(10) (10)

ACC is the accuracy.N is the number of samples in the training
or test dataset, and TPi is the number of true positives (correctly
predicted positive samples) in class i. Nc is the number of MI task
categories. For both datasets, Nc = 4. The range of accuracy is
between 0 and 1; higher accuracy means a better model. Kappa
is the measurement of consistency between two variables. In the
experiments, it was used to measure the consistency between the
true class labels and the predicted class labels. It is defined by:

κ =
1

Nc

∑Nc

o=1

Po − Pe

1− Pe
(11)

κ is the calculated Kappa score. Pois the observed consistency
rate for the class o, and Pe is the expected consistency rate
by chance.

3. Experimental and results

3.1. Results of the ablation experiment

The ablation experiments were conducted to assess the efficacy
of the proposed type token, sliding window, local attention
subnetworks, and global attention subnetworks in the CSANet
model for within-individual classification tasks on the BCI-2a
dataset. The results are presented in Table 4.

There is no separate ablation experiment for the type token
in the sliding window block because the model needs to use the
sliding window before adding the classification token. Therefore,
the type token needs to be employed simultaneously with the
sliding window. The same thing happens with the local attention.
In the table, Model 1 represents the most fundamental model that
solely employs CNN without a sliding window or self-attention
mechanism, indicated by crosses in all columns of the table. Models
2 and 3 exclusively utilize individual modules, namely global
attention and sliding window, respectively. Meanwhile, Models
4–9 integrate different modules in diverse ways. Based on the
results presented in Table 4, it is evident that the incorporation
of a global attention subnet has a significant positive impact on
model performance. Specifically, Model 2, which solely utilizes the
global attention subnet, demonstrates an accuracy improvement of
1.77% compared to Model 1, which does not employ any proposed
methods. The incorporation of both sliding window and global
attention mechanisms in Model 6 yields a modest yet significant
improvement in accuracy, with an increase of 0.21%. It is worth
noting that while the inclusion of type tokens in Model 5 leads
to a decrease in accuracy, the integration of the local attention
subnet in Model 10 achieves an impressive accuracy rate of 84.08%,
surpassing that of Model 6 by 0.75%. The type token method is
found to be more effective when used in combination with the local
attention subnet, as illustrated in Model 8, which exhibits a 0.7%
increase in accuracy as compared to Model 4. The combination of
global and local attention proves to be highly effective, resulting
in significant performance improvements. For instance, Model 9
shows an increase in accuracy of 1.74% as compared to Model 4.
Model 10 has a 2.83% higher accuracy rate thanModel 1, indicating
that our final proposed model with all modules significantly
outperforms the original model. In summary, the results of our
ablation experiments demonstrate that the proposed type token,
sliding window, local attention subnet, and global attention subnet
all have a positive impact on the performance of the MI-EEG
classification task.

3.2. Results of the public datasets

The proposed CSANet method underwent training and testing
for within- and between-individual classification tasks using the
BCI-2a and Physionet-MI datasets, respectively. Its performance
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TABLE 3 Detailed description of the proposed model, where C, number of channels; T, number of Time points; Fs, sample rate; F1, number of temporal

filters; B, number of convolution filters; P1, number of first pooling filter; P2, number of second pooling filter.

Layer type Maps Kernel size Output BCI output Physionet output

Convolutional block

Temporal convolutional F1 (1, Fs//4) (F1 , T, C) (16, 1,125, 22) (16, 640, 18)

Channel convolution B (C, 1) (B× F1 , T, 1) (32, 1,125 1) (32, 640, 1)

Average pooling (1, P1) (B× F1 , T// P1 , 1) (32, 140, 1) (32, 80, 1)

Local convolutional B× F1 (1, 16) (B× F1 , T// P1) (32, 140) (32, 80)

Average pooling (1, P2) (B× F1 , T// P1 //P2) (32, 20) (32, 11)

Sliding window block Tz = T// P1/P2

Continuous sliding window
dilated sliding window

Tz/4 (B× F1 , Tz/2) (Tz//4+ 2, B× F1 , Tz//2) (7, 32, 10) (4 ,32, 5)

Class token (Tz//4+ 2, B× F1 , Tz/2+ 1) (7, 32, 11) (4 ,32, 6)

Attention block

Local attention (Tz/4+ 2, B× F1 , Tz/2+ 1) (7, 32, 11) (4 ,32, 6)

Concatenate (1, Tz/4+ 2, B× F1 , Tz/2+
1)

(7, 32, 11) (4 ,32, 6)

Global attention (1, Tz/4+ 2, B× F1 , Tz/2+
1)

(7, 32, 11) (4 ,32, 6)

Fully connected layer

TABLE 4 The results of ablation experiments.

Model no. Sliding window block Attention block Accuracy (%) κ

Sliding
window

Type token Local attention Global
attention

1 X X X X 81.25 0.750

2 X X X X 83.02 0.775

3 X X X X 81.11 0.748

4 X X X X 81.94 0.759

5 X X X X 81.54 0.756

6 X X X X 83.33 0.778

7 X X X X 82.99 0.773

8 X X X X 82.64 0.768

9 X X X X 83.68 0.782

10 X X X X 84.08 0.784

The token represents the two types of sliding windows in the sliding window block.

was subsequently compared with that of other state-of-the-art
(SOTA) models.

3.2.1. Results of the BCI-2a dataset
The proposed model was initially evaluated on the BCI-2a

dataset through individual experiments, wherein the MI-EEG data
of nine participants were separately trained and subsequently
validated on a test set. The results obtained are presented in
Table 5. In comparing the proposed CSANet model with three
other SOTA models, including EEGNet (Lawhern et al., 2018),
EEG-TCNet (Ingolfsson et al., 2020), and TCNet Fusion (Musallam

et al., 2021). It was evident that the former outperformed the other
models with an accuracy improvement ranging from 0.4 to 4.4%,
ultimately reaching an overall accuracy of 84.1%. This outcome
serves to highlight the proposed model’s superior learning and
prediction capabilities, particularly for individual motor imagery
EEG signal patterns, relative to existing models. The standard
deviation (SD) of the accuracy is computed to two decimal places,
and the kappa values are in decimal form. In our proposed model,
the standard deviation of the accuracy is 9.11, which is slightly
lower than the other models, but the difference is not substantial.
The kappa value of 0.127 is also not significantly different from the
other models.

Frontiers inNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2023.1204385
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Huang et al. 10.3389/fnins.2023.1204385

TABLE 5 CSANet was compared to other models in the within-individual classification task of the BCI-2a dataset across nine subjects.

Proposed (CSANet) EEGNet EEG-TCNet TCNet fusion

Individual Acc (%) κ Acc (%) (%) κ Acc (%) (%) κ Acc (%) κ

1 86.11 0.814 88.57 0.851 84.07 0.796 90.74 0.871

2 70.58 0.608 66.02 0.553 66.32 0.553 70.67 0.603

3 95.13 0.941 95.11 0.943 94.11 0.927 95.23 0.933

4 80.63 0.611 73.61 0.653 72.61 0.638 76.75 0.680

5 84.38 0.791 75.46 0.677 76.06 0.688 82.24 0.767

6 69.79 0.651 64.20 0.529 62.90 0.501 68.83 0.589

7 94.10 0.921 90.36 0.873 89.96 0.871 94.22 0.923

8 89.93 0.865 85.83 0.818 84.76 0.802 88.92 0.858

9 93.75 0.916 86.57 0.821 85.49 0.810 85.98 0.811

Average 84.08 0.784 80.59 0.741 83.34 0.776 83.73 0.780

SD 9.11 0.127 10.48 0.139 10.09 0.137 9.23 0.123

SD, is standard deviation.

The t-distributed Stochastic Neighbor Embedding (t-SNE)
method was used to visualize the extracted features in the proposed
models and other models, as shown in Figure 7. In recent years,
t-SNE has emerged as a popular tool for data visualization owing
to its ability to preserve the local structure of high-dimensional
data. Specifically, t-SNE maps high-dimensional data points to
a lower-dimensional space while simultaneously preserving the
pairwise similarities between them. In this experiment, the features
in the global attention layer are extracted and visualized using
t-SNE. The horizontal and vertical axes do not possess any
physical significance; rather, they represent the two primary
components following data dimensionality reduction. During the
t-SNE mapping process, these axes are selected to optimize
the preservation of local structures within the original high-
dimensional dataset (i.e., points that are proximal in high-
dimensional space remain so after dimensionality reduction).
The principal objective of a t-SNE diagram is data visualization.
Based on the visualization results, it is evident that the features
extracted by the proposed model exhibit superior distinguishability
in the projection of the four categories as compared to other
models. Notably, the features extracted by EEGNet demonstrate the
poorest distinguishability.

In Figure 8, the accuracy of four models in four categories
was compared. The best performance in left-hand motor imagery
classification recognition was achieved by TCN Fusion, with an
accuracy of 86%. Similarly, an accuracy of 86% was achieved in
right-hand classification imagery recognition by EEG-TCNet. The
proposed CSANet demonstrated excellent performance in foot and
tongue motor imagery classification, with accuracies of 88% for
both. This indicates that the accuracy of recognizing the activity
of the somatotopic area of the unilateral motor cortex is higher in
the proposed model, resulting in a significant improvement in the
recognition accuracy of foot and tongue motor imagery. However,
the improvement in the classification and recognition accuracy of
left- and right-hand motor imagery by the proposed model was
not as significant, with accuracies of 80 and 84%, respectively.

This result suggests that there may be a need to improve the
processing and discrimination of information regarding left-right
brain symmetry by the proposed model.

In addition to the individual classification task, the between-
individual classification performance of the proposed model on
the BCI-2a dataset was also evaluated, as shown in Figure 9. The
confusion matrix revealed that the accuracy of the four categories
was relatively consistent in the inter-individual classification task,
with recognition accuracies of 74, 68, 69, and 69% for left hand,
right hand, foot, and mouth motor imagery, respectively. Notably,
the model demonstrated the highest classification accuracy for left-
hand motor imagery, while the classification accuracy for other
limb motor imagery was generally similar, resulting in an overall
classification accuracy of 70.81%, which was lower than that of
the within-individual classification task. These findings suggest
that individual specificity still has a certain impact on the model’s
classification performance. However, the brain signals for left-hand
motor imagery were found to be more distinguishable than the
other three types of motor imagery signals, and this distinction was
found to be cross-individual. The t-SNE results were found to be
generally consistent with the confusion matrix results.

CSANet was evaluated against state-of-the-art (SOTA) models
on both individual and inter-individual classification tasks using
the BCI-2a dataset. The overall mean accuracy and kappa values
of the model were compared to those of other models, as presented
in Table 6. A total of nine other deep learning models that were also
tested on the BCI-2a dataset were compared. The proposed model
achieved a higher accuracy of 84.08% and a kappa value of 0.784 in
the within-individual classification task compared to other models.
An improvement in accuracy of 0.35% and an increase in kappa
value of 0.004 were observed. Additionally, the proposed model
exhibited the best performance in between-individual classification,
with an accuracy of 70.81% and a kappa value of 0.610. Compared
with other models, the proposed model improved accuracy and
kappa value by 0.23% and 0.002, respectively. Accuracy is mainly
affected by the overall performance of the model. And the
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FIGURE 7

The t-SNE visualization results for the extracted features from the four models for the within-individual classification tasks of BCI-2a dataset. The

proposed model CSPNet is shown in (A). (B) EEGNet that appears to have less accurate classification performance than the other three models. (C)

EEG-TCNet. (D) TCNet fusion. Four classes include motor imagery of left hand (red), right hand (green), foot (blue), and tongue (purple).

proposed model is robust. It is noteworthy that the proposed
model, which incorporates local and global attention and enriches
feature types through multi-type sliding windows, demonstrated
improved performance in the MI-EEG signal classification task
compared to other attention-based models. This is a testament to
the effectiveness of the various sub-modules proposed in CSANet
for MI-EEG signal classification.

3.2.2. Results of the Physionet MI-EEG dataset
In addition to the BCI-2a dataset, a comparison was conducted

between the proposed CSANet model and other SOTA models

on the Physionet MI-EEG dataset, covering both within-subject
and between-subject tasks. The results presented in Table 7
demonstrate that the highest accuracy in both intra-subject and
inter-subject classification tasks was achieved by the proposed
model, with accuracies of 92.36 and 70.56%, respectively. Notably,
an improvement ranging from 4.22 to 24.16% and from 2.02 to
11.98% was observed compared to other SOTA models.

The features of the proposed CSANet model calculated
on the test set in within- and between-individual tasks were
extracted, and the t-SNE method was utilized to display the
feature projection of four types of motor imagery in the dataset:
left fist, right fist, both fists, and feet. As shown in Figure 10,
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FIGURE 8

The confusion matrix of four classes in the within-individual classification task of the BCI-2a dataset. (A) The proposed CSANet, while (B–D)

respectively represent EEGNet, EEG-TCNet, and TCNet fusion.

in the within-individual classification task, most of the samples
exhibited high feature distinctiveness, indicating that the effective
features of the four types of motor imagery could be accurately
distinguished by the proposed model without considering the
specificity of individual EEG signals. However, in the between-
individual classification task, the feature overlap of motor imagery
of the left fist, right fist, and both fists was high and the
distinctiveness was low, thereby impeding accurate classification.
Notably, the feature distinctiveness of motor imagery of feet
was higher compared to the other three types of samples.
These findings suggest that the proposed model exhibits higher
recognition accuracy for activity in the somatotopic area of the
unilateral motor cortex but still lacks processing of symmetric
neural activity information for hand movements in the bilateral
brain areas.

4. Discussion

In this study, we proposed a CSANet model that integrates
multi-scale convolutional feature extraction, a multi-perspective
sliding window, and a two-stage attention mechanism to address
the challenges in classifying motor imagery EEG signals.

Our ablation experiments on each sub-module of the proposed
method revealed that the introduction of the global attention
module significantly improved the classification performance of
the model on MI-EEG data. Moreover, the methods of global
and local feature extraction based on sliding windows and local
multi-head attention showed significant impacts on the model’s
classification performance. Although the introduction of the type
token method may have certain side effects on the model in the
case of single activation, its combination with local multi-head
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FIGURE 9

Performance results of CSANet in the between-individual task on the BCI-2a dataset. (A) The confusion matrix of four classes. (B) The visualized

t-SNE results.

TABLE 6 Comparing against SOTA models on accuracy (%) and kappa value κ on the BCI-2a dataset for both within- and between-individual four-class

classification tasks.

References Method Accuracy (within, %) κ (within) Accuracy
(between, %)

κ (between)

Schirrmeister et al. (2017) CNN 74.31 0.66 - -

Lawhern et al. (2018) EEGNet 80.59 0.741 68.79 0.584

Hassanpour et al. (2019) DBN-AE 71.0 - - -

Amin et al. (2019) Multi-layer-CNN and MLP 75.0 - 55.3 -

Ingolfsson et al. (2020) EEG-TCNet 83.34 0.776 69.52 0.594

Zhang et al. (2020) Attention graph cnn - - 60.1 -

Musallam et al. (2021) TCNet_Fusion 83.73 0.780 70.58 0.608

Amin et al. (2022) Attention-inception CNN and
LSTM

82.84 - - -

Altuwaijri et al. (2022) Attention multi-branch CNN 82.87 0.772 69.10 -

This work CSANet 84.08 0.784 70.81 0.610

attention significantly improved the model’s performance. This
enhancement may be attributed to the fact that the role of type
token is influenced by other dimensional features in different data
environments, which static deep learning models without local
attention mechanisms cannot handle effectively. Consequently,
by integrating a local multi-head self-attention mechanism and
endowing the model with the ability to learn dynamic weights of
type token, the model’s performance can be greatly improved.

In the study, the proposed CSANet model was compared
with nine other deep learning models using the BCI-2a dataset.
The results showed that a higher accuracy of 84.08% and a
kappa value of 0.784 were achieved by the model in the within-
individual classification tasks, surpassing the performance of other
models. Furthermore, the best performance in between-individual

classification was exhibited by the model, with an accuracy of
70.81% and a kappa value of 0.610. On the Physionet MI-
EEG dataset, the highest accuracy was achieved by the model
compared to other state-of-the-art models in both within- and
between-individual classification tasks, with accuracies of 92.36
and 70.56%, respectively. These accuracies represented significant
improvements of 4.22 and 2.02%, respectively. The classification
of MI-EEG signals remains a challenging topic in current research,
and limited improvements have been shown in previous studies on
algorithms for MI-EEG signal classification. For instance, EEGNet-
TCNet was proposed by Ingolfsson et al. (2020) on the BCI-
2a dataset, achieving an accuracy of 83.34%, which represented
a 2.74% improvement over previous models. Subsequently,
Musallam et al. (2021) proposed TCNet_Fusion, which achieved an
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TABLE 7 Comparing results on the Physionet MI-EEG dataset for both

within- and between-individual four-class classification tasks.

References Method Within
accuracy

Between
accuracy

Ma et al. (2018) RNN 68.20 -

Pinheiro et al.
(2018)

RNA 74.69 -

Dose et al. (2018) CNN 80.38 58.58

Karácsony et al.
(2019)

CNN 76.37 -

Wang et al. (2020) EEGNet - 68.20

Ali et al. (2022) ConTraNet CNN-
Transformer

- 65.44

Hou et al. (2022) GCN 88.14 -

Xie et al. (2022) Transformer - 68.54

This work CSANet 92.36 70.56

accuracy of 83.73%, a 0.39% improvement. Altuwaijri et al. (2022)
proposed a CNN combined with an attention model, achieving an
accuracy of 82.87%, which was a 0.86% improvement over previous
models. On the Physionet dataset, Xie et al. (2022) achieved an
accuracy of 68.54%, which was 2.81% higher than the previous
CNN model’s accuracy of 65.73%. The proposed CSANet model
outperforms these studies on both datasets, with improvements of
up to 4.22%. Although the improvement is not very significant, the
same model has effective results on both datasets, demonstrating
the robustness of the CSANet model.

In recent years, self-attention mechanisms have been widely
adopted in EEG classification research. For example, Xie et al.
(2022) utilized attention mechanisms in both temporal and
spatial domains, while many other models integrated CNNs with
attention mechanisms for data classification (Altuwaijri et al.,
2022). Ali et al. (2022) also employed a combination of CNNs
but incorporated the Vision Transformer (Dosovitskiy et al., 2021)
in the attention mechanism to introduce position embeddings
for feature classification. In addition to CNNs, Amin et al.
(2022) achieved remarkable performance by integrating LSTM.
Our model utilizes two types of sliding windows to extract features
with both continuous and global dimensions. Local and global
attention allow for a two-stage dynamic assignment of feature
weights, which facilitates the selection of more relevant features.
When combined with type tokens, it can extract features more
accurately and enhance the robustness of the model, enabling
the extraction of important features from different datasets to
accurately classify EEG signals. The model’s enhancement of
classification performance in MI-EEG tasks has been demonstrated
in the experiments on two public EEG datasets and has surpassed
other methods. Although this improvement is not significant
enough, it is at the same level as other work relative to SOTA
methods. Through ablation experiments, we have proven the
effectiveness of each module. Importantly, our model reduces
the individual specificity of EEG signals by recognizing common
patterns among subjects. This approach effectively highlights
local features while also enabling the application of global

features during classification. In this article, four experiments
on two datasets used similar hyperparameters to achieve good
performance, which also demonstrates the robustness of our
proposed method and extracted features.

The features extracted by the proposed model were visualized
using the t-SNE method, and the confusion matrix was calculated,
as shown in Figures 8–10. It was observed that for the within-
individual classification task in BCI-2a, the classification results
for foot and tongue motor imagery were significantly improved by
our proposed model compared to other models. In the between-
individual classification task, a higher accuracy in classifying left-
hand motor imagery was achieved by the model than in other
limb parts, but the overall classification result was lower. In the
Physionet MI-EEG dataset, a very high feature discriminability was
observed for the individual classification task. The discriminability
of features for left fist, right fist, and both fists in between-individual
MI classification was not high, but foot motor imagination was
effectively distinguished. These results suggest that the classification
effect of the proposed model in the between-individual task was
lower than that in the within-individual task due to the influence
of individual specificity. Furthermore, it was noted that the t-SNE
analysis of the individual classification in BCI-2a and the inter-
individual classification in Physionet MI-EEG demonstrated that
the model had a better recognition effect on the bodymapping EEG
signals of the unilateral brain motor area, but the discriminability
of the activation of bilateral brain information still needs to be
improved. The overall improvementmay be attributed to the ability
of the proposed model to mine more effective spatiotemporal
features and dynamically combine and weigh the features with a
two-stage local and global attention mechanism to improve the
overall classification performance of MI-EEG signals.

The model proposed in this study can be applied not only to
the development of brain-computer interface control systems based
on motor imagery but also to the neurorehabilitation evaluation of
diseases such as Parkinson’s and stroke based on motor imagery.
In the evaluation process, MI-EEG signals from healthy individuals
can first be trained based on CSANet. Then, the trained model can
be used to classify and visually evaluate the motor imagery signals
of patients with Parkinson’s or stroke who are in the rehabilitation
period. If the patient’s motor system is severely damaged, the
classification accuracy of the MI-EEG model might be lower
than that of healthy individuals. Through visual evaluation, the
specific accuracy of identification of the patient’s limb movement
imagination can be determined, and targeted training can be
conducted for the parts with lower identification accuracy to
quickly improve the patient’s recovery effect. When the overall
MI-EEG signal classification accuracy of the patient is high, it is
indicated that the patient’s motor imagery EEG signal pattern is
close to that of healthy individuals. It could be estimated that
the patient’s nervous system has recovered to a certain level of
limb movement control according to the conclusions of the mirror
neuron system and the theory of embodied cognition.

5. Conclusion

The convolutional sliding window-attention network
(CSANet) model proposed in the article is composed of novel
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FIGURE 10

The t-SNE visualization for the four-dimensional features on the Physionet MI-EEG dataset. Include left fist, right fist, both fist, and feet. (A) Features

in the within-individual classification task. (B) Features in the between-individual classification task.

spatiotemporal convolution, sliding window, and two-stage
self-attention blocks. The adaptive feature learning and selection
ability of multi-scale information correlations in EEG signals
is improved by the type token, sliding window, and local and
global multi-head self-attention mechanisms proposed in the
model, thereby enhancing the model’s classification performance,
as demonstrated by the results of the ablation experiment
analysis. The model has been demonstrated to outperform
existing state-of-the-art (SOTA) models in within- and between-
individual classification tasks in two commonly used MI-EEG
datasets, BCI-2a and Physionet MI-EEG, with classification
accuracies improved by 4.22 and 2.02%, respectively. Based
on t-SNE visualization of the model features and confusion
matrix analysis, it can be inferred that the proposed model
exhibits superior performance in identifying EEG signals in
the unilateral somatotopic area, although the discernibility
of bilateral brain information activity remains a challenge.
Furthermore, this study proposed a plausible neurorehabilitation
assessment framework based on the model for mental diseases
such as Parkinson’s disease and stroke based on motor imagery.
In future work, the model would be further improved based
on its shortcomings, and experiments would be conducted
on MI-EEG data of specific disease patients to demonstrate
the neurorehabilitation assessment framework based on the
CSANet model.
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