1,157 research outputs found

    E-unification for subsystems of S4

    Get PDF
    This paper is concerned with the unification problem in the path logics associated by the optimised functional translation method with the propositional modal logics \textit{K}, \textit{KD}, \textit{KT}, \textit{KD4}, \textit{S4} and \textit{S5}. It presents improved unification algorithms for certain forms of the right identity and associativity laws. The algorithms employ mutation rules, which have the advantage that terms are worked off from the outside inward, making paramodulating into terms superfluous

    The case of the trapped singularities

    Full text link
    A case study in bifurcation and stability analysis is presented, in which reduced dynamical system modelling yields substantial new global and predictive information about the behaviour of a complex system. The first smooth pathway, free of pathological and persistent degenerate singularities, is surveyed through the parameter space of a nonlinear dynamical model for a gradient-driven, turbulence-shear flow energetics in magnetized fusion plasmas. Along the route various obstacles and features are identified and treated appropriately. An organizing centre of low codimension is shown to be robust, several trapped singularities are found and released, and domains of hysteresis, threefold stable equilibria, and limit cycles are mapped. Characterization of this rich dynamical landscape achieves unification of previous disparate models for plasma confinement transitions, supplies valuable intelligence on the big issue of shear flow suppression of turbulence, and suggests targeted experimental design, control and optimization strategies.Comment: 21 pages, 12 figures, 34 postscript figure file

    Clifford group dipoles and the enactment of Weyl/Coxeter group W(E8) by entangling gates

    Full text link
    Peres/Mermin arguments about no-hidden variables in quantum mechanics are used for displaying a pair (R, S) of entangling Clifford quantum gates, acting on two qubits. From them, a natural unitary representation of Coxeter/Weyl groups W(D5) and W(F4) emerges, which is also reflected into the splitting of the n-qubit Clifford group Cn into dipoles C±\pmn . The union of the three-qubit real Clifford group C+ 3 and the Toffoli gate ensures a orthogonal representation of the Weyl/Coxeter group W(E8), and of its relatives. Other concepts involved are complex reflection groups, BN pairs, unitary group designs and entangled states of the GHZ family.Comment: version revised according the recommendations of a refere

    A genomic view of food-related and probiotic Enterococcus strains

    Get PDF
    The study of enterococcal genomes has grown considerably in recent years. While special attentionis paid to comparative genomic analysis among clinical relevant isolates, in this study we performedan exhaustive comparative analysis of enterococcal genomes of food origin and/or with potential tobe used as probiotics. Beyond common genetic features, we especially aimed to identify those thatare specific to enterococcal strains isolated from a certain food-related source as well as features presentin a species-specific manner. Thus, the genome sequences of 25 Enterococcus strains, from 7different species, were examined and compared. Their phylogenetic relationship was reconstructedbased on orthologous proteins and whole genomes. Likewise, markers associated with a successfulcolonization (bacteriocin genes and genomic islands) and genome plasticity (phages and clusteredregularly interspaced short palindromic repeats) were investigated for lifestyle specific genetic features.At the same time, a search for antibiotic resistance genes was carried out, since they are of bigconcern in the food industry. Finally, it was possible to locate 1617 FIGfam families as a core proteomeuniversally present among the genera and to determine that most of the accessory genes codefor hypothetical proteins, providing reasonable hints to support their functional characterization.Fil: Bonacina, Julieta. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Centro de Referencia Para Lactobacilos; ArgentinaFil: Suárez, Nadia Elina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Centro de Referencia Para Lactobacilos; ArgentinaFil: Hormigo, Daniel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Centro de Referencia Para Lactobacilos; ArgentinaFil: Fadda, Silvina G.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Centro de Referencia Para Lactobacilos; ArgentinaFil: Lechner, Marcus. University Marburg; AlemaniaFil: Saavedra, Maria Lucila. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Centro de Referencia Para Lactobacilos; Argentin

    Effective Action and Holography in 5D Gauge Theories

    Full text link
    We apply the holographic method to 5D gauge theories on the warped interval. Our treatment includes the scalars associated with the fifth gauge field component, which appear as 4D Goldstone bosons in the holographic effective action. Applications are considered to two classes of models in which these scalars play an important role. In the Composite-Higgs (and/or Gauge-Higgs Unification) scenario, the scalars are interpreted as the Higgs field and we use the holographic recipe to compute its one-loop potential. In AdS/QCD models, the scalars are identified with the mesons and we compute holographically the Chiral Perturbation Theory Lagrangian up to p^4 order. We also discuss, using the holographic perspective, the effect of including a Chern-Simons term in the 5D gauge Lagrangian. We show that it makes a Wess-Zumino-Witten term to appear in the holographic effective action. This is immediately applied to AdS/QCD, where a Chern-Simons term is needed in order to mimic the Adler-Bardeen chiral anomaly.Comment: 37 pages; v2, minor changes, one reference added; v3, minor corrections, version published in JHE

    Clifford group dipoles and the enactment of Weyl/Coxeter group W(E8) by entangling gates

    No full text
    version revised according the recommendations of a refereeInternational audiencePeres/Mermin arguments about no-hidden variables in quantum mechanics are used for displaying a pair (R, S) of entangling Clifford quantum gates, acting on two qubits. From them, a natural unitary representation of Coxeter/Weyl groups W(D5) and W(F4) emerges, which is also reflected into the splitting of the n-qubit Clifford group Cn into dipoles C±n . The union of the three-qubit real Clifford group C+ 3 and the Toffoli gate ensures a orthogonal representation of the Weyl/Coxeter group W(E8), and of its relatives. Other concepts involved are complex reflection groups, BN pairs, unitary group designs and entangled states of the GHZ family

    A quantitative analysis of monochromaticity in genetic interaction networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A genetic interaction refers to the deviation of phenotypes from the expected when perturbing two genes simultaneously. Studying genetic interactions help clarify relationships between genes, such as compensation and masking, and identify gene groups of functional modules. Recently, several genome-scale experiments for measuring quantitative (positive and negative) genetic interactions have been conducted. The results revealed that genes in the same module usually interact with each other in a consistent way (pure positive or negative); this phenomenon was designated as monochromaticity. Monochromaticity might be the underlying principle that can be utilized to unveil the modularity of cellular networks. However, no appropriate quantitative measurement for this phenomenon has been proposed.</p> <p>Results</p> <p>In this study, we propose the monochromatic index (MCI), which is able to quantitatively evaluate the monochromaticity of potential functional modules of genes, and the MCI was used to study genetic landscapes in different cellular subsystems. We demonstrated that MCI not only amend the deficiencies of MP-score but also properly incorporate the background effect. The results showed that not only within-complex but also between-complex connections present significant monochromatic tendency. Furthermore, we also found that significantly higher proportion of protein complexes are connected by negative genetic interactions in metabolic network, while transcription and translation system adopts relatively even number of positive and negative genetic interactions to link protein complexes.</p> <p>Conclusion</p> <p>In summary, we demonstrate that MCI improves deficiencies suffered by MP-score, and can be used to evaluate monochromaticity in a quantitative manner. In addition, it also helps to unveil features of genetic landscapes in different cellular subsystems. Moreover, MCI can be easily applied to data produced by different types of genetic interaction methodologies such as Synthetic Genetic Array (SGA), and epistatic miniarray profile (E-MAP).</p
    corecore