202 research outputs found

    Dyson sphere

    Get PDF
    Some time ago, astronomers discovered a star with unusual brightness changes. The star is known as KIC 8462852, and is located in the constellation Cygnus. As a rule, slight and periodic changes in the brightness of a star is a normal process. Extinction of less than 1% says that the star passes the planet, which absorbs some of the light

    A Dyson Sphere around a black hole

    Full text link
    The search for extraterrestrial intelligence (SETI) has been conducted for nearly 60 years. A Dyson Sphere, a spherical structure that surrounds a star and transports its radiative energy outward as an energy source for an advanced civilisation, is one of the main targets of SETI. In this study, we discuss whether building a Dyson Sphere around a black hole is effective. We consider six energy sources: (i) the cosmic microwave background, (ii) the Hawking radiation, (iii) an accretion disk, (iv) Bondi accretion, (v) a corona, and (vi) relativistic jets. To develop future civilisations (for example, a Type II civilisation), 4×1026W4\times10^{26}\,{\rm W}(1L1\,{\rm L_{\odot}}) is expected to be needed. Among (iii) to (vi), the largest luminosity can be collected from an accretion disk, reaching 105L10^{5}\,{\rm L_{\odot}}, enough to maintain a Type II civilisation. Moreover, if a Dyson Sphere collects not only the electromagnetic radiation but also other types of energy (e.g., kinetic energy) from the jets, the total collected energy would be approximately 5 times larger. Considering the emission from a Dyson Sphere, our results show that the Dyson Sphere around a stellar-mass black hole in the Milky Way (10kpc10\,\rm kpc away from us) is detectable in the ultraviolet(10400nm)(\rm 10-400\,{\rm nm)}, optical(400760nm)(\rm 400-760\,{\rm nm)}, near-infrared(760nm5μm\rm 760\,{\rm nm}-5\,{\rm \mu m}), and mid-infrared(540μm\rm 5-40\,{\rm \mu m}) wavelengths via the waste heat radiation using current telescopes such as Galaxy Evolution Explorer Ultraviolet Sky Surveys. Performing model fitting to observed spectral energy distributions and measuring the variability of radial velocity may help us to identify these possible artificial structures.Comment: This paper has been accepted for publication in MNRA

    IRAS-based whole-sky upper limit on Dyson Spheres

    Get PDF
    A Dyson Sphere is a hypothetical construct of a star purposely cloaked by a thick swarm of broken-up planetary material to better utilize all of the stellar energy. A clean Dyson Sphere identification would give a significant signature for intelligence at work. A search for Dyson Spheres has been carried out using the 250,000 source database of the IRAS infrared satellite which covered 96% of the sky. The search has used the Calgary database for the IRAS Low Resolution Spectrometer (LRS) to look for fits to blackbody spectra. Searches have been conducted for both pure (fully cloaked) and partial Dyson Spheres in the blackbody temperature region 100 < T < 600 K. When other stellar signatures that resemble a Dyson Sphere are used to eliminate sources that mimic Dyson Spheres very few candidates remain and even these are ambiguous. Upper limits are presented for both pure and partial Dyson Spheres. The sensitivity of the LRS was enough to find Dyson Spheres with the luminosity of the sun out to 300 pc, a reach that encompasses a million solar- type stars.Comment: 32 pages, 8 figure

    Galileon Hairs of Dyson Spheres, Vainshtein's Coiffure and Hirsute Bubbles

    Full text link
    We study the fields of spherically symmetric thin shell sources, a.k.a. Dyson spheres, in a {\it fully nonlinear covariant} theory of gravity with the simplest galileon field. We integrate exactly all the field equations once, reducing them to first order nonlinear equations. For the simplest galileon, static solutions come on {\it six} distinct branches. On one, a Dyson sphere surrounds itself with a galileon hair, which far away looks like a hair of any Brans-Dicke field. The hair changes below the Vainshtein scale, where the extra galileon terms dominate the minimal gradients of the field. Their hair looks more like a fuzz, because the galileon terms are suppressed by the derivative of the volume determinant. It shuts off the `hair bunching' over the `angular' 2-sphere. Hence the fuzz remains dilute even close to the source. This is really why the Vainshtein's suppression of the modifications of gravity works close to the source. On the other five branches, the static solutions are all {\it singular} far from the source, and shuttered off from asymptotic infinity. One of them, however, is really the self-accelerating branch, and the singularity is removed by turning on time dependence. We give examples of regulated solutions, where the Dyson sphere explodes outward, and its self-accelerating side is nonsingular. These constructions may open channels for nonperturbative transitions between branches, which need to be addressed further to determine phenomenological viability of multi-branch gravities.Comment: 29+1 pages, LaTeX, 2 .pdf figure

    A1_2 Niven Rings

    Get PDF
    This article outlines the basic principles of a Niven Ring and with regards to harnessing a greater proportion of the Sun’s energy and as a stepping stone to a Dyson sphere

    Starry Messages: Searching for Signatures of Interstellar Archaeology

    Full text link
    Searching for signatures of cosmic-scale archaeological artifacts such as Dyson spheres or Kardashev civilizations is an interesting alternative to conventional SETI. Uncovering such an artifact does not require the intentional transmission of a signal on the part of the original civilization. This type of search is called interstellar archaeology or sometimes cosmic archaeology. The detection of intelligence elsewhere in the Universe with interstellar archaeology or SETI would have broad implications for science. For example, the constraints of the anthropic principle would have to be loosened if a different type of intelligence was discovered elsewhere. A variety of interstellar archaeology signatures are discussed including non-natural planetary atmospheric constituents, stellar doping with isotopes of nuclear wastes, Dyson spheres, as well as signatures of stellar and galactic-scale engineering. The concept of a Fermi bubble due to interstellar migration is introduced in the discussion of galactic signatures. These potential interstellar archaeological signatures are classified using the Kardashev scale. A modified Drake equation is used to evaluate the relative challenges of finding various sources. With few exceptions interstellar archaeological signatures are clouded and beyond current technological capabilities. However SETI for so-called cultural transmissions and planetary atmosphere signatures are within reach.Comment: 29 pages including 4 figures and 1 tabl
    corecore