
A Typed Monadic Embedding of Aspects

Nicolas Tabareau, Ismael Figueroa, Éric Tanter

To cite this version:

Nicolas Tabareau, Ismael Figueroa, Éric Tanter. A Typed Monadic Embedding of Aspects.
12th annual international conference on Aspect-Oriented Software Development (Modularity-
AOSD’13), Mar 2013, Fukuoka, Japan. 2013. <hal-00763695>

HAL Id: hal-00763695

https://hal.inria.fr/hal-00763695

Submitted on 11 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL Mines Nantes

https://core.ac.uk/display/50616236?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-00763695

A Typed Monadic Embedding of Aspects

Nicolas Tabareau
ASCOLA Group
INRIA, France

nicolas.tabareau@inria.fr

Ismael Figueroa
PLEIAD Laboratory & ASCOLA Group

DCC University of Chile & INRIA
ifiguero@dcc.uchile.cl

Éric Tanter
PLEIAD Laboratory

Computer Science Department (DCC)
University of Chile – Chile

etanter@dcc.uchile.cl

Abstract
We describe a novel approach to embed pointcut/advice aspects in
a typed functional programming language like Haskell. Aspects are
first-class, can be deployed dynamically, and the pointcut language
is extensible. Type soundness is guaranteed by exploiting the un-
derlying type system, in particular phantom types and a new anti-
unification type class. The use of monads brings type-based rea-
soning about effects for the first time in the pointcut/advice setting,
thereby practically combining Open Modules and EffectiveAdvice,
and enables modular extensions of the aspect language.

1. Introduction
Aspect-oriented programming languages support the modular defi-
nition of crosscutting concerns through a join point model [15]. In
the pointcut/advice mechanism, crosscutting is supported by means
of pointcuts, which quantify over join points, in order to implicitly
trigger advice [35]. Such a mechanism is typically integrated in
an existing programming language by modifying the language pro-
cessor, may it be the compiler (either directly or through macros),
or the virtual machine. In a typed language, introducing pointcuts
and advices also means extending the type system, if type sound-
ness is to be preserved. For instance, AspectML [6] is based on a
specific type system in order to safely apply advice. AspectJ [14]
does not substantially extend the type system of Java and suffers
from soundness issues. StrongAspectJ [7] addresses these issues
with an extended type system. In both cases, proving type sound-
ness is rather involved because a whole new type system has to be
dealt with.

In functional programming, the traditional way to tackle lan-
guage extensions, mostly for embedded languages, is to use mon-
ads [22]. Early work on AOP suggests a strong connection to mon-
ads. De Meuter proposed to use them to lay down the foundations
of AOP [21], and Wand et al. used monads in their denotational
semantics of pointcuts and advice [35]. Recently, Tabareau pro-
posed a weaving algorithm that supports monads in the pointcut
and advice model, which yields benefits in terms of extensibility of

É. Tanter is partially funded by FONDECYT project 1110051.
I. Figueroa is funded by a CONICYT-Chile Doctoral Scholarship.

[Copyright notice will appear here once ’preprint’ option is removed.]

the aspect weaver [30]. Nevertheles in this work, the weaver itself
was not monadic but integrated internally in the system. This con-
nection was exploited in recent preliminary work by the authors,
to construct an extensible monadic aspect weaver, in the context of
Typed Racket [11]. However, contrary to what the name suggests,
the proposed monadic weaver was not fully typed because of limi-
tations in the type system of Typed Racket.

This work proposes a lightweight, full-fledged embedding of as-
pects in Haskell, that is both typed and monadic. By lightweight, we
mean that aspects are provided as a small standard Haskell library1.
The embedding is full-fledged because it supports dynamic deploy-
ment of first-class aspects with an extensible pointcut language—as
is usually found only in dynamically-typed aspect languages like
AspectScheme [9] and AspectScript [33] (Section 2).

By typed, we mean that in the embedding, pointcuts, advices,
and aspects are all statically typed (Section 3), and pointcut/advice
bindings are proven to be safe (Section 4). Type soundness is
directly derived by relying on the existing type system of Haskell
(type classes [34], phantom types [16], and some recent extensions
of the Glasgow Haskell Compiler). Specifically, we define a novel
type class for anti-unification [25, 26], key to define safe aspects.

Finally, because the embedding is monadic, we derive two no-
table advantages over ad-hoc approaches to introducing aspects in
an existing language. First, we can directly reason about aspects
and effects using traditional monadic techniques. In short, we can
generalize the interference combinators of EffectiveAdvice [23] in
the context of pointcuts and advice (Section 5). Second, because
we embed a monadic weaver, we can modularly extend the aspect
language semantics. We illustrate this with several extensions and
show how type-based reasoning can be applied to language exten-
sions (Section 6). Section 7 discusses several issues related to our
approach, Section 8 reviews related work, and Section 9 concludes.

2. Introducing Aspects
A premise for aspect-oriented programming in functional lan-
guages is that function applications are subject to aspect weav-
ing. We introduce the term open application to refer to a function
application that generates a join point, and consequently, can be
woven.

Open function applications. Opening all function applications
in a program or only a few selected ones is both a language de-
sign question and an implementation question. At the design level,
this is the grand debate about obliviousness in aspect-oriented pro-
gramming. Opening all applications is more flexible, but can lead
to fragile aspects and unwanted encapsulation breaches. At the im-

1 Available, with examples, at http://pleiad.cl/haskellaop

1 2012/10/6

plementation level, opening all function applications requires either
a preprocessor or runtime support.

For now, we focus on quantification—through pointcuts—and
opt for a conservative design in which open applications are real-
ized explicitly using the # operator: f # 2 is the same as f 2, except
that the application generates a join point that is subject to aspect
weaving. We will come back to obliviousness in Section 7.3, show-
ing how different answers can be provided within the context of our
proposal.

Monadic setting. Our approach to introduce aspects in a pure
functional programming language like Haskell can be realized
without considering effects. Nevertheless, most interesting appli-
cations of aspects rely on computational effects (e.g. tracing, mem-
oization, exception handling, etc.). We therefore adopt a monadic
setting from the start. Also, as we show in Section 5, this allows
us to exploit the approach of EffectiveAdvice [23] in order to do
type-based reasoning about effects in presence of aspects.

Illustration. As a basic example, consider the following:

advice:
ensurePos proceed n = proceed (abs n)

monadic version of sqrt:
sqrtM n = return (sqrt n)

using an aspect:
program n = do deploy (aspect (pcCall sqrtM) ensurePos)

sqrtM # n

The advice ensurePos enforces that the argument of a function ap-
plication is a positive number, by replacing the original argument
with its absolute value. We then deploy an aspect that reacts to
applications of sqrtM, the monadic version of sqrt, by executing
this advice. This is specified using the pointcut (pcCall sqrtM).
Evaluating program -4 results in sqrtM to be eventually applied with
argument 4. As can be seen, aspects are created with aspect and
deployed with deploy.

Our introduction of AOP therefore simply relies on defining
aspects (pointcuts, advices), the underlying aspect environment
together with the operations to deploy and undeploy aspects, and
open function application.

The remainder of this section briefly presents these elements,
and the following section concentrates on the main challenge: prop-
erly typing pointcuts and ensuring type soundness of pointcut/ad-
vice bindings.

2.1 Join Point Model
The support for crosscutting provided by a programming language
lies in its join point model (JPM) [19]. A JPM is composed by
three elements: join points that represents the points of a program
that aspects can affect, a means of identifying join points—here,
pointcuts—and a means of effecting at join points—here, advices.

Join points. Join points are function applications. A join point JP
contains a function of type a → m b, and an argument of type a.
m is a monad denoting the underlying computational effect stack.
Note that this means that only functions that are properly lifted to a
monadic context can be advised. In addition, in order for pointcuts
to be able to reason about the type of advised functions, we require
the functions to be PolyTypeable2.
data JP m a b = (Monad m, PolyTypeable (a → m b)) ⇒

JP (a → m b) a

From now on, we omit the type constraints related to PolyTypeable

2 Haskell has a mechanism to introspect types called Typeable, but it is
limited only to monomorphic types. PolyTypeable is an extension that
supports polymorphic types and thus can be defined for any type.

(the PolyTypeable constraint on a type is required each time the
type has to be inspected dynamically; exact occurrences of this
constraint can be found in the implementation).

Pointcuts. A pointcut is a predicate on the current join point. It is
used to identify join points of interests. A pointcut simply returns a
boolean to indicate whether it matches the given join point.

data PC m a b = Monad m ⇒ PC (∀ a' b'. m (JP m a' b' → m Bool))

A pointcut is represented as a value of type PC m a b. (a and b are
used to ensure type safety, as discussed in Section 3.1.) The predi-
cate itself is a function ∀ a’ b’. m (JP m a’ b’ → m Bool), meaning
it has access to the monadic stack. The ∀ declaration quantifies on
type variables a’ and b’ (using rank-2 types) because a pointcut
should be able to match against any join point, regardless of the
specific types involved (we come back to this in Section 3.1).

We provide two basic pointcut designators, pcCall and pcType, as
well as logical pointcut combinators, pcOr, pcAnd, and pcNot.

pcType f = let t = polyTypeOf f in PC (_type t)
where _type t = return (\jp →
return (compareType t jp))

pcCall f = let t = polyTypeOf f in PC (_call f t)
where _call f t = return (\jp →
return (compareFun f jp &&

compareType t jp))

pcType f matches all calls to functions that have a type compat-
ible with f (see Section 3.1 for a detailed definition) while pcCall f
matches all calls to f. In both cases, f is constrained to allow us-
ing the PolyTypeable introspection mechanism, which provides the
polyTypeOf function to obtain the type representation of a value. This
is used to compare types with compareType.

To implement pcCall we require a notion of function equality3.
This is used in compareFun to compare the function in the join
point to the given function. Note that we also need to perform a
type comparison, using compareType. This is because a polymorphic
function whose type variables are instantiated in one way is equal
to the same function but with type variables instantiated in some
other way (e.g. id :: Int → Int is equal to id :: Float → Float).

Users can define their own pointcut designators. For instance,
we can define control-flow pointcuts like AspectJ’s cflow (discussed
briefly in Section 6), data flow pointcuts [18], pointcuts that rely on
the trace of execution [8], etc.

Advice. An advice is a function that executes in place of a join
point matched by a pointcut. This replacement is similar to open
recursion in EffectiveAdvice [23]. An advice receives a function
(known as the proceed function) and returns a new function of
the same type (which may or may not apply the original proceed
function internally). We introduce a type alias for advice:

type Advice m a b = (a → m b) → a → m b

For instance, the type Monad m ⇒ Advice m Int Int is a synonym for
the type Monad m ⇒ (Int → m Int) → Int → m Int. For a given
advice of type Advice m a b, we call a → m b the advised type of
the advice.

Aspect. An aspect is a first-class value binding together a pointcut
and an advice. Supporting first-class aspects is important: it makes
it possible to support aspect factories, separate creation and deploy-
ment/undeployment of aspects, exporting opaque, self-contained
aspects as single units, etc. We introduce a data definition for as-
pects, parameterized by a monad m (which has to be the same in the
pointcut and advice):

3 For this notion of function equality, we use the StableNames API, which
relies on pointer comparison. See Section 7.1 for discussion on the issues
of this approach.

2 2012/10/6

data Aspect m a b c d = Aspect (PC m a b) (Advice m c d)

We defer the detailed definition of Aspect with its type class con-
straints to Section 3.2, when we address the issue of safe point-
cut/advice binding.

2.2 Aspect Deployment
The list of aspects that are deployed at a given point in time is
known as the aspect environment. To be able to define an heteroge-
nous list of aspects, we use an existentially-quantified data EAspect
that hides the type parameters of Aspect:4

data EAspect m = ∀ a b c d. EAspect (Aspect m a b c d)

type AspectEnv m = [EAspect m]

This environment can be either fixed initially and used glob-
ally [19], as in AspectJ, or it can be dynamic, as in AspectScheme [9].
Different scoping strategies are possible when dealing with dy-
namic deployment [31]. Since we are in a monadic setting, we can
pass the aspect environment implicitly using a monad. An open
function application can then trigger the set of currently-deployed
aspects by retrieving these aspects from the underlying monad.

There are a number of design options for the aspect environ-
ment, depending on the kind of aspect deployment that is desired.
Following the Reader monad, we can provide a fixed aspect envi-
ronment, and add the ability to deploy an aspect for the dynamic
extent of an expression, similarly to the local method of the Reader
monad. We can also adopt a State-like monad, in order to support
dynamic aspect deployment and undeployment with global scope.
In this paper, without loss of generality, we go for the latter.

Because we are interested in using arbitrary computational ef-
fects in programs, we define the aspect environment through a
monad transformer, which allows the programmer to construct a
monadic stack of effects [17]. A monad transformer is a type con-
structor that is applied to an underlying monad to construct a new
monad enhanced with the effect introduced by the transformer,
while retaining access to all the underlying effects. The AOT monad
transformer is defined as follows:
data AOT m a = AOT {run :: AspectEnv (AOT m) →

m (a, AspectEnv (AOT m))}

Similar to the state transformer, we use a data declaration to define
the type AOT. This type wraps a run function, which takes an initial
aspect environment and returns a computation in the underlying
monad m with a value of type a, and a potentially modified aspect
environment.

The monadic bind and return functions of the composed AOT m
monad are the same as in the state monad transformer. Note that
the aspect environment is bound to the same monad AOT m. This
provides aspects with access to open applications5.

We now define the functions for dynamic deployment, which
simply add and remove an aspect from the aspect environment (note
the use of $ to avoid extra parentheses):

deploy, undeploy :: EAspect (AOT m) → AOT m ()
deploy asp = AOT $ \asps → return ((), asp:asps)
undeploy asp = AOT $ \asps → return ((), deleteAsp asp asps)

4 Since existential quantification requires type parameters to be free of type
class constraints, aspects with ad-hoc polymorphism have to be instantiated
before deployment to statically solve each remaining type class constraint
(see Section 7.2 for more details).
5 We could have defined AOT using the state monad transformer. However
this would cause conflicts with existing monad transformer libraries when
composing several effects. For instance, deploying AOT on a monadic stack
that already contains a state component would imply using explicit lifting.
We integrate AOT as a monad transformer that implicitly lifts operations for
standard effects such as state, errors, IO, etc.

To extract the computation of the underlying monad from
an AOT computation we define the runAOT function, with type
Monad m ⇒ AOT m a → m a (similar to evalStateT in the state monad
transformer), that runs a computation in an empty initial aspect
environment. For instance, in the example of the sqrt function, we
can define a client as follows:
client n = runIdentity (runAOT (program n))

2.3 Aspect Weaving
Aspect weaving is triggered through open applications, i.e. appli-
cations performed with the # operator, e.g. f # x.

Open applications. We introduce a type class OpenApp that de-
clares the # operator. This makes it possible to overload # in certain
contexts, and it can be used to declare constraints on monads to
ensure that the operation is available in a given context.

class Monad m ⇒ OpenApp m where
(#) :: (a → m b) → a → m b

The # operator takes a function of type a → m b and returns a (wo-
ven) function with the same type. Any monad composed with the
AOT transformer has open application defined:

instance Monad m ⇒ OpenApp (AOT m) where
f # a = AOT $ \asps →

do woven_f ← weave f asps (newjp f a)
run (woven_f a) asps

An open application results in the creation of a join point (newjp)
that represents the application of f to a. The join point is then used
to determine which aspects in the environment match, produce a
new function that combines all the applicable advices, and apply
that function to the original argument.

Weaving. The function to use at a given point is produced by the
weave function, defined below:
weave :: Monad m ⇒ (a → AOT m b) → AspectEnv (AOT m)

→ JP (AOT m) a b → m (a → AOT m b)
weave f [] jp = return f
weave f env@(asp:asps) jp =

case asp of EAspect (Aspect pc adv) →
do (match,_) ← apply_pc pc jp env
weave (if match

then apply_adv adv f
else f)

asps jp

The weave function is defined recursively on the aspect environ-
ment. For each aspect, it applies the pointcut to the join point. It
then uses either the partial application of the advice to f if the point-
cut matches, or f otherwise, to keep on weaving on the rest of the
aspect list. This definition is a direct adaptation of AspectScheme’s
weaving function [9].

Applying advice. As we have seen, the aspect environment has
type AspectEnv m, meaning that the type of the advice function is
hidden. Therefore, advice application requires coercing the advice
to the proper type in order to apply it to the function of the join
point:

apply_adv :: Advice m a b → t → t
apply_adv adv f = (unsafeCoerce adv) f

The operation unsafeCoerce of Haskell is (unsurprisingly) unsafe
and can yield to segmentation faults or arbitrary results. To recover
safety, we could insert a runtime type check with compareType just
before the coercion. We instead make aspects type safe such that we
can prove that the use of unsafeCoerce in apply_adv is always safe.
The following section describes how we achieve type soundness of
aspects; Section 4 formally proves it.

3 2012/10/6

3. Typing Aspects
Ensuring type soundness in the presence of aspects consists in
ensuring that an advice is always applied at a join point of the
proper type. Note that by “the type of the join point”, we refer to
the type of the function being applied at the considered join point.

3.1 Typing Pointcuts
The intermediary between a join point and an advice is the pointcut,
whose proper typing is therefore crucial. The type of a pointcut as
a predicate over join points does not convey any information about
the types of join points it matches. To keep this information, we use
phantom type variables a and b in the definition of PC:

data PC m a b = Monad m ⇒ PC (∀ a' b'. m (JP m a' b' → m Bool))

A phantom type variable is a type variable that is not used on the
right hand-side of the data type definition. The use of phantom
type variables to type embedded languages was first introduced by
Leijen and Meijer to type an embedding of SQL in Haskell [16];
it makes it possible to “tag” extra type information on data. In our
context, we use it to add the information about the type of the join
points matched by a pointcut: PC m a b means that a pointcut can
match applications of functions of type a → m b. We call this type
the matched type of the pointcut. Pointcut designators are in charge
of specifying the matched type of the pointcuts they produce.

Least general types. Because a pointcut potentially matches
many join points of different types, the associated type must be
a more general type. For instance, consider a pointcut that matches
applications of functions of type Int → m Int and Float → m Int.
Its matched type is the parametric type a → m Int. Note that this
is in fact the least general type of both types.6 Another more gen-
eral candidate is a → m b, but the least general type conveys more
precise information.

As a concrete example, below is the type signature of the pcCall
pointcut designator:

pcCall :: Monad m ⇒ (a → m b) → PC m a b

Comparing types. The type signature of the pcType pointcut des-
ignator is the same as that of pcCall:

pcType :: Monad m ⇒ (a → m b) → PC m a b

However, suppose that f is a function of type Int → m a. We want
the pointcut (pcType f) to match applications of functions of more
specific types, such as Int → m Int. This means that compareType ac-
tually checks that the matched type of the pointcut is more general
than the type of the join point.

Logical combinators. We use type constraints in order to prop-
erly specify the matched type of logical combinations of pointcuts.
The intersection of two pointcuts matches join points that are most
precisely described by the principal unifier of both matched types.
Since Haskell supports this unification when the same type variable
is used, we can simply define pcAnd as follows:

pcAnd :: Monad m ⇒ PC m a b → PC m a b → PC m a b

For instance, a control flow pointcut matches any type of join
point, so its matched type is a → m b. Consequently, if f is of
type Int → m a, the matched type of pcAnd (pcCall f) (pcCflow g)
is Int → m a.

Dually, the union of two pointcuts relies on anti-unification [25,
26], that is, the computation of the least general type of two types.
Haskell does not natively support anti-unification. We exploit the

6 The term most specific generalization is also valid, but we stick here to
Plotkin’s original terminology [25].

fact that multi-parameter type classes can be used to define rela-
tions over types, and develop a novel type class LeastGen (for least
general) that can be used as a constraint to compute the least gen-
eral type t of two types t1 and t2 (defined in Section 4):

pcOr :: (Monad m, LeastGen (a → b) (c → d) (e → f)) ⇒
PC m a b → PC m c d → PC m e f

For instance, if f is of type Int → m a and g is of type Int → m Float,
the matched type of pcOr (pcCall f) (pcCall g) is Int → m a.

The negation of a pointcut can match join points of any type
because no assumption can be made on the matched join points:

pcNot :: Monad m ⇒ PC m a b → PC m a' b'

User-defined pointcut designators. The set of pointcut designa-
tors in our language is open. User-defined pointcut designators are
however responsible for properly specifying their matched types. If
the matched type is incorrect or too specific, soundness is lost.

A pointcut cannot make any type assumption about the type
of the join point it receives as argument. The reason for this is
again the homogeneity of the aspect environment: when deploying
an aspect, the type of its pointcut is hidden. At runtime, then,
a pointcut is expected to be applicable to any join point. The
general approach to make a pointcut safe is therefore to perform
a runtime type check, as was illustrated in the definition of pcCall
and pcType in Section 2.1. However, certain pointcuts are meant to
be conjuncted with others pointcuts that will first apply a sufficient
type condition.

In order to support the definition of pointcuts that require join
points to be of a given type, we provide the RequirePC type:

data RequirePC m a b = Monad m ⇒
RequirePC (∀ a' b'. m (JP m a' b' → m Bool))

The definition of RequirePC is similar to that of PC, with two impor-
tant differences. First, the matched type of a RequirePC is interpreted
as a type requirement. Second, a RequirePC is not a valid stand-alone
pointcut: it has to be combined with a standard PC that enforces the
proper type upfront. To safely achieve this, we overload pcAnd7:

pcAnd :: (Monad m, LessGen (a → b) (c → d)) ⇒
PC m a b → RequirePC m c d → PC m a b

pcAnd yields a standard PC pointcut and checks that the matched
type of the PC pointcut is less general than the type expected by the
RequirePC pointcut. This is expressed using the constraint LessGen,
which, as we will see in Section 4, is based on LeastGen.

To illustrate, let us define a poincut designator pcArgGT for spec-
ifying pointcuts that match when the argument at the join point is
greater than a given n (of type a instance of the Ord type class):

pcArgGT :: (Monad m, Ord a) ⇒ a → RequirePC m a b
pcArgGT n = RequirePC $ return (\jp →

return (unsafeCoerce (getJpArg jp) >= n))

The use of unsafeCoerce to coerce the join point argument to the type
a forces us to declare the Ord constraint on a when typing the re-
turned pointcut as RequirePC m a b (with a fresh type variable b). To
get a proper pointcut, we use pcAnd, for instance to match all calls
to sqrtM where the argument is greater than 10:

pcCall sqrtM `pcAnd` pcArgGT 10

The pcAnd combinator guarantees that a pcArgGT pointcut is always
applied to a join point with an argument that is indeed of a proper
type: no runtime type check is necessary within pcArgGT, because
the coercion is always safe.

7 The constraint is different from the previous constraint on pcAnd. This is
possible thanks to the recent ConstraintKinds extension of ghc.

4 2012/10/6

3.2 Typing Aspects
The main typing issue we have to address consists in ensuring that
a pointcut/advice binding is type safe, so that the advice application
does not fail. A first idea to ensure that the pointcut/advice binding
is type safe is to require the matched type of the pointcut and the
advised type of the advice to be the same (or rather, unifiable):

wrong!
data Aspect m a b = Aspect (PC m a b) (Advice m a b)

This approach can however yield unexpected behavior. Consider
the following example:

idM x = return x

adv :: Monad m ⇒ Advice (Char → m Char)
adv proceed c = proceed (toUpper c)

program = do deploy (aspect (pcCall idM) adv)
x ← idM # 'a'
y ← idM # [True,False,True]
return (x, y)

The matched type of the pointcut pcCall idM is Monad m ⇒ a → m a.
With the above definition of Aspect, program passes the typechecker
because it is possible to unify a and Char to Char. However, when
evaluated, the behavior of program is undefined because the advice
is unsafely applied with an argument of type [Bool], for which
toUpper is undefined.

The problem is that during typechecking, the matched type of
the pointcut and the advised type of the advice can be unified.
Because unification is symmetric, this succeeds even if the advised
type is more specific than the matched type. In order to address this,
we again use the type class LessGen to ensure that the matched type
is less general than the advice type:

data Aspect m a b c d = (Monad m, LessGen (a → m b) (c → m d))
⇒ Aspect (PC m a b) (Advice m c d)

This constraint ensures that pointcut/advice bindings are type safe:
the coercion performed in apply_adv always succeeds. We formally
prove this in the following section.

4. Typing Aspects, Formally
We now formally prove the safety of our approach. We start briefly
summarizing the notion of type substitutions and the is less general
relation between types. Note that we do not consider type class con-
straints in the definition. Then we describe a novel anti-unification
algorithm implemented with type classes, on which the type classes
LessGen and LeastGen are based. We finally prove pointcut and aspect
safety, and state our main safety theorem.

4.1 Type Substitutions
In this section we summarize the definition of type substitutions,
which form the basis of our argument for safety. We consider a
typing environment Γ = (xi : Ti)i∈N that binds variables to types.

Definition 1 (Type Substitution, from [24]). A type substitution
σ is a finite mapping from type variables to types. It is denoted
[Xi 7→ Ti]i∈N, where dom(σ) and range(σ) are the sets of types
appearing in the left-hand and right-hand sides of the mapping,
respectively. It is possible for type variables to appear in range(σ).

Substitutions are always applied simultaneously on a type. If σ
and γ are substitutions, and T is a type, then σ ◦ γ is the composed
substitution, where (σ ◦γ)T = σ(γT). Application of substitution
on a type is defined inductively on the structure of the type.

Substitution is extended pointwise for typing environments in
the following way: σ(xi : Ti)i∈N = (xi : σTi)i∈N. Also, applying
a substitution to a term t means to apply the substitution to all type
annotations appearing in t.

1 class LeastGen' a b c σin σout | a b c σin → σout

2

3 Inductive case: The two type constructors match,
4 recursively compute the substitution for type arguments ai, bi.
5 instance (LeastGen' a1 b1 c1 σ0 σ1, . . .,
6 LeastGen' an bn cn σn−1 σn,
7 T c1 . . . cn ~ c)
8 ⇒ LeastGen' (T a1 . . . an) (T b1 . . . bn) c σ0 σn

9

10 Default case: The two type constructors don't match, c has to be a variable,
11 either unify c with c′ if c′ 7→ (a, b) or extend the substitution with c 7→ (a, b)
12 instance (Analyze c (TVar c),
13 MapsTo σin c′ (a,b),

14 VarCase c′ (a,b) c σin σout)
15 ⇒ LeastGen' a b c σin σout

Figure 1. LeastGen’

Definition 2 (Less General Type). We say type T1 is less general
than type T2, denoted T1 � T2, if there exists a substitution σ such
that σT2 = T1. Observe that � defines a partial order on types
(modulo α-renaming).

Definition 3 (Least General Type). Given types T1 and T2, we say
type T is the least general type iff T is the supremum of T1 and T2

with respect to �.

4.2 Statically Computing Least General Types
In an aspect declaration, we statically check the type of the point-
cut and the type of the advice to ensure a safe binding. To do this
we encode an anti-unification algorithm at the type level, exploit-
ing the type class mechanism of Haskell. A multi-parameter type
class R t1 . . . tn can be seen as a relation R on types t1 . . . tn, and
instance declarations as ways to (inductively) define this relation,
in a manner very similar to logic programming.

The type classes LessGen and LeastGen used in Section 3 are de-
fined as particular cases of the more general type class LeastGen’,
shown in Figure 1. This class is defined in line 1 and is parame-
terized by types a, b, c, σin and σout. σin and σout denote sub-
stitutions encoded at the type level as a list of mappings from type
variables to pairs of types. We use pairs of types in substitutions
because we have to simultaneously compute substitutions from c to
a and from c to b8. To be concise, lines 5-8 present a single defini-
tion parametrized by the type constructor arity but in practice, there
needs to be a different instance declaration for each type construc-
tor arity.

Proposition 1. If LeastGen’ a b c σin σout holds, then the substi-
tution σout extends σin and σoutc = (a, b).

Proof. By induction on the type representation of a and b.
A type can either be a type variable, represented as TVar a, or an

n-ary type constructor T applied to n type arguments9. The rule to
be applied depends on whether the type constructors of a and b are
the same or not.

(i) If the constructors are the same, the rule defined in lines 5-8
computes (T c1 . . . cn) using the induction hypothesis that σici =
(ai, bi), for i = 1 . . . n. The component-wise application of con-
straints is done from left to right, starting from substitution σ0 and

8 The a b c σin → σout expression means that σout is functionally de-
pendent on the other parameters. Functional dependencies were proposed
by Jones [13] as a mechanism to more precisely control type inference in
Haskell. An expression c e | c → e means that fixing the type c should
fix the type e.
9 We use the Analyze type class from PolyTypeable to get a type represen-
tation at the type level. For simplicity we omit the rules for analyzing type
representations.

5 2012/10/6

extending it to the resulting substitution σn. The type equality con-
straint (T c1 . . .) ∼ c checks that c is unifiable with (T c1 . . .) and,
if so, unifies them. Then, we can check that σnc = (a, b).

(ii) If the type constructors are not the same the only possible
generalization is a type variable. In the rule defined in lines 12-15
the goal is to extend σin with the mapping c 7→ (a, b) such that
σoutc = (a, b), while preserving the injectivity of the substitution
(see next proposition).

Proposition 2. If σin is an injective function, and LeastGen’ a b c
σin σout holds, then σout is an injective function.

Proof. By construction LeastGen’ introduces a binding from a fresh
type variable to (a, b), in the rule defined in lines 12-15, only if
there is no type variable already mapping to (a, b)—in which case
σin is not modified.

To do this, we first check that c is actually a type variable
(TVar c) by checking its representation using Analyze. Then in re-
lation MapsTo we bind c′ to the (possibly inexistent) type variable
that maps to (a, b) in σin. In case there is no such mapping c′ is
None.

Finally, relation VarCase binds σout to σin extended with {c 7→
(a, b)} in case c′ is None, otherwise σout = σin. It then unifies c
with c′. In all cases c is bound to the variable that maps to (a, b) in
σout, because it was either unified in rule MapsTo or in rule VarCase.

The hypothesis that σin is injective ensures that any preexisting
mapping is unique.

Proposition 3. If σin is an injective function, and LeastGen’ a b c
σin σout holds, then c is the least general type of a and b.

Proof. By induction on the type representation of a and b.
(i) If the type constructors are different the only generalization

possible is a type variable c.
(ii) If the type constructors are the same, then a = Ta1 . . . an

and b = Tb1 . . . bn. By Proposition 1 , c = Tc1 . . . cn generalizes
a and bwith the substitution σout. By induction hypothesis ci is the
least general type of (ai, bi).

Now consider a type d that also generalizes a and b, i.e. a � d
and b � d, with associated substitution α. We prove c is less
general than d by constructing a substitution τ such that τd = c.

Again, there are two cases, either d is a type variable, in which
case we set τ = {d 7→ c}, or it has the same outermost type
constructor, i.e. d = Td1 . . . dn. Thus ai � di and bi � di;
and since ci is the least general type of ai and bi, there exists a
substitution τi such that τidi = ci, for i = 1 . . . n.

Now consider a type variable x ∈ dom(τi)∩dom(τj). By defi-
nition of α, we know that σout(τi(x)) = α(x) and σout(τj(x)) =
α(x). Because σout is injective (by Proposition 2), we deduce that
τi(x) = τj(x) so there are no conflicting mappings between τi and
τj , for any i and j. Thus we can define τ =

⋃
τi and check that

τd = c.

Definition 4 (LeastGen type class). To compute the least general
type c for a and b, we define:
LeastGen a b c, LeastGen’ a b c σempty σout, where σempty is

the empty substitution and σout is the resulting substitution.

Definition 5 (LessGen type class). To establish that type a is less
general than type b, we define:
LessGen a b , LeastGen a b b

4.3 Pointcut Safety
We now establish the safety of pointcuts with relation to join points.

Definition 6 (Pointcut match). We define the relation matches(pc,jp),
which holds iff applying pointcut pc to join point jp in the context
of a monad m yields a computation m True.

Now we prove that the matched type of a given pointcut is more
general than the join points matched by that pointcut.

Proposition 4. Given a join point term jp and a pointcut term pc,
and type environment Γ, if
Γ ` pc : PC m a b
Γ ` jp : JP m a’ b’
Γ ` matches(pc, jp)
then a’→ m b’ � a→ m b.

Proof. By induction on the matched type of the pointcut.
• Case pcCall: By construction the matched type of a pcCall f

pointcut is the type of f. Such a pointcut matches a join point
with function g if and only if: f is equal to g, and the type of
f is less general than the type of g. (On both pcCall and pcType
this type comparison is performed by compareType on the type
representations of its arguments.)

• Case pcType: By construction the matched type of a pcType f
pointcut is the type of f. Such a pointcut only matches a
join point with function g whose type is less general than the
matched type.

• Case pcAnd on PC PC: Consider pc1 ‘pcAnd‘ pc2. The matched
type of the combined pointcut is the principal unifier of the
matched types of the arguments—which represents the inter-
section of the two sets of join points. The property holds by
induction hypothesis on pc1 and pc2.

• Case pcAnd on PC RequirePC: Consider pc1 ‘pcAnd‘ pc2. The
matched type of the combined pointcut is the type of pc1 and it
is checked that the type required by pc2 is more general so the
application of pc2 will not yield an error. The property holds by
induction hypothesis on pc1.

• Case pcOr: Consider pc1 ‘pcOr‘pc2. The matched type of the
combined pointcut is the least general type of the matched types
of the argument, computed by the LeastGen constraint—which
represents the union of the two sets of join points. The property
holds by induction hypothesis on pc1 and pc2.

• Case pcNot: The matched type of a pointcut constructed with
pcNot is a fresh type variable, which by definition is more gen-
eral than the type of any join point.

• User-defined pointcuts must maintain this property, otherwise
safety is lost.

4.4 Advice Type Safety
If an aspect is well-typed, the advice is more general than the
matched type of the pointcut:

Proposition 5. Given a pointcut term pc, an advice term adv, and a
type environment Γ, if
Γ ` pc : PC m a b
Γ ` adv : Advice m c d
Γ ` (aspect pc adv) : Aspect m a b c d
then a→ m b � c→ m d.

Proof. Using the definition of Aspect (Section 3.2) and because
Γ ` (aspect pc adv) : Aspect m a b c d, we know that the constraint
LessGen is satisfied, so by Definitions 4 and 5, and Proposition 1,
a → m b � c → m d.

4.5 Safe Aspects
We now show that if an aspect is well-typed, the advice is more
general than the advised join point:

Theorem 1 (Safe Aspects). Given the terms jp, pc and adv repre-
senting a join point, a pointcut and an advice respectively, given a
type environment Γ, if
Γ ` pc : PC m a b
Γ ` adv : Advice m c d

6 2012/10/6

module Fib (fib, pcFib) where
import AOP

fibBase n = return 1

pcFib = pcCall fibBase `pcAnd` pcArgGT 2

fibAdv proceed n = do f1 ← fibBase # (n-1)
f2 ← fibBase # (n-2)
return (f1 + f2)

fib :: Monad m ⇒ m (Int → m Int)
fib = do { deploy (aspect pcFib fibAdv); return $ fibBase # }

Figure 2. Fibonacci module.

Γ ` (aspect pc adv) : Aspect m a b c d
and
Γ ` jp : JP m a’ b’
Γ ` matches(pc, jp)
then a’→ m b’ � c→ m d.

Proof. By Proposition 4 and 5 and the transitivity of �.

Corollary 1 (Safe Advice Application). The coercion of the advice
in apply_adv is safe.

Proof. Recall apply_adv (Section 2.3):

apply_adv :: Advice m a b → t → t
apply_adv adv f = (unsafeCoerce adv) f

By construction, apply_adv is used only with a function f that comes
from a join point that is matched by a pointcut associated to adv.
Using Theorem 1, we know that the join point has type JP m a’ b’
and that a’ → m b’ � a → m b. We note σ the associated sub-
stitution. Then, by compatibility of substitutions with the typing
judgement [24], we deduce σΓ ` σadv : Advice m a’ b’. Therefore
(unsafeCoerce adv) corresponds exactly to σadv, and is safe.

5. Type-Based Reasoning About Aspects
This section illustrates how we can exploit the monadic embedding
for type-based reasoning about aspects, regarding both control flow
properties and computational effects. In essence, this section shows
how the approach of EffectiveAdvice [23] can be used in the con-
text of pointcut/advice AOP, or dually, how Open Modules [1] can
be extended with effects.

5.1 A Simple Example
We first describe a simple example that serves as the starting point.
Figure 2 describes a Fibonacci module, following the canonical
example of Open Modules. The module uses an internal aspect to
implement the recursive definition of Fibonacci: the base function,
fibBase simply implements the base case, and the fibAdv advice
implements recursion when the pointcut pcFib matches. Note that
pcFib uses the user-defined poincut pcArgGT (defined in Section 3.1)
to check that the call to fibBase is done with an argument greater
than 2. The fib function is defined by first deploying the internal
aspect, and then partially applying # to fibBase. This transparently
ensures that an application of fib is open. The fib function is
exported, together with the pcFib pointcut, which can be used by
an external module to advise applications of the internal fibBase
function. Figure 3 presents another Haskell module that provides
a more efficient implementation of fib by using a memoization
advice. To benefit from memoization, a client only has to import
fib from the MemoizedFib module instead of directly from the Fib
module.

Note that, if we consider that the aspect language only supports
the pcCall pointcut designator, this implementation actually repre-

module MemoizedFib (fib) where
import qualified Fib
import AOP

memo proceed n =
do m ← get
if member n m then return (m ! n)
else do { y ← proceed n ; m' ← get; put (insert n y m');

return y }

fib = do { deploy (aspect Fib.pcFib memo); Fib.fib }

Figure 3. Memoized Fibonacci module.

sents an open module proper. Preserving the properties of open
modules, in particular protecting from external advising of inter-
nal functions, in presence of arbitrary quantification (e.g. pcType, or
an always-matching pointcut) is left for future work. Importantly,
just like Open Modules, the approach described here does not en-
sure anything about the advice beyond type safety. In particular,
it is possible to create an aspect that incorrectly calls proceed sev-
eral times, or an aspect that has undesired computational effects.
The type system can assist us in expressing and enforcing specific
interference properties.

5.2 Protected Pointcuts
In order to extend Open Modules with effect-related enforcement,
we introduce the notion of protected pointcuts, which are pointcuts
enriched with restrictions on the effects that associated advice can
exhibit. Simply put, a protected pointcut embeds a typed combi-
nator that is applied to the advice in order to build an aspect. If
the advice does not respect the (type) restrictions expressed by the
combinator, the aspect creation expression simply does not type-
check and hence the aspect cannot be built.

A typed combinator is any function that can produce an advice:

type Combinator t m a b = Monad m ⇒ t → Advice m a b

The protectPC function packs together a pointcut and a combinator:

protectPC :: (Monad m, LessGen (a → m b) (c → m d)) ⇒
PC m a b → Combinator t m c d → ProtectedPC m a b t c d

A protected pointcut, of type ProtectedPC, cannot be used with the
standard aspect creation function aspect. The following pAspect
function is the only way to get an aspect from a protected pointcut
(the constructor PPC is not exposed):

pAspect :: Monad m ⇒ ProtectedPC m a b t c d → t
→ Aspect m a b c d

pAspect (PPC pc comb) adv = aspect pc (comb adv)

The key point here is that when building an aspect using a
protected pointcut, the combinator comb is applied to the advice adv.

We now show how to exploit this extension of Open Modules
to control both control flow and computational effects, using the
proper type combinators.

5.3 Control Flow Properties
Rinard et al. present a classification of advice in four categories
depending on how they affect the control flow of programs [27]:

• Combination: The advice can call proceed any number of
times.

• Replacement: There are no calls to proceed in the advice.
• Augmentation: The advice calls proceed exactly once, and does

not modify the arguments to or the return value of proceed.
• Narrowing: The advice calls proceed at most once, and does not

modify the arguments to or the return value of proceed.

7 2012/10/6

type Narrow m a b c = Monad m ⇒
(a → m Bool, Augment m a b c, Replace m a b)

narrow :: Monad m ⇒ Narrow m a b c → Advice m a b
narrow (p, aug, rep) proceed x =
do b ← p x
if b then replace rep proceed x

else augment aug proceed x

Figure 4. Narrowing advice combinator (adapted from [23]).

Memoization is a typical example of a narrowing advice: the com-
bination of a replacement advice (“return memoized value without
proceeding”) and an augmentation advice (“proceed and memoize
return value”), where the choice between both is driven by a run-
time predicate (“is there a memoized value for this argument?”).

Oliveira et al. [23] show a type-based enforcement of these cat-
egories, through advice combinators. Figure 4 shows the defini-
tion of the narrow combinator, which takes a triple consisting of
the predicate, the augmentation advice and the replacement advice,
and builds a proper advice with the narrowing logic. For brevity,
we do not detail all combinators and advice types, taken from [23].
These combinators fit the general Combinator type we described in
Section 5.2, and can therefore be embedded in protected pointcuts.
It is now straightforward for the Fib module to expose a protected
pointcut that restricts valid advice to narrowing advice:

module Fib (fib, ppcFib) where
...
ppcFib = protectPC pcFib narrow

The protected pointcut ppcFib embeds the narrow type combinator.
Therefore, only advice that can be statically typed as narrowing
advice can be bound to that pointcut.

5.4 Effect Interference
The typed monadic embedding of aspects also allows to reason
about computational effects. For instance, consider a modification
of the Fibonacci module where the fibErr function can throw an
error message when called with a negative integer (Figure 5). In
that situation, it is interesting to ensure that the advice bound to the
exposed pointcut cannot throw or catch in the same Error monad.

This can be done as in EffectiveAdvice [23], by enforcing ad-
vices to be parametric with respect to the monad used by the base
computation. To distinguish between base and aspect parts of the
monadic stack, we first have to introduce a modified AOT monad
transformer that manages a splitting of the monadic stack into a
monad transformer t that collects effects available to aspect com-
putations and a monad m that collects effects available to the base
computation. Thus, we define the data type NIAOT as follows (NI
stands for non-interference):

data NIAOT t m a = NIAOT {runNI :: AspectEnv (NIAOT t m)
→ t m (a, AspectEnv (NIAOT t m)) }

and extend other definitions (weave, deploy, . . .) accordingly.

Effect interference and pointcuts. The novelty compare to Effec-
tiveAdvice is that we also have to deal with interferences for point-
cuts. But to allow effect-based reasoning on pointcuts, we need to
distinguish between the monad used by the base computation and
the monad used by pointcuts. Indeed, in the interpretation of the
type PC m a b, m stands for both monads, which forbids to reason
separately about them. To address this issue, we need to interpret
PC m a b differently, by saying that the matched type is a → b in-
stead of a → m b. In this way, the monad for the base computation
(which is implicitly bound by b) does not have to be m at the time the
pointcut is defined. To accommodate this new interpretation with

fibErr :: (..., MonadError String (t m)) ⇒
NIAOT t m (Int → NIAOT t m Int)

fibErr = do deploy (niAspect pcFib fibAdv)
return errorFib

where errorFib n = if n < 0
then throwError "Not defined"
else fibBase # n

Figure 5. Fibonacci with error.

the rest of the code, very little changes have to be made10. The
main changes are in the type of pcCall, pcType and in the definition
of Aspect

pcCall, pcType :: Monad m ⇒ (a → b) → PC m a b

data Aspect m a b c d = (Monad m, LessGen (a → b) (c → m d)) ⇒
Aspect (PC m a b) (Advice m c d)

Note how the definition of Aspect forces the monad of the pointcut
computation to be unified with that of the advice, and with that
of the base code. The result of Section 4 can straightforwardly be
rephrased with these new definitions.

Typing non-interfering poincuts and advices. It now becomes
possible to restrict the type of pointcuts and advices by using rank-
2 types. The following type synonyms guarantee that an aspect of
type NIPC t a b only uses effects available in t (and similarly for
NIAdvice t a b).

type NIPC t a b = ∀ m. (Monad (t m), Monad m, ...) ⇒
PC (NIAOT t m) a b

type NIAdvice t a b = ∀ m. (Monad (t m), Monad m, ...) ⇒
Advice (NIAOT t m) a b

By universally quantifying over the type m of the effects used in the
base computation, these types enforce, through the properties of
parametricity, that pointcuts (or advices) cannot refer to specific
effects in the base program.

We can define aspect construction functions that enforce dif-
ferent (non-)interference patterns, such as non-interfering pointcut
NIPC with unrestricted advice Advice, unrestricted pointcut PC with
non-interfering advice NIAdvice, etc. Symmetrically, we can check
that a part of the base code cannot interfere with effects available to
aspects by using the type synonym NIBase, which universally quan-
tifies over the type t of effects available to the advice:

type NIBase m a b = ∀ t. (Monad (t m), MonadTrans t, ...) ⇒
a → NIAOT t m b

Coming back to Open Modules and protected pointcuts, in or-
der to enforce non-interfering advice, we need to define a typed
combinator that requires an advice of type NIAdvice:

niAdvice :: (Monad (t m), Monad m) ⇒
NIAdvice t a b → Advice (NIAOT t m) a b

niAdvice adv = adv

The niAdvice combinator is computationally the identity function,
but does impose a type requirement on its argument. Using this
combinator, the Fib module can expose a protected pointcut that
enforces non-interference with base effects:
module Fib (fib, ppcFib) where
...
ppcFib = protectPC pcFib niAdvice

EffectiveAdvice is restricted with respect to AOP in that it does
not support quantification at all [23]. We have shown that in our em-
bedding, protected pointcuts can be used to extend EffectiveAdvice
to support quantification, thereby combining it with Open Modules.

10 The implementation available online uses this interpretation of PC m a b.

8 2012/10/6

type Level = Int
data ELT m a = ELT {run :: Level -> m (a, Level)}
primitive operations
inc = ELT $ \l -> return ((), l + 1)
dec = ELT $ \l -> return ((), l - 1)
at l = ELT $ _ -> return ((), l)
user visible operations
current = ELT $ \l -> return (l, l)
up c = do {inc; result <- c; dec; return result}
down c = do {dec; result <- c; inc; return result}
lambda_at f l = \arg -> do
{n <- current; at l; result <- f arg; at n; return result}

Figure 6. Execution levels monad transformer and level-shifting
operations

6. Language Extensions
The typed monadic embedding of aspects supports modular exten-
sions of the aspect language. More precisely, we can modularly im-
plement new semantics for aspect scoping and weaving. We briefly
discuss in this section three possible extensions (available in the
online distribution): i) aspect weaving with execution levels [32];
ii) secure weaving in which a set of join points can be hidden from
advising; iii) privileged aspects that can see hidden join points. At
the end of this section, we discuss how the types allow us to reason
about these extensions.

6.1 Execution Levels
Execution levels avoid unwanted computational interference be-
tween aspects, i.e. when an aspect execution produces join points
that are visible to others, including itself [32]. Execution levels give
structure to execution by establishing a tower in which the flow of
control navigates. Aspects are deployed at a given level and can
only affect the execution of the underlying level. The execution of
an aspect (both pointcuts and advices) is therefore not visible to it-
self and to other aspects deployed at the same level, only to aspects
standing one level above. The original computation triggered with
proceed is always executed at the level at which the join point was
emitted. If needed, the programmer can use level-shifting operators
to move execution up and down in the tower.

The monadic semantics of execution levels are implemented in
the ELTmonad transformer (Figure 6). The Level type synonym rep-
resents the level of execution as an integer. ELT wraps a run function
that takes an initial level and returns a computation in the underly-
ing monad m, with a value of type a and a potentially-modified level.
As in the AOT transformer, the monadic bind and return functions are
the same as in the state monad transformer. The private operations
inc, dec, and at are used to define current, up, down, and lambda_at.
In addition to level shifting with up and down, current reifies the cur-
rent level, and lambda_at creates a level-capturing function bound at
level l. When such a function is applied, execution jumps to level l
and then goes back to the level prior to the application [32].

The semantics of execution levels can be embedded in the defi-
nition of aspects themselves, by transforming the pointcut and ad-
vice of an aspect at deployment time11. This is done through the
two functions, pcEL and advEL (Figure 7). pcEL first ensures that the
current execution level lapp matches ldep, the level at which the
aspect is deployed. If so it then runs the pointcut one level above.
Similarly, advEL ensures that the advice is run one level above, with
a proceed function that captures the deployment level.

11 For simplicity, in Section 2.2 we only described the default semantics
of aspect deployment; aspect (un)deployement is actually defined using
overloaded (un)deployInEnv functions.

deployInEnv (Aspect (pc::PC (AOT (ELT m)) tpc) adv) aenv =
let pcEL ldep = (PC $ return (\jp → do

lapp ← current
if lapp == ldep
then up $ runPC pc jp
else return False)) :: PC (AOT (ELT m)) tpc

advEL ldep proceed arg =
up $ adv (lambda_at proceed ldep) arg

in do l ← current
return EAspect (Aspect (pcEL l) (advEL l)) : aenv

Figure 7. Redefining aspect deployment for execution levels se-
mantics. An aspect is made level-aware by transforming its pointcut
and advice.

6.2 Secure Weaving
For security reasons it can be interesting to protect certain join
points from being advised. To support such a secure weaving, we
define a new monad transformer AOT_s, which embeds an (existen-
tially quantified) pointcut that specifies the hidden join points, and
we modify the weaving process accordingly (not shown here).

data EPC m = forall a b. EPC (PC m a b)

data AOT_s m a = AOT_s { runAOT_s ::
AspectEnv (AOT_s m) → EPC (AOT_s m) →
m (a, (AspectEnv (AOT_s m), EPC (AOT_s m)))}

This can be particularly useful when used with the cflow point-
cut (described below) to protect the computation that occurs in the
control flow of critical function applications. For instance, we can
ensure that the whole control flow of function f is protected from
advising during the execution of program p:

runAOT_s (EPC (pcCflow f)) p

cflow pointcut. The pcCflow pointcut is defined using a (join point)
stack monad and one aspect that matches every join point and
stores it in the stack; then the pcCflow pointcut is just a test on
this stack. Using effect non-interference enforcement (Section 5.4),
we can guarantee that this stack is private to pcCflow. Alternative
optimizations can be defined, for example putting in the stack only
relevant join points, or a per-flow deployment that allows to use a
boolean instead of a stack.

6.3 Privileged Aspects
Hiding some join points to all aspects may be too restrictive. For
instance, certain “system” aspects like access control should be
treated as privileged and view all join points. Another example
is the aspect in charge of maintaining the join point stack for the
sake of control flow reasoning (used by pcCflow). In such cases, it is
important to be able to define a set of privileged aspects, which
can advise all join points, even those that are normally hidden.
The implementation of a privileged aspects list is a straightforward
extension to the secure weaving mechanism described above.

6.4 Reasoning about Language Extensions
The above extensions can be implemented in an untyped language
such as LAScheme [32]. However, it is not possible in an untyped
setting to statically reason about effects provided by a language
extension or enforce that a piece of code is used with a particular
weaving semantics.

Non-interference with the effects of language extensions. We
can combine the monadic interpretation of execution levels with
the management of effect interference (Section 5.4) in order to rea-
son about level-shifting operations performed by base and aspect
computations. For instance, it becomes possible to prevent aspect

9 2012/10/6

and/or base computation to use effects provided by the ELT monad
transformer, thus ensuring that the default semantics of execution
levels is preserved (and therefore that the program is free of as-
pect loops [32]). If more advanced use of execution levels is re-
quired, this contraint can be explicitly relaxed in the AOT monad
transformer, thus stressing in the type that it is the responsability of
the programmer to avoid infinite regression.

Enforcing a particular weaving semantics through typing. The
type system makes it possible to specify functions that can be wo-
ven, but only within a specific aspect monad. For instance, suppose
that we want to define a critical computation, which should only
be run with secure weaving for access control. The computation
must therefore be run within the AOT_s monad transformer with a
given pointcut pc_ac (ac stands for access control).

To enforce the use of AOT_s with a specific pointcut value would
require the use of a dependent type, which is not possible in
Haskell. This said, we can use the newtype data constructor to-
gether with its ability to derive automatically type class instances,
to define a new type AOT_ac that encapsulates the AOT_smonad trans-
former and forces it to be run with the pc_ac pointcut:

newtype AOT_ac m a = AOT_ac (AOT_s m a)
deriving (Monad, OpenApp, ...)

runSafe (AOT_ac c) = runAOT_s (EPC pc_ac) c

Therefore, we can export the critical computation by typing it ap-
propriately:

critical :: Monad m ⇒ AOT_ac m a

Because the AOT_ac constructor is hidden in a module, the only way
to run such a computation typed as AOT_ac is to use runSafe. The
critical computation is therefore only advisable with secure weav-
ing for access control. Type based reasoning about aspect language
extensions is, to the best of our knowledge, a novel contribution of
this work.

7. Discussion
We now discuss a number of issues related to our approach: how
to define a proper notion of function equality, how to deal with
overloaded functions, how to enhance the handling of the monadic
stack, and finally, we analyze the issue of obliviousness.

7.1 Supporting Equality on Functions
Pointcuts quantify about join points, and a major element of the join
point is the function being applied. The pcType designator relies on
type comparison, implemented using the PolyTypeable type class in
order to obtain representations for polymorphic types. The pcCall
is more problematic, as it relies on function equality, but Haskell
does not provide an operator like eq? in Scheme.

A first workaround is to use the StableNames API that allows
to compare functions using pointer equality. Unfortunately, this
notion of equality is fragile. StableNames equality is safe in the sense
that it does not equate two functions that are not the same, but two
functions that are equal can be seen as different.

The problem becomes even more systematic when it comes to
bounded polymorphism. Indeed, each time a function with con-
straints is used, a new closure is created by passing the current
method dictionary of type class instances. Even with optimized
compilation (e.g. ghc -O), this (duplicated) closure creation is un-
avoidable and so StableNames will consider different any two con-
strained functions, even if the passed dictionary is the same.

To overcome this issue, we have overloaded our equality on
functions with a special case for functions that have been explicitly
tagged with a unique identifier at creation (using Data.Unique). This

allows to have a robust notion of function equality but it has to be
used explicitly at each function definition site.

7.2 Advising Overloaded Functions
From a programmer point of view, it can be interesting to advise an
overloaded function (that is, the application of all the possible im-
plementations) with a single aspect. However, deploying aspects in
the general case of bounded polymorphism is problematic because
of the resolution of class constraints. Recall that in order to be able
to type the aspect environment, we existentially hide the matched
and advised types of an aspect. This means that all type class con-
straints must be solved statically at the point an aspect is deployed.
If the matched and advised types are both bounded polymorphic
types, type inference cannot gather enough information to statically
solve the constraints. So advising all possible implementations re-
quires repeating deployment of the same aspect with different type
annotations, one for each instance of the involved type classes.

To alleviate this problem, we developed a macro using Template-
Haskell [28]. The macro extracts all the constrained variables in the
matched type of the pointcut, and generates an annotated deploy-
ment for every possible combination of instances that satisfy all
constraints. In order to retain safety, the advised type of an aspect
must be less constrained than its matched type. This is statically
enforced by the Haskell type system after macro expansion.

7.3 Obliviousness
The embedding of aspects we have presented thus far supports
quantification through pointcuts, but is not oblivious: open applica-
tions are explicit in the code. A first way to introduce more oblivi-
ousness without requiring non-local macros or, equivalently, a pre-
processor or ad hoc runtime semantics, is to use partial applica-
tions of #. For instance, the sqrtM function can be turned into an im-
plicitly woven function by defining sqrtM’= sqrtM #. This approach
was used in Figure 2 for the definition of fib. It can be sufficient in
similar scenarios where quantification is under control. Otherwise,
it can yield to issues in the definition of pointcuts that rely on func-
tion identity, because sqrtM’ and sqrtM are different functions. Also,
this approach is not entirely satisfactory with respect to oblivious-
ness because it has to be applied specifically for each function.

In [21], De Meuter proposes to use the binder of a monad to re-
define function application. His approach focuses on defining one
monad per aspect, but can be generalized to a list of dynamically-
deployed aspects as presented in Section 2.2. For this, we can re-
define the monad transformer AOT to make all monadic applications
open transparently:

instance Monad m ⇒ Monad (AOT m) where
return a = AOT (\aenv → return (a, aenv))
k >>= f = do { x ← k; f # x }

This presentation improves obliviousness because any monadic ap-
plication is now an open application, but it suffers from a major
drawback: it breaks the monadic laws. Indeed, left identity and as-
sociativity can be invalidated, depending on the current list of de-
ployed aspects. This is not surprising as AOP allows to redefine the
behavior of a function and even to redefine the behavior of a func-
tion depending on its context of execution. Breaking monadic laws
is not prohibited by Haskell, but it is very dangerous and fragile; for
instance, some compilers exploit the laws to perform optimizations,
so breaking them can yield to incorrect optimizations.

8. Related Work
The earliest connection between aspects and monads was estab-
lished by De Meuter in 1997 [21]. In that work, he proposes to
describe the weaving of a given aspect directly in the binder of a

10 2012/10/6

monad. As we have just described above (Section 7.3), doing so
breaks the monad laws, and is therefore undesirable.

Wand et al. [35] formalize pointcuts and advice and use monads
to structure the denotational semantics; a monad is used to pass the
join point stack and the store around evaluation steps. The specific
flavor of AOP that is described is similar to AspectJ, but with
only pure pointcuts. The calculus is untyped. The reader may have
noticed that we do not model the join point stack in this paper. This
is because it is not required for a given model of AOP to work.
In fact, the join point stack is useful only to express control flow
pointcuts. In our approach, this is achieved by specifying a user-
defined pointcut designator for control flow, which uses a monad
to thread the join point stack (or, depending on the desired level of
dynamicity, a simple control flow state [19]). Support for the join
point stack does not have to be included as a primitive in the core
language. This is in fact how AspectJ is implemented.

Hofer and Osterman [12] shed some light on the modularity
benefits of monads and aspects, clarifying that they are different
mechanisms with quite different features: monads do not support
declarative quantification, and aspects do not provide any support
for encapsulating computational effects. In this regard, our work
does not attempt at unifying monads and aspects, contrary to what
De Meuter suggested. Instead, we exploit monads in a given lan-
guage to build a flexible embedding of aspects that can be mod-
ularly extended. In addition, the fully-typed setting provides the
basis for reasoning about monadic effects.

The notion of monadic weaving was described by Tabareau [30],
where he shows that writing the aspect weaver in a monadic style
paves the way for modular language extensions. He illustrated the
extensibility approach with execution levels [32] and level-aware
exception handling [10]. The authors then worked on a practical
monadic aspect weaver in Typed Racket [11]. However, the type
system of Typed Racket turned out to be insufficiently expressive,
and the top type Any had to be used to describe pointcuts and ad-
vices. This was the original motivation to study monadic weaving
in Haskell. Also in contrast to this work, prior work on monadic
aspect weaving does not consider a base language with monads.
In this paper, both the base language and the aspect weaver are
monadic, combining the benefits of type-based reasoning about
effects (Section 5) and modular language extensions (Section 6)—
including type-based reasoning about language extensions.

Haskell has already been the subject of AOP investigations us-
ing the type class system as a way to perform static weaving [29].
AOP idioms are translated to type class instances, and type class
resolution is used to perform static weaving. This work only sup-
ports simple pointcuts, pure aspects and static weaving, and is fur-
thermore very opaque to modular changes as the translation of AOP
idioms is done internally at compile time.

The specific flavor of pointcut/advice AOP that we developed is
directly inspired by AspectScheme [9] and AspectScript [33]: dy-
namic aspect deployment, first-class aspects, and extensible set of
pointcut designators. While we have not yet developed the more
advanced scoping mechanisms found in these languages [31], we
believe there is no specific challenges in this regard. The key dif-
ference here is that these languages are both dynamically typed,
while we have managed to reconcile this high level of flexibility
with static typing.

In terms of statically-typed functional aspect languages, the
closest proposal to ours is AspectML [6]. In AspectML, point-
cuts are first-class, but advice is not. The set of pointcut desig-
nators is fixed, as in AspectJ. AspectML does not support: advis-
ing anonymous functions, aspects of aspects, separate aspect de-
ployment, and undeployment. AspectML was the first language in
which first-class pointcuts were statically typed. The typing rules
rely on anti-unification, just like we do in this paper. The major dif-

ference, though, is that AspectML is defined as a completely new
language, with a specific type system and a specific core calculus.
Proving type soundness is therefore very involved [6]. In contrast,
we do not need to define a new type system and a new core calculus.
Type soundness in our approach is derived straightforwardly from
the type class that establishes the anti-unification relation. Half of
section 4 is dedicated to proving that this type class is correct. Once
this is done (and it is a result that is independent from AOP), prov-
ing aspect safety is direct. Another way to see this work is as a new
illustration of the expressive power of the type system of Haskell,
in particular how phantom types and type classes can be used in
concert to statically type embedded languages.

Aspectual Caml [20] is another polymorphic aspect language.
Interestingly, Aspectual Caml uses type information to influence
matching, rather than for reporting type errors. More precisely, the
type of pointcuts is inferred from the associated advices, and point-
cuts only match join points that are valid according to these inferred
types. We believe this approach can be difficult for programmers to
understand, because it combines the complexities of quantification
with those of type inference. Aspectual Caml is implemented by
modifying the Objective Caml compiler, including modifications to
the type inference mechanism. There is no proof of type soundness.

The advantages of our typed embedding do not only lie within
the simplicity of the soundness proof. They can also be observed
at the level of the implementation. The AspectML implementation
is over 15,000 lines of ML code [6], and the Aspectual Caml im-
plementation is around 24,000 lines of Objective Caml code [20].
In contrast, our implementation, including the execution levels ex-
tension (Section 6), is only 1,600 lines of Haskell code. Also, em-
bedding an AOP extension entirely inside a mainstream language
has a number of practical advantages, especially when it comes to
efficiency and maintainability of the extension.

Finally, reasoning about advice effects has been studied from
different angles. For instance, harmless advice can change termina-
tion behavior and use I/O, but no more [5]. A type and effect sys-
tem is used to ensure conformance. Translucid contracts use grey
box specifications and structural refinement in verification to rea-
son about control effects [4]. In this work, we rather follow the
type-based approach of EffectiveAdvice (EA) [23], which also ac-
counts for various control effects and arbitrary computational ef-
fects. A limitation of EA is its lack of support quantification, re-
lying instead on open recursive functions. A contribution of this
work is to show how to extend this approach to the pointcut/advice
mechanism. The subtlety lies in properly typing pointcuts. An in-
teresting difference between both approaches is that in EA, it is not
possible to talk about “the effects of all applied advices”. Once an
advice is composed with a base function, the result is seen as a base
function for the following advice. In contrast, our approach, thanks
to the aspect environment and dynamic weaving, makes it possible
to keep aspects separate and ensure base/aspect separation at the ef-
fect level even in presence of multiple aspects. We believe that this
splitting of the monadic stack is more consistent with programmers
expectations.

9. Conclusion
We develop a novel approach to embed aspects in an existing lan-
guage. We exploit monads and the Haskell type system to define a
typed monadic embedding that supports both modular language ex-
tensions and reasoning about effects with pointcut/advice aspects.
We show and prove how to ensure type soundness by design, in-
cluding in presence of user-extensible pointcut designators, relying
on a novel type class for establishing anti-unification. Compared to
other approaches to statically-typed polymorphic aspect languages,
the proposed embedding is more lightweight, expressive, extensi-
ble, and amenable to interference analysis. The approach can com-

11 2012/10/6

bine Open Modules and EffectiveAdvice, and supports type-based
reasoning about modular language extensions.

Acknowledgments
This work was supported by the INRIA Associated team RAPIDS.

References
[1] J. Aldrich. Open modules: Modular reasoning about advice. In

A. P. Black, editor, Proceedings of the 19th European Conference
on Object-Oriented Programming (ECOOP 2005), number 3586 in
Lecture Notes in Computer Science, pages 144–168, Glasgow, UK,
July 2005. Springer-Verlag.

[2] Proceedings of the 7th ACM International Conference on Aspect-
Oriented Software Development (AOSD 2008), Brussels, Belgium,
Apr. 2008. ACM Press.

[3] Proceedings of the 9th ACM International Conference on Aspect-
Oriented Software Development (AOSD 2010), Rennes and Saint
Malo, France, Mar. 2010. ACM Press.

[4] M. Bagherzadeh, H. Rajan, G. T. Leavens, and S. Mooney. Translu-
cid contracts: Expressive specification and modular verification for
aspect-oriented interfaces. In Proceedings of the 10th ACM Interna-
tional Conference on Aspect-Oriented Software Development (AOSD
2011), Porto de Galinhas, Brazil, Mar. 2011. ACM Press.

[5] D. S. Dantas and D. Walker. Harmless advice. In Proceedings
of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 2006), pages 383–396, Charleston,
South Carolina, USA, Jan. 2006. ACM Press.

[6] D. S. Dantas, D. Walker, G. Washburn, and S. Weirich. AspectML: A
polymorphic aspect-oriented functional programming language. ACM
Transactions on Programming Languages and Systems, 30(3):Article
No. 14, May 2008.

[7] B. De Fraine, M. Südholt, and V. Jonckers. StrongAspectJ: flexible
and safe pointcut/advice bindings. In AOSD 2008 [2], pages 60–71.

[8] R. Douence, P. Fradet, and M. Südholt. Trace-based aspects. In
R. E. Filman, T. Elrad, S. Clarke, and M. Akşit, editors, Aspect-
Oriented Software Development, pages 201–217. Addison-Wesley,
Boston, 2005.

[9] C. Dutchyn, D. B. Tucker, and S. Krishnamurthi. Semantics and
scoping of aspects in higher-order languages. Science of Computer
Programming, 63(3):207–239, Dec. 2006.

[10] I. Figueroa and É. Tanter. A semantics for execution levels with
exceptions. In Proceedings of the 10th Workshop on Foundations
of Aspect-Oriented Languages (FOAL 2011), pages 7–11, Porto de
Galinhas, Brazil, Mar. 2011. ACM Press.

[11] I. Figueroa, É. Tanter, and N. Tabareau. A practical monadic aspect
weaver. In Proceedings of the 11th Workshop on Foundations of
Aspect-Oriented Languages (FOAL 2012), pages 21–26, Potsdam,
Germany, Mar. 2012. ACM Press.

[12] C. Hofer and K. Ostermann. On the relation of aspects and monads.
In Proceedings of AOSD Workshop on Foundations of Aspect-Oriented
Languages (FOAL 2007), pages 27–33, 2007.

[13] M. P. Jones. Type classes with functional dependencies. In Pro-
ceedings of the 9th European Symposium on Programming Languages
and Systems, ESOP ’00, pages 230–244, London, UK, UK, 2000.
Springer-Verlag.

[14] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Gris-
wold. An overview of AspectJ. In J. L. Knudsen, editor, Proceedings
of the 15th European Conference on Object-Oriented Programming
(ECOOP 2001), number 2072 in Lecture Notes in Computer Science,
pages 327–353, Budapest, Hungary, June 2001. Springer-Verlag.

[15] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M.
Loingtier, and J. Irwin. Aspect-oriented programming. In M. Akşit and
S. Matsuoka, editors, Proceedings of the 11th European Conference on
Object-Oriented Programming (ECOOP 97), volume 1241 of Lecture
Notes in Computer Science, pages 220–242, Jyväskylä, Finland, June
1997. Springer-Verlag.

[16] D. Leijen and E. Meijer. Domain specific embedded compilers.
In T. Ball, editor, Proceedings of the 2nd USENIX Conference on
Domain-Specific Languages, pages 109–122, 1999.

[17] S. Liang, P. Hudak, and M. Jones. Monad transformers and modular
interpreters. In Proceedings of the 22nd ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, POPL ’95, pages
333–343, New York, NY, USA, 1995. ACM.

[18] H. Masuhara and K. Kawauchi. Dataflow pointcut in aspect-oriented
programming. In Proceedings of the First Asian Symposium on Pro-
gramming Languages and Systems (APLAS’03), volume 2895 of Lec-
ture Notes in Computer Science, pages 105–121, Nov. 2003.

[19] H. Masuhara, G. Kiczales, and C. Dutchyn. A compilation and opti-
mization model for aspect-oriented programs. In G. Hedin, editor, Pro-
ceedings of Compiler Construction (CC2003), volume 2622 of Lecture
Notes in Computer Science, pages 46–60. Springer-Verlag, 2003.

[20] H. Masuhara, H. Tatsuzawa, and A. Yonezawa. Aspectual Caml: an
aspect-oriented functional language. In Proceedings of the 10th ACM
SIGPLAN Conference on Functional Programming (ICFP 2005),
pages 320–330, Tallin, Estonia, Sept. 2005. ACM Press.

[21] W. D. Meuter. Monads as a theoretical foundation for aop. In In
International Workshop on Aspect-Oriented Programming at ECOOP,
page 25. Springer-Verlag, 1997.

[22] E. Moggi. Notions of computation and monads. Inf. Comput.,
93(1):55–92, July 1991.

[23] B. C. d. S. Oliveira, T. Schrijvers, and W. R. Cook. EffectiveAdvice:
discplined advice with explicit effects. In AOSD 2010 [3], pages 109–
120.

[24] B. C. Pierce. Types and programming languages. MIT Press, Cam-
bridge, MA, USA, 2002.

[25] G. D. Plotkin. A note on inductive generalization. Machine Intelli-
gence, 5:153–163, 1970.

[26] J. C. Reynolds. Transformational systems and the algebraic structure
of atomic formulas. Machine Intelligence, 5:135–151, 1970.

[27] M. Rinard, A. Salcianu, and S. Bugrara. A classification system and
analysis for aspect-oriented programs. In Proceedings of the 12th
ACM Symposium on Foundations of Software Engineering (FSE 12),
pages 147–158. ACM Press, 2004.

[28] T. Sheard and S. P. Jones. Template meta-programming for haskell.
SIGPLAN Not., 37(12):60–75, Dec. 2002.

[29] M. Sulzmann and M. Wang. Aspect-oriented programming with type
classes. In Proceedings of the 6th workshop on Foundations of aspect-
oriented languages, FOAL ’07, pages 65–74, New York, NY, USA,
2007. ACM.

[30] N. Tabareau. A monadic interpretation of execution levels and excep-
tions for aop. In É. Tanter and K. J. Sullivan, editors, Proceedings of
the 11th International Conference on Aspect-Oriented Software De-
velopment (AOSD 2012), Potsdam, Germany, Mar. 2012. ACM Press.

[31] É. Tanter. Expressive scoping of dynamically-deployed aspects. In
AOSD 2008 [2], pages 168–179.

[32] É. Tanter. Execution levels for aspect-oriented programming. In
AOSD 2010 [3], pages 37–48.

[33] R. Toledo, P. Leger, and É. Tanter. AspectScript: Expressive aspects
for the Web. In AOSD 2010 [3], pages 13–24.

[34] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad
hoc. In Proceedings of the 16th ACM Symposium on Principles of
Programming Languages (POPL 89), pages 60–76, Austin, TX, USA,
Jan. 1989. ACM Press.

[35] M. Wand, G. Kiczales, and C. Dutchyn. A semantics for advice and
dynamic join points in aspect-oriented programming. ACM Transac-
tions on Programming Languages and Systems, 26(5):890–910, Sept.
2004.

12 2012/10/6

