13,615 research outputs found

    Change Support in Process-Aware Information Systems - A Pattern-Based Analysis

    Get PDF
    In today's dynamic business world the economic success of an enterprise increasingly depends on its ability to react to changes in its environment in a quick and flexible way. Process-aware information systems (PAIS) offer promising perspectives in this respect and are increasingly employed for operationally supporting business processes. To provide effective business process support, flexible PAIS are needed which do not freeze existing business processes, but allow for loosely specified processes, which can be detailed during run-time. In addition, PAIS should enable authorized users to flexibly deviate from the predefined processes if required (e.g., by allowing them to dynamically add, delete, or move process activities) and to evolve business processes over time. At the same time PAIS must ensure consistency and robustness. The emergence of different process support paradigms and the lack of methods for comparing existing change approaches have made it difficult for PAIS engineers to choose the adequate technology. In this paper we suggest a set of changes patterns and change support features to foster the systematic comparison of existing process management technology with respect to process change support. Based on these change patterns and features, we provide a detailed analysis and evaluation of selected systems from both academia and industry. The identified change patterns and change support features facilitate the comparison of change support frameworks, and consequently will support PAIS engineers in selecting the right technology for realizing flexible PAIS. In addition, this work can be used as a reference for implementing more flexible PAIS

    ADEPT2 - Next Generation Process Management Technology

    Get PDF
    If current process management systems shall be applied to a broad spectrum of applications, they will have to be significantly improved with respect to their technological capabilities. In particular, in dynamic environments it must be possible to quickly implement and deploy new processes, to enable ad-hoc modifications of single process instances at runtime (e.g., to add, delete or shift process steps), and to support process schema evolution with instance migration, i.e., to propagate process schema changes to already running instances. These requirements must be met without affecting process consistency and by preserving the robustness of the process management system. In this paper we describe how these challenges have been addressed and solved in the ADEPT2 Process Management System. Our overall vision is to provide a next generation process management technology which can be used in a variety of application domains

    Identifying and Evaluating Change Patterns and Change Support Features in Process-Aware Information Systems.

    Get PDF
    In order to provide effective support, the introduction of process-aware information systems (PAIS) must not freeze existing business processes. Instead PAIS should allow authorized users to flexibly deviate from the predefined processes if required and to evolve business processes in a controlled manner over time. Many software vendors promise flexible system solutions for realizing such adaptive PAIS, but are often unable to cope with fundamental issues elated to process change (e.g., correctness and robustness). The existence of different process support paradigms and the lack of methods for comparing existing change approaches makes it difficult for PAIS engineers to choose the adequate technology. In this paper we suggest a set of changes patterns and change support features to foster systematic comparison of existing process management technology with respect to change support. Based on these change patterns and features, we provide a detailed analysis and evaluation of selected systems from both academia and industry

    Knowledge-Intensive Processes: Characteristics, Requirements and Analysis of Contemporary Approaches

    Get PDF
    Engineering of knowledge-intensive processes (KiPs) is far from being mastered, since they are genuinely knowledge- and data-centric, and require substantial flexibility, at both design- and run-time. In this work, starting from a scientific literature analysis in the area of KiPs and from three real-world domains and application scenarios, we provide a precise characterization of KiPs. Furthermore, we devise some general requirements related to KiPs management and execution. Such requirements contribute to the definition of an evaluation framework to assess current system support for KiPs. To this end, we present a critical analysis on a number of existing process-oriented approaches by discussing their efficacy against the requirements

    Issues in Process Variants Mining

    Get PDF
    In today's dynamic business world economic success of an enterprise increasingly depends on its ability to react to internal and external changes in a quick and flexible way. In response to this need, process-aware information systems (PAIS) emerged, which support the modeling, orchestration and monitoring of business processes and services respectively. Recently, a new generation of flexible PAIS was introduced, which additionally allows for dynamic process and service changes. This, in turn, will lead to a large number of process variants, which are created from the same original process model, but might slightly differ from each other. This paper deals with issues related to the mining of such process variant collections. Our overall goal is to learn from process changes and to merge the resulting model variants into a generic process model in the best possible way. By adopting this generic process model in the PAIS, future cost of process change and need for process adaptations will decrease. Finally, we compare our approach with existing process mining techniques, and show that process variants mining is additionally needed to learn from process changes

    Integration of BPM systems

    Get PDF
    New technologies have emerged to support the global economy where for instance suppliers, manufactures and retailers are working together in order to minimise the cost and maximise efficiency. One of the technologies that has become a buzz word for many businesses is business process management or BPM. A business process comprises activities and tasks, the resources required to perform each task, and the business rules linking these activities and tasks. The tasks may be performed by human and/or machine actors. Workflow provides a way of describing the order of execution and the dependent relationships between the constituting activities of short or long running processes. Workflow allows businesses to capture not only the information but also the processes that transform the information - the process asset (Koulopoulos, T. M., 1995). Applications which involve automated, human-centric and collaborative processes across organisations are inherently different from one organisation to another. Even within the same organisation but over time, applications are adapted as ongoing change to the business processes is seen as the norm in today’s dynamic business environment. The major difference lies in the specifics of business processes which are changing rapidly in order to match the way in which businesses operate. In this chapter we introduce and discuss Business Process Management (BPM) with a focus on the integration of heterogeneous BPM systems across multiple organisations. We identify the problems and the main challenges not only with regards to technologies but also in the social and cultural context. We also discuss the issues that have arisen in our bid to find the solutions

    What Automated Planning Can Do for Business Process Management

    Get PDF
    Business Process Management (BPM) is a central element of today organizations. Despite over the years its main focus has been the support of processes in highly controlled domains, nowadays many domains of interest to the BPM community are characterized by ever-changing requirements, unpredictable environments and increasing amounts of data that influence the execution of process instances. Under such dynamic conditions, BPM systems must increase their level of automation to provide the reactivity and flexibility necessary for process management. On the other hand, the Artificial Intelligence (AI) community has concentrated its efforts on investigating dynamic domains that involve active control of computational entities and physical devices (e.g., robots, software agents, etc.). In this context, Automated Planning, which is one of the oldest areas in AI, is conceived as a model-based approach to synthesize autonomous behaviours in automated way from a model. In this paper, we discuss how automated planning techniques can be leveraged to enable new levels of automation and support for business processing, and we show some concrete examples of their successful application to the different stages of the BPM life cycle
    corecore