7,530 research outputs found

    Observations of Shock Waves in Cloud Cavitation

    Get PDF
    This paper describes an investigation of the dynamics and acoustics of cloud cavitation, the structures which are often formed by the periodic breakup and collapse of a sheet or vortex cavity. This form of cavitation frequently causes severe noise and damage, though the precise mechanism responsible for the enhancement of these adverse effects is not fully understood. In this paper, we investigate the large impulsive surface pressures generated by this type of cavitation and correlate these with the images from high-speed motion pictures. This reveals that several types of propagating structures (shock waves) are formed in a collapsing cloud and dictate the dynamics and acoustics of collapse. One type of shock wave structure is associated with the coherent collapse of a well-defined and separate cloud when it is convected into a region of higher pressure. This type of global structure causes the largest impulsive pressures and radiated noise. But two other types of structure, termed 'crescent-shaped regions' and 'leading-edge structures' occur during the less-coherent collapse of clouds. These local events are smaller and therefore produce less radiated noise but the interior pressure pulse magnitudes are almost as large as those produced by the global events. The ubiquity and severity of these propagating shock wave structures provides a new perspective on the mechanisms reponsible for noise and damage in cavitating flows involving clouds of bubbles. It would appear that shock wave dynamics rather than the collapse dynamics of single bubbles determine the damage and noise in many cavitating flows

    Conical Euler analysis and active roll suppression for unsteady vortical flows about rolling delta wings

    Get PDF
    A conical Euler code was developed to study unsteady vortex-dominated flows about rolling, highly swept delta wings undergoing either forced motions or free-to-roll motions that include active roll suppression. The flow solver of the code involves a multistage, Runge-Kutta time-stepping scheme that uses a cell-centered, finite-volume, spatial discretization of the Euler equations on an unstructured grid of triangles. The code allows for the additional analysis of the free to-roll case by simultaneously integrating in time the rigid-body equation of motion with the governing flow equations. Results are presented for a delta wing with a 75 deg swept, sharp leading edge at a free-stream Mach number of 1.2 and at 10 deg, 20 deg, and 30 deg angle of attack alpha. At the lower angles of attack (10 and 20 deg), forced-harmonic analyses indicate that the rolling-moment coefficients provide a positive damping, which is verified by free-to-roll calculations. In contrast, at the higher angle of attack (30 deg), a forced-harmonic analysis indicates that the rolling-moment coefficient provides negative damping at the small roll amplitudes. A free-to-roll calculation for this case produces an initially divergent response, but as the amplitude of motion grows with time, the response transitions to a wing-rock type of limit cycle oscillation, which is characteristic of highly swept delta wings. This limit cycle oscillation may be actively suppressed through the use of a rate-feedback control law and antisymmetrically deflected leading-edge flaps. Descriptions of the conical Euler flow solver and the free-to roll analysis are included in this report. Results are presented that demonstrate how the systematic analysis of the forced response of the delta wing can be used to predict the stable, neutrally stable, and unstable free response of the delta wing. These results also give insight into the flow physics associated with unsteady vortical flows about delta wings undergoing forced motions and free-to-roll motions, including the active suppression of the wing-rock type phenomenon. The conical Euler methodology developed is directly extend able to three-dimensional calculations

    Minimal excitation states for heat transport in driven quantum Hall systems

    Full text link
    We investigate minimal excitation states for heat transport into a fractional quantum Hall system driven out of equilibrium by means of time-periodic voltage pulses. A quantum point contact allows for tunneling of fractional quasi-particles between opposite edge states, thus acting as a beam splitter in the framework of the electron quantum optics. Excitations are then studied through heat and mixed noise generated by the random partitioning at the barrier. It is shown that levitons, the single-particle excitations of a filled Fermi sea recently observed in experiments, represent the cleanest states for heat transport, since excess heat and mixed shot noise both vanish only when Lorentzian voltage pulses carrying integer electric charge are applied to the conductor. This happens in the integer quantum Hall regime and for Laughlin fractional states as well, with no influence of fractional physics on the conditions for clean energy pulses. In addition, we demonstrate the robustness of such excitations to the overlap of Lorentzian wavepackets. Even though mixed and heat noise have nonlinear dependence on the voltage bias, and despite the non-integer power-law behavior arising from the fractional quantum Hall physics, an arbitrary superposition of levitons always generates minimal excitation states.Comment: 15 pages, 7 figure

    Dynamics of waves in 1D electron systems: Density oscillations driven by population inversion

    Full text link
    We explore dynamics of a density pulse induced by a local quench in a one-dimensional electron system. The spectral curvature leads to an "overturn" (population inversion) of the wave. We show that beyond this time the density profile develops strong oscillations with a period much larger than the Fermi wave length. The effect is studied first for the case of free fermions by means of direct quantum simulations and via semiclassical analysis of the evolution of Wigner function. We demonstrate then that the period of oscillations is correctly reproduced by a hydrodynamic theory with an appropriate dispersive term. Finally, we explore the effect of different types of electron-electron interaction on the phenomenon. We show that sufficiently strong interaction [U(r)≫1/mr2U(r)\gg 1/mr^2 where mm is the fermionic mass and rr the relevant spatial scale] determines the dominant dispersive term in the hydrodynamic equations. Hydrodynamic theory reveals crucial dependence of the density evolution on the relative sign of the interaction and the density perturbation.Comment: 20 pages, 13 figure
    • …
    corecore