2,981 research outputs found

    Families of particles with different masses in PT-symmetric quantum field theory

    Get PDF
    An elementary field-theoretic mechanism is proposed that allows one Lagrangian to describe a family of particles having different masses but otherwise similar physical properties. The mechanism relies on the observation that the Dyson-Schwinger equations derived from a Lagrangian can have many different but equally valid solutions. Nonunique solutions to the Dyson-Schwinger equations arise when the functional integral for the Green's functions of the quantum field theory converges in different pairs of Stokes' wedges in complex field space, and the solutions are physically viable if the pairs of Stokes' wedges are PT symmetric.Comment: 4 pages, 3 figure

    Algorithmic derivation of Dyson-Schwinger Equations

    Full text link
    We present an algorithm for the derivation of Dyson-Schwinger equations of general theories that is suitable for an implementation within a symbolic programming language. Moreover, we introduce the Mathematica package DoDSE which provides such an implementation. It derives the Dyson-Schwinger equations graphically once the interactions of the theory are specified. A few examples for the application of both the algorithm and the DoDSE package are provided. The package can be obtained from physik.uni-graz.at/~mah/DoDSE.html.Comment: 17 pages, 11 figures, downloadable Mathematica package v2: adapted to version 1.2 of DoDSE package with simplified handling and improved plotting of graphs; references adde

    Polynomial functors and combinatorial Dyson-Schwinger equations

    Full text link
    We present a general abstract framework for combinatorial Dyson-Schwinger equations, in which combinatorial identities are lifted to explicit bijections of sets, and more generally equivalences of groupoids. Key features of combinatorial Dyson-Schwinger equations are revealed to follow from general categorical constructions and universal properties. Rather than beginning with an equation inside a given Hopf algebra and referring to given Hochschild 11-cocycles, our starting point is an abstract fixpoint equation in groupoids, shown canonically to generate all the algebraic structure. Precisely, for any finitary polynomial endofunctor PP defined over groupoids, the system of combinatorial Dyson-Schwinger equations X=1+P(X)X=1+P(X) has a universal solution, namely the groupoid of PP-trees. The isoclasses of PP-trees generate naturally a Connes-Kreimer-like bialgebra, in which the abstract Dyson-Schwinger equation can be internalised in terms of canonical B+B_+-operators. The solution to this equation is a series (the Green function) which always enjoys a Fa\`a di Bruno formula, and hence generates a sub-bialgebra isomorphic to the Fa\`a di Bruno bialgebra. Varying PP yields different bialgebras, and cartesian natural transformations between various PP yield bialgebra homomorphisms and sub-bialgebras, corresponding for example to truncation of Dyson-Schwinger equations. Finally, all constructions can be pushed inside the classical Connes-Kreimer Hopf algebra of trees by the operation of taking core of PP-trees. A byproduct of the theory is an interpretation of combinatorial Green functions as inductive data types in the sense of Martin-L\"of Type Theory (expounded elsewhere).Comment: v4: minor adjustments, 49pp, final version to appear in J. Math. Phy

    Hamiltonian Dyson--Schwinger Equations of QCD

    Full text link
    The general method for treating non-Gaussian wave functionals in the Hamiltonian formulation of a quantum field theory, which was previously developed and applied to Yang--Mills theory in Coulomb gauge, is generalized to full QCD. The Hamiltonian Dyson-Schwinger equations as well as the quark and gluon gap equations are derived and analysed in the IR and UV momentum regime. The back-reaction of the quarks on the gluon sector is investigated.Comment: 7 pages, 3 eps figures. Talk given by D. Campagnari at Xth Quark Confinement and the Hadron Spectrum, October 8--12, 2012 TUM Campus Garching, Munich, German
    corecore