719 research outputs found

    Computational neural learning formalisms for manipulator inverse kinematics

    Get PDF
    An efficient, adaptive neural learning paradigm for addressing the inverse kinematics of redundant manipulators is presented. The proposed methodology exploits the infinite local stability of terminal attractors - a new class of mathematical constructs which provide unique information processing capabilities to artificial neural systems. For robotic applications, synaptic elements of such networks can rapidly acquire the kinematic invariances embedded within the presented samples. Subsequently, joint-space configurations, required to follow arbitrary end-effector trajectories, can readily be computed. In a significant departure from prior neuromorphic learning algorithms, this methodology provides mechanisms for incorporating an in-training skew to handle kinematics and environmental constraints

    Cortex, countercurrent context, and dimensional integration of lifetime memory

    Get PDF
    The correlation between relative neocortex size and longevity in mammals encourages a search for a cortical function specifically related to the life-span. A candidate in the domain of permanent and cumulative memory storage is proposed and explored in relation to basic aspects of cortical organization. The pattern of cortico-cortical connectivity between functionally specialized areas and the laminar organization of that connectivity converges on a globally coherent representational space in which contextual embedding of information emerges as an obligatory feature of cortical function. This brings a powerful mode of inductive knowledge within reach of mammalian adaptations, a mode which combines item specificity with classificatory generality. Its neural implementation is proposed to depend on an obligatory interaction between the oppositely directed feedforward and feedback currents of cortical activity, in countercurrent fashion. Direct interaction of the two streams along their cortex-wide local interface supports a scheme of "contextual capture" for information storage responsible for the lifelong cumulative growth of a uniquely cortical form of memory termed "personal history." This approach to cortical function helps elucidate key features of cortical organization as well as cognitive aspects of mammalian life history strategies

    Simplicial complexes and complex systems

    Get PDF
    © 2018 European Physical Society. We provide a short introduction to the field of topological data analysis (TDA) and discuss its possible relevance for the study of complex systems. TDA provides a set of tools to characterise the shape of data, in terms of the presence of holes or cavities between the points. The methods, based on the notion of simplicial complexes, generalise standard network tools by naturally allowing for many-body interactions and providing results robust under continuous deformations of the data. We present strengths and weaknesses of current methods, as well as a range of empirical studies relevant to the field of complex systems, before identifying future methodological challenges to help understand the emergence of collective phenomena

    Categorical Ontology of Complex Systems, Meta-Systems and Theory of Levels: The Emergence of Life, Human Consciousness and Society

    Get PDF
    Single cell interactomics in simpler organisms, as well as somatic cell interactomics in multicellular organisms, involve biomolecular interactions in complex signalling pathways that were recently represented in modular terms by quantum automata with ‘reversible behavior’ representing normal cell cycling and division. Other implications of such quantum automata, modular modeling of signaling pathways and cell differentiation during development are in the fields of neural plasticity and brain development leading to quantum-weave dynamic patterns and specific molecular processes underlying extensive memory, learning, anticipation mechanisms and the emergence of human consciousness during the early brain development in children. Cell interactomics is here represented for the first time as a mixture of ‘classical’ states that determine molecular dynamics subject to Boltzmann statistics and ‘steady-state’, metabolic (multi-stable) manifolds, together with ‘configuration’ spaces of metastable quantum states emerging from complex quantum dynamics of interacting networks of biomolecules, such as proteins and nucleic acids that are now collectively defined as quantum interactomics. On the other hand, the time dependent evolution over several generations of cancer cells --that are generally known to undergo frequent and extensive genetic mutations and, indeed, suffer genomic transformations at the chromosome level (such as extensive chromosomal aberrations found in many colon cancers)-- cannot be correctly represented in the ‘standard’ terms of quantum automaton modules, as the normal somatic cells can. This significant difference at the cancer cell genomic level is therefore reflected in major changes in cancer cell interactomics often from one cancer cell ‘cycle’ to the next, and thus it requires substantial changes in the modeling strategies, mathematical tools and experimental designs aimed at understanding cancer mechanisms. Novel solutions to this important problem in carcinogenesis are proposed and experimental validation procedures are suggested. From a medical research and clinical standpoint, this approach has important consequences for addressing and preventing the development of cancer resistance to medical therapy in ongoing clinical trials involving stage III cancer patients, as well as improving the designs of future clinical trials for cancer treatments.\ud \ud \ud KEYWORDS: Emergence of Life and Human Consciousness;\ud Proteomics; Artificial Intelligence; Complex Systems Dynamics; Quantum Automata models and Quantum Interactomics; quantum-weave dynamic patterns underlying human consciousness; specific molecular processes underlying extensive memory, learning, anticipation mechanisms and human consciousness; emergence of human consciousness during the early brain development in children; Cancer cell ‘cycling’; interacting networks of proteins and nucleic acids; genetic mutations and chromosomal aberrations in cancers, such as colon cancer; development of cancer resistance to therapy; ongoing clinical trials involving stage III cancer patients’ possible improvements of the designs for future clinical trials and cancer treatments. \ud \u

    A sampling-guided unsupervised learning method to capture percolation in complex networks

    Full text link
    The use of machine learning techniques in classical and quantum systems has led to novel techniques to classify ordered and disordered phases, as well as uncover transition points in critical phenomena. Efforts to extend these methods to dynamical processes in complex networks is a field of active research. Network-percolation, a measure of resilience and robustness to structural failures, as well as a proxy for spreading processes, has numerous applications in social, technological, and infrastructural systems. A particular challenge is to identify the existence of a percolation cluster in a network in the face of noisy data. Here, we consider bond-percolation, and introduce a sampling approach that leverages the core-periphery structure of such networks at a microscopic scale, using onion decomposition, a refined version of the k−k-core. By selecting subsets of nodes in a particular layer of the onion spectrum that follow similar trajectories in the percolation process, percolating phases can be distinguished from non-percolating ones through an unsupervised clustering method. Accuracy in the initial step is essential for extracting samples with information-rich content, that are subsequently used to predict the critical transition point through the confusion scheme, a recently introduced learning method. The method circumvents the difficulty of missing data or noisy measurements, as it allows for sampling nodes from both the core and periphery, as well as intermediate layers. We validate the effectiveness of our sampling strategy on a spectrum of synthetic network topologies, as well as on two real-word case studies: the integration time of the US domestic airport network, and the identification of the epidemic cluster of COVID-19 outbreaks in three major US states. The method proposed here allows for identifying phase transitions in empirical time-varying networks.Comment: 16 pages, 6 figure

    Concurrent evolution of feature extractors and modular artificial neural networks

    Get PDF
    Artificial Neural Networks (ANNs) are commonly used in both academia and industry as a solution to challenges in the pattern recognition domain. However, there are two problems that must be addressed before an ANN can be successfully applied to a given recognition task: ANN customization and data pre-processing. First, ANNs require customization for each specific application. Although the underlying mathematics of ANNs is well understood, customization based on theoretical analysis is impractical because of the complex interrelationship between ANN behavior and the problem domain. On the other hand, an empirical approach to the task of customization can be successful with the selection of an appropriate test domain. However, this latter approach is computationally intensive, especially due to the many variables that can be adjusted within the system. Additionally, it is subject to the limitations of the selected search algorithm used to find the optimal solution. Second, data pre-processing (feature extraction) is almost always necessary in order to organize and minimize the input data, thereby optimizing ANN performance. Not only is it difficult to know what and how many features to extract from the data, but it is also challenging to find the right balance between the computational requirements for the preprocessing algorithm versus the ANN itself. Furthermore, the task of developing an appropriate pre-processing algorithm usually requires expert knowledge of the problem domain, which may not always be available. This paper contends that the concurrent evolution of ANNs and data pre-processors allows the design of highly accurate recognition networks without the need for expert knowledge in the application domain. To this end, a novel method for evolving customized ANNs with correlated feature extractors was designed and tested. This method involves the use of concurrent evolutionary processes (CEPs) as a mechanism to search the space of recognition networks. In a series of controlled experiments the CEP was applied to the digit recognition domain to show that the efficacy of this method is in-line with results seen in other digit recognition research, but without the need for expert knowledge in image processing techniques for digit recognition

    Sensor-Based Monitoring and Inspection of Surface Morphology in Ultraprecision Manufacturing Processes

    Get PDF
    This research proposes approaches for monitoring and inspection of surface morphology with respect to two ultraprecision/nanomanufacturing processes, namely, ultraprecision machining (UPM) and chemical mechanical planarization (CMP). The methods illustrated in this dissertation are motivated from the compelling need for in situ process monitoring in nanomanufacturing and invoke concepts from diverse scientific backgrounds, such as artificial neural networks, Bayesian learning, and algebraic graph theory. From an engineering perspective, this work has the following contributions:1. A combined neural network and Bayesian learning approach for early detection of UPM process anomalies by integrating data from multiple heterogeneous in situ sensors (force, vibration, and acoustic emission) is developed. The approach captures process drifts in UPM of aluminum 6061 discs within 15 milliseconds of their inception and is therefore valuable for minimizing yield losses.2. CMP process dynamics are mathematically represented using a deterministic multi-scale hierarchical nonlinear differential equation model. This process-machine inter-action (PMI) model is evocative of the various physio-mechanical aspects in CMP and closely emulates experimentally acquired vibration signal patterns, including complex nonlinear dynamics manifest in the process. By combining the PMI model predictions with features gathered from wirelessly acquired CMP vibration signal patterns, CMP process anomalies, such as pad wear, and drifts in polishing were identified in their nascent stage with high fidelity (R2 ~ 75%).3. An algebraic graph theoretic approach for quantifying nano-surface morphology from optical micrograph images is developed. The approach enables a parsimonious representation of the topological relationships between heterogeneous nano-surface fea-tures, which are enshrined in graph theoretic entities, namely, the similarity, degree, and Laplacian matrices. Topological invariant measures (e.g., Fiedler number, Kirchoff index) extracted from these matrices are shown to be sensitive to evolving nano-surface morphology. For instance, we observed that prominent nanoscale morphological changes on CMP processed Cu wafers, although discernible visually, could not be tractably quantified using statistical metrology parameters, such as arithmetic average roughness (Sa), root mean square roughness (Sq), etc. In contrast, CMP induced nanoscale surface variations were captured on invoking graph theoretic topological invariants. Consequently, the graph theoretic approach can enable timely, non-contact, and in situ metrology of semiconductor wafers by obviating the need for reticent profile mapping techniques (e.g., AFM, SEM, etc.), and thereby prevent the propagation of yield losses over long production runs.Industrial Engineering & Managemen
    • …
    corecore