10,009 research outputs found

    Emotion brain-computer interface using wavelet and recurrent neural networks

    Get PDF
    Brain-Computer Interface (BCI) has an intermediate tool that is usually obtained from EEG signal information. This paper proposed the BCI to control a robot simulator based on three emotions for five seconds by extracting a wavelet function in advance with Recurrent Neural Networks (RNN). Emotion is amongst variables of the brain that can be used to move external devices. BCI's success depends on the ability to recognize one person’s emotions by extracting their EEG signals. One method to appropriately recognize EEG signals as a moving signal is wavelet transformation. Wavelet extracted EEG signal into theta, alpha, and beta wave, and consider them as the input of the RNN technique. Connectivity between sequences is accomplished with Long Short-Term Memory (LSTM). The study also compared frequency extraction methods using Fast Fourier Transform (FFT). The results showed that by extracting EEG signals using Wavelet transformations, we could achieve a confident accuracy of 100% for the training data and 70.54% of new data. While the same RNN configuration without pre-processing provided 39% accuracy, even adding FFT would only increase it to 52%. Furthermore, by using features of the frequency filter, we can increase its accuracy from 70.54% to 79.3%. These results showed the importance of selecting features because of RNNs concern to sequenced its inputs. The use of emotional variables is still relevant for instructions on BCI-based external devices, which provide an average computing time of merely 0.235 seconds

    A real time classification algorithm for EEG-based BCI driven by self-induced emotions

    Get PDF
    Background and objective: The aim of this paper is to provide an efficient, parametric, general, and completely automatic real time classification method of electroencephalography (EEG) signals obtained from self-induced emotions. The particular characteristics of the considered low-amplitude signals (a self-induced emotion produces a signal whose amplitude is about 15% of a really experienced emotion) require exploring and adapting strategies like the Wavelet Transform, the Principal Component Analysis (PCA) and the Support Vector Machine (SVM) for signal processing, analysis and classification. Moreover, the method is thought to be used in a multi-emotions based Brain Computer Interface (BCI) and, for this reason, an ad hoc shrewdness is assumed. Method: The peculiarity of the brain activation requires ad-hoc signal processing by wavelet decomposition, and the definition of a set of features for signal characterization in order to discriminate different self-induced emotions. The proposed method is a two stages algorithm, completely parameterized, aiming at a multi-class classification and may be considered in the framework of machine learning. The first stage, the calibration, is off-line and is devoted at the signal processing, the determination of the features and at the training of a classifier. The second stage, the real-time one, is the test on new data. The PCA theory is applied to avoid redundancy in the set of features whereas the classification of the selected features, and therefore of the signals, is obtained by the SVM. Results: Some experimental tests have been conducted on EEG signals proposing a binary BCI, based on the self-induced disgust produced by remembering an unpleasant odor. Since in literature it has been shown that this emotion mainly involves the right hemisphere and in particular the T8 channel, the classification procedure is tested by using just T8, though the average accuracy is calculated and reported also for the whole set of the measured channels. Conclusions: The obtained classification results are encouraging with percentage of success that is, in the average for the whole set of the examined subjects, above 90%. An ongoing work is the application of the proposed procedure to map a large set of emotions with EEG and to establish the EEG headset with the minimal number of channels to allow the recognition of a significant range of emotions both in the field of affective computing and in the development of auxiliary communication tools for subjects affected by severe disabilities

    An Investigation of How Wavelet Transform can Affect the Correlation Performance of Biomedical Signals : The Correlation of EEG and HRV Frequency Bands in the frontal lobe of the brain

    Get PDF
    © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reservedRecently, the correlation between biomedical signals, such as electroencephalograms (EEG) and electrocardiograms (ECG) time series signals, has been analysed using the Pearson Correlation method. Although Wavelet Transformations (WT) have been performed on time series data including EEG and ECG signals, so far the correlation between WT signals has not been analysed. This research shows the correlation between the EEG and HRV, with and without WT signals. Our results suggest electrical activity in the frontal lobe of the brain is best correlated with the HRV.We assume this is because the frontal lobe is related to higher mental functions of the cerebral cortex and responsible for muscle movements of the body. Our results indicate a positive correlation between Delta, Alpha and Beta frequencies of EEG at both low frequency (LF) and high frequency (HF) of HRV. This finding is independent of both participants and brain hemisphere.Final Published versio

    Time-varying parametric modelling and time-dependent spectral characterisation with applications to EEG signals using multi-wavelets

    Get PDF
    A new time-varying autoregressive (TVAR) modelling approach is proposed for nonstationary signal processing and analysis, with application to EEG data modelling and power spectral estimation. In the new parametric modelling framework, the time-dependent coefficients of the TVAR model are represented using a novel multi-wavelet decomposition scheme. The time-varying modelling problem is then reduced to regression selection and parameter estimation, which can be effectively resolved by using a forward orthogonal regression algorithm. Two examples, one for an artificial signal and another for an EEG signal, are given to show the effectiveness and applicability of the new TVAR modelling method
    corecore