93 research outputs found

    Dynamic Virtual Join Point Dispatch

    Get PDF
    Conceptually, join points are points in the execution of a program and advice is late-bound to them. We propose the notion of virtual join points that makes this concept explicit not only at a conceptual, but also at implementation level. In current implementations of aspect-oriented languages, binding is performed early, at deploy-time, and only a limited residual dispatch is executed. Current implementations fall in the categories of modifying the application code, modifying the meta-level of an application, or interacting with the application by means of events—the latter two already realizing virtual join points to some degree. We provide an implementation of an aspect-oriented execution environment that supports truly virtual join points and discuss how this approach also favors optimizations in the execution environment

    A case for explicit join point models for aspect-oriented intermediate languages

    Get PDF
    Aspect-oriented languages mostly employ implicit language-defined join point models, where well-defined points in the program are called join points and declarative predicates are used to quantify them. The primary motivation for using an implicit join point model is obliviousness and ease of quantification. A design choice for aspect-oriented intermediate languages is to mirror the source language model. In this position paper, I argue that an explicit join point model is better suited at the intermediate language level and sketch a preliminary solutio

    Multitudes of Objects: First Implementation and Case Study for Java

    Get PDF
    In object-oriented programs, the relationship of an object to many objects is usually implemented using indirection through a collection. This is in contrast to a relationship to one object, which is usually implemented directly. However, using collections for relationships to many objects does not only mean that accessing the related objects always requires accessing the collection first, it also presents a lurking maintenance problem that manifests itself when a relationship needs to be changed from to-one to to-many or vice versa. Continuing our prior work on fixing this problem, we show how we have extended the Java 7 programming language with multiplicities, that is, with expressions that evaluate to a number of objects not wrapped in a container, and report on the experience we have gathered using these multiplicities in a case study

    A Typed Monadic Embedding of Aspects

    Get PDF
    International audienceWe describe a novel approach to embed pointcut/advice aspects in a typed functional programming language like Haskell. Aspects are first-class, can be deployed dynamically, and the pointcut language is extensible. Type soundness is guaranteed by exploiting the un- derlying type system, in particular phantom types and a new anti- unification type class. The use of monads brings type-based rea- soning about effects for the first time in the pointcut/advice setting, thereby practically combining Open Modules and EffectiveAdvice, and enables modular extensions of the aspect language

    Software fault injection and localization in embedded systems

    Get PDF
    Injection and localization of software faults have been extensively researched, but the results are not directly transferable to embedded systems. The domain-specific constraints applying to these systems, such as limited resources and the predominant C/C++ programming languages, require a specific set of injection and localization techniques. In this thesis, we have assessed existing approaches and have contributed a set of novel methods for software fault injection and localization in embedded systems. We have developed a method based on AspectC++ for the injection of errors at interfaces and a method based on Clang for the accurate injection of software faults directly into source code. Both approaches work particularly well in the context of embedded systems, because they do not require runtime support and modify binaries only when necessary. Nevertheless, they are suitable to inject software faults and errors into the software of other domains. These contributions required a thorough assessment of fault injection techniques and fault models presented in literature over the years, which raised multiple questions regarding their validity in the context of C/C++. We found that macros (particularly header files), compile-time language constructs, and the commonly used optimization levels introduce a non-negligible bias to experimental results achieved by injection methods operating on any other layer than the source code. Additionally, we found that the textual specification of fault models is prone to ambiguities and misunderstandings. We have conceived an automatic fault classifier to solve this problem in a field study. Regarding software fault localization, we have combined existing methods making use of program spectra and assertions, and have contributed a new oracle type for autonomous localization of software faults in the field. Our evaluation shows that this approach works particularly well in the context of embedded systems because the generated information can be processed in real-time and, therefore, it can run in an unsupervised manner. Concluding, we assessed a variety of injection and localization approaches in the context of embedded systems and contributed novel methods where applicable improving the current state-of-the-art. Our results also point out weaknesses regarding the general validity of the majority of previous injection experiments in C/C++

    JaVerT: JavaScript verification toolchain

    No full text
    The dynamic nature of JavaScript and its complex semantics make it a difficult target for logic-based verification. We introduce JaVerT, a semi-automatic JavaScript Verification Toolchain, based on separation logic and aimed at the specialist developer wanting rich, mechanically verified specifications of critical JavaScript code. To specify JavaScript programs, we design abstractions that capture its key heap structures (for example, prototype chains and function closures), allowing the developer to write clear and succinct specifications with minimal knowledge of the JavaScript internals. To verify JavaScript programs, we develop JaVerT, a verification pipeline consisting of: JS-2-JSIL, a well-tested compiler from JavaScript to JSIL, an intermediate goto language capturing the fundamental dynamic features of JavaScript; JSIL Verify, a semi-automatic verification tool based on a sound JSIL separation logic; and verified axiomatic specifications of the JavaScript internal functions. Using JaVerT, we verify functional correctness properties of: data-structure libraries (key-value map, priority queue) written in an object-oriented style; operations on data structures such as binary search trees (BSTs) and lists; examples illustrating function closures; and test cases from the official ECMAScript test suite. The verification times suggest that reasoning about larger, more complex code using JaVerT is feasible

    Effective Aspects: A Typed Monadic Embedding of Pointcuts and Advice

    Get PDF
    International audienceAspect-oriented programming(AOP) aims to enhance modularity and reusability in software systems by offering an abstraction mechanism to deal with crosscutting concerns. However, in most general-purpose aspect languages aspects have almost unrestricted power, eventually conflicting with these goals. In this work we present Effective Aspects: a novel approach to embed the point- cut/advice model of AOP in a statically-typed functional programming language like Haskell. Our work extends EffectiveAdvice, by Oliveira, Schrijvers and Cook; which lacks quantification, and explores how to exploit the monadic setting in the full pointcut/advice model. Type soundness is guaranteed by exploiting the underlying type system, in particular phantom types and a new anti-unification type class. Aspects are first-class, can be deployed dynamically, and the pointcut language is extensible, therefore combining the flexibility of dynamically-typed aspect languages with the guarantees of a static type system. Monads enables us to directly reason about computational effects both in aspects and base programs using traditional monadic techniques. Using this we extend Aldrich's notion of Open Modules with effects, and also with protected pointcut interfaces to external advising. These restrictions are enforced statically using the type system. Also, we adapt the techniques of EffectiveAdvice to reason about and enforce control flow properties. Moreover, we show how to control effect interference us- ing the parametricity-based approach of EffectiveAdvice. However this approach falls short when dealing with interference between multiple aspects. We propose a different approach using monad views, a recently developed technique for han- dling the monad stack. Finally, we exploit the properties of our monadic weaver to enable the modular construction of new semantics for aspect scoping and weaving. These semantics also benefit fully from the monadic reasoning mechanisms present in the language. This work brings type-based reasoning about effects for the first time in the pointcut/advice model, in a framework that is both expressive and extensible; thus allowing development of robust aspect-oriented systems as well as being a useful research tool for experimenting with new aspect semantics
    corecore