1,431,431 research outputs found

    Heterogeneity in Short Gamma-ray Bursts

    Full text link
    We analyze the Swift/BAT sample of short gamma-ray bursts, using an objective Bayesian Block procedure to extract temporal descriptors of the bursts' initial pulse complexes (IPCs). The sample comprises 12 and 41 bursts with and without extended emission (EE) components, respectively. IPCs of non-EE bursts are dominated by single pulse structures, while EE bursts tend to have two or more pulse structures. The medians of characteristic timescales - durations, pulse structure widths, and peak intervals - for EE bursts are factors of ~ 2-3 longer than for non-EE bursts. A trend previously reported by Hakkila and colleagues unifying long and short bursts - the anti-correlation of pulse intensity and width - continues in the two short burst groups, with non-EE bursts extending to more intense, narrower pulses. In addition we find that preceding and succeeding pulse intensities are anti-correlated with pulse interval. We also examine the short burst X-ray afterglows as observed by the Swift/XRT. The median flux of the initial XRT detections for EE bursts (~ 6 x 10^-10 erg cm^-2 s^-1) is ~> 20 x brighter than for non-EE bursts, and the median X-ray afterglow duration for EE bursts (~ 60,000 s) is ~ 30 x longer than for non-EE bursts. The tendency for EE bursts toward longer prompt-emission timescales and higher initial X-ray afterglow fluxes implies larger energy injections powering the afterglows. The longer-lasting X-ray afterglows of EE bursts may suggest that a significant fraction explode into more dense environments than non-EE bursts, or that the sometimes-dominant EE component efficiently powers the afterglow. Combined, these results favor different progenitors for EE and non-EE short bursts.Comment: 30 pages, 11 figures, 3 tables; accepted to The Astrophysical Journa

    Flexible resource allocation for joint optimization of energy and spectral efficiency in OFDMA multi-cell networks

    No full text
    The radio resource allocation problem is studied, aiming to jointly optimize the energy efficiency (EE) and spectral efficiency (SE) of downlink OFDMA multi-cell networks. Different from existing works on either EE or SE optimization, a novel EE-SE tradeoff (EST) metric, which can capture both the EST relation and the individual cells’ preferences for EE or SE performance, is introduced as the utility function for each base station (BS). Then the joint EE-SE optimization problem is formulated, and an iterative subchannel allocation and power allocation algorithm is proposed. Numerical results show that the proposed algorithm can exploit the EST relation flexibly and optimize the EE and SE simultaneously to meet diverse EE and SE preferences of individual cells.<br/

    Spectral Efficiency and Energy Efficiency of OFDM Systems: Impact of Power Amplifiers and Countermeasures

    Full text link
    In wireless communication systems, the nonlinear effect and inefficiency of power amplifier (PA) have posed practical challenges for system designs to achieve high spectral efficiency (SE) and energy efficiency (EE). In this paper, we analyze the impact of PA on the SE-EE tradeoff of orthogonal frequency division multiplex (OFDM) systems. An ideal PA that is always linear and incurs no additional power consumption can be shown to yield a decreasing convex function in the SE-EE tradeoff. In contrast, we show that a practical PA has an SE-EE tradeoff that has a turning point and decreases sharply after its maximum EE point. In other words, the Pareto-optimal tradeoff boundary of the SE-EE curve is very narrow. A wide range of SE-EE tradeoff, however, is desired for future wireless communications that have dynamic demand depending on the traffic loads, channel conditions, and system applications, e.g., high-SE-with-low-EE for rate-limited systems and high-EE-with-low-SE for energy-limited systems. For the SE-EE tradeoff improvement, we propose a PA switching (PAS) technique. In a PAS transmitter, one or more PAs are switched on intermittently to maximize the EE and deliver an overall required SE. As a consequence, a high EE over a wide range SE can be achieved, which is verified by numerical evaluations: with 15% SE reduction for low SE demand, the PAS between a low power PA and a high power PA can improve EE by 323%, while a single high power PA transmitter improves EE by only 68%.Comment: to be published, IEEE J. Sel. Areas Commu

    Energy-Efficiency Based Resource Allocation for the Scalar Broadcast Channel

    Get PDF
    Until recently, link adaptation and resource allocation for communication system relied extensively on the spectral efficiency as an optimization criterion. With the emergence of the energy efficiency (EE) as a key system design criterion, resource allocation based on EE is becoming of great interest. In this paper, we propose an optimal EE-based resource allocation method for the scalar broadcast channel (BC-S). We introduce our EE framework, which includes an EE metric as well as a realistic power consumption model for the base station, and utilize this framework for formulating our EE-based optimization problem subject to a power as well as fairness constraints. We then prove the convexity of this problem and compare our EE-based resource allocation method against two other methods, i.e. one based on sum-rate and one based on fairness optimization. Results indicate that our method provides large EE improvement in comparison with the two other methods by significantly reducing the total consumed power. Moreover, they show that near-optimal EE and average fairness can be simultaneously achieved over the BC-S channel

    On the relation between energy efficiency and spectral efficiency of multiple-antenna systems

    Get PDF
    Motivated by the increasing interest in energy-efficient communication systems, the relation between energy efficiency (EE) and spectral efficiency (SE) for multiple-input-multiple-output (MIMO) systems is investigated in this paper. To provide insights into the design of practical MIMO systems, we adopt a realistic power model and consider both independent Rayleigh fading and semicorrelated fading channels. We derived a novel and closed-form upper bound (UB) for the system EE as a function of SE. This UB exhibits great accuracy for a wide range of SE values and, thus, can be utilized for explicit assessment of the influence of SE on EE and for analytically addressing the EE optimization problems. Using this tight EE UB, our analysis unfolds two EE optimization issues: Given the number of transmit and receive antennas, an optimum value of SE is derived, such that the overall EE can be maximized, and given a specific value of SE, the optimal number of antennas is derived for maximizing the system EE

    Cubic symmetroids and vector bundles on a quadric surface

    Get PDF
    We investigate the jumping conics of stable vector bundles \Ee of rank 2 on a smooth quadric surface QQ with the Chern classes c_1=\Oo_Q(-1,-1) and c2=4c_2=4 with respect to the ample line bundle \Oo_Q(1,1). We describe the set of jumping conics of \Ee, a cubic symmetroid in \PP_3, in terms of the cohomological properties of \Ee. As a consequence, we prove that the set of jumping conics, S(\Ee), uniquely determines \Ee. Moreover we prove that the moduli space of such vector bundles is rational.Comment: 6 pages; Comments welcom

    Neutrino mass spectrum and neutrinoless double beta decay

    Get PDF
    The relations between the effective Majorana mass of the electron neutrino, meem_{ee}, responsible for neutrinoless double beta decay, and the neutrino oscillation parameters are considered. We show that for any specific oscillation pattern meem_{ee} can take any value (from zero to the existing upper bound) for normal mass hierarchy and it can have a minimum for inverse hierarchy. This means that oscillation experiments cannot fix in general meem_{ee}. Mass ranges for meem_{ee} can be predicted in terms of oscillation parameters with additional assumptions about the level of degeneracy and the type of hierarchy of the neutrino mass spectrum. These predictions for meem_{ee} are systematically studied in the specific schemes of neutrino mass and flavor which explain the solar and atmospheric neutrino data. The contributions from individual mass eigenstates in terms of oscillation parameters have been quantified. We study the dependence of meem_{ee} on the non-oscillation parameters: the overall scale of the neutrino mass and the relative mass phases. We analyze how forthcoming oscillation experiments will improve the predictions for meem_{ee}. On the basis of these studies we evaluate the discovery potential of future \znbb decay searches. The role \znbb decay searches will play in the reconstruction of the neutrino mass spectrum is clarified. The key scales of meem_{ee}, which will lead to the discrimination among various schemes are: mee0.1m_{ee} \sim 0.1 eV and mee0.005m_{ee} \sim 0.005 eV.Comment: 47 pages, 35 figure
    corecore