1,642 research outputs found

    Geometric Analysis of Synchronization in Neuronal Networks with Global Inhibition and Coupling Delays

    Get PDF
    We study synaptically coupled neuronal networks to identify the role of coupling delays in network's synchronized behaviors. We consider a network of excitable, relaxation oscillator neurons where two distinct populations, one excitatory and one inhibitory, are coupled and interact with each other. The excitatory population is uncoupled, while the inhibitory population is tightly coupled. A geometric singular perturbation analysis yields existence and stability conditions for synchronization states under different firing patterns between the two populations, along with formulas for the periods of such synchronous solutions. Our results demonstrate that the presence of coupling delays in the network promotes synchronization. Numerical simulations are conducted to supplement and validate analytical results. We show the results carry over to a model for spindle sleep rhythms in thalamocortical networks, one of the biological systems which motivated our study. The analysis helps to explain how coupling delays in either excitatory or inhibitory synapses contribute to producing synchronized rhythms.Comment: 43 pages, 12 figure

    Collective dynamics of two-mode stochastic oscillators

    Full text link
    We study a system of two-mode stochastic oscillators coupled through their collective output. As a function of a relevant parameter four qualitatively distinct regimes of collective behavior are observed. In an extended region of the parameter space the periodicity of the collective output is enhanced by the considered coupling. This system can be used as a new model to describe synchronization-like phenomena in systems of units with two or more oscillation modes. The model can also explain how periodic dynamics can be generated by coupling largely stochastic units. Similar systems could be responsible for the emergence of rhythmic behavior in complex biological or sociological systems.Comment: 4 pages, RevTex, 5 figure

    The role of intermediaries in the synchronization of pulse-coupled oscillators

    Full text link
    The role of intermediaries in the synchronization of small groups of light controlled oscillators (LCO) is addressed. A single LCO is a two-time-scale phase oscillator. When pulse-coupling two LCOs, the synchronization time decreases monotonously as the coupling strength increases, independent of the initial conditions and frequency detuning. In this work we study numerically the effects that a third LCO induces to the collective behavior of the system. We analyze the new system by dealing with directed heterogeneous couplings among the units. We report a novel and robust phenomenon, absent when coupling two LCOs, which consists of a discontinuous relationship between the synchronization time and coupling strength or initial conditions. The mechanism responsible for the appearance of such discontinuities is discussed.Comment: 11 pages, 8 figure

    Zero-lag long-range synchronization via dynamical relaying

    Get PDF
    We show that simultaneous synchronization between two delay-coupled oscillators can be achieved by relaying the dynamics via a third mediating element, which surprisingly lags behind the synchronized outer elements. The zero-lag synchronization thus obtained is robust over a considerable parameter range. We substantiate our claims with experimental and numerical evidence of these synchronization solutions in a chain of three coupled semiconductor lasers with long inter-element coupling delays. The generality of the mechanism is validated in a neuronal model with the same coupling architecture. Thus, our results show that synchronized dynamical states can occur over long distances through relaying, without restriction by the amount of delay.Comment: 10 pages, 4 figure

    Analysis of self-oscillating DC-DC resonant power converters using a hysteretic relay

    Get PDF
    The paper presents a technique for exciting resonant DC-DC converters in a self-oscillating manner. The analysis necessary to predict the behaviour of such converters is also given. The oscillation is based on the behaviour of a hysteretic relay with a negative hysteresis transition. Self-oscillating converters benefit from higher efficiency/higher power density than their non-self-oscillating counterparts as they can be operated closer to the tank resonant frequency. The self-oscillating mechanism presented here is also simple and cost effective to implement. A prototype converter is presented in order to verify the theoretical claims

    The role of inhibitory feedback for information processing in thalamocortical circuits

    Get PDF
    The information transfer in the thalamus is blocked dynamically during sleep, in conjunction with the occurence of spindle waves. As the theoretical understanding of the mechanism remains incomplete, we analyze two modeling approaches for a recent experiment by Le Masson {\sl et al}. on the thalamocortical loop. In a first step, we use a conductance-based neuron model to reproduce the experiment computationally. In a second step, we model the same system by using an extended Hindmarsh-Rose model, and compare the results with the conductance-based model. In the framework of both models, we investigate the influence of inhibitory feedback on the information transfer in a typical thalamocortical oscillator. We find that our extended Hindmarsh-Rose neuron model, which is computationally less costly and thus siutable for large-scale simulations, reproduces the experiment better than the conductance-based model. Further, in agreement with the experiment of Le Masson {\sl et al}., inhibitory feedback leads to stable self-sustained oscillations which mask the incoming input, and thereby reduce the information transfer significantly.Comment: 16 pages, 15eps figures included. To appear in Physical Review
    • …
    corecore