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We provide a short introduction to the field of topological data analysis and discuss its possible
relevance for the study of complex systems. Topological data analysis provides a set of tools to
characterise the shape of data, in terms of the presence of holes or cavities between the points. The
methods, based on the notion of simplicial complexes, generalise standard network tools by naturally
allowing for many-body interactions and providing results robust under continuous deformations of
the data. We present strengths and weaknesses of current methods, as well as a range of empirical
studies relevant to the field of complex systems, before identifying future methodological challenges
to help understand the emergence of collective phenomena.

I. INTRODUCTION

Take a cloud of points in a D-dimensional space. The
points could correspond to the coordinates of individu-
als in a space of attributes, such as their age, income
and height. Or the positions of birds in the sky. Or the
locations of McDonalds in a city. Or a sample of coordi-
nates in phase space for a dynamical system. This type
of data is prevalent in a variety of domains, including
many areas of Physics, and several mathematical tools
have been developed to reveal information hidden in their
noisy patterns and to reduce the system dimensionality.
Important families of methods include Principal Com-
ponent Analysis [12], looking for dominant directions to
explain the variance in the data, geometric or k-nearest
neighbour graphs [3], where pairs of points are connected
if they are sufficiently close, or their fractal dimension
[52] revealing the self-similarity of the data. Each tool
reveals a certain aspect of the data, putting emphasis
on either statistics, connections or geometry. Topologi-
cal Data Analysis (TDA) provides an alternative set of
tools that extracts topological features from the data that
are invariant under certain transformations, and aims at
characterising its shape by means of its number of cavi-
ties, holes or voids [25, 56, 61]. Topological data analysis
can be seen as an extension of the aforementioned fam-
ilies of methods, and intuitively understood in terms of
networks with non-binary interactions with a geometrical
flavour.

TDA has gained popularity in the field of data mining
and has been applied to data in a broad range of disci-
plines. The main purpose of this paper is to investigate
its potential advantages and limitations for the study of
complex systems. To do so, we first provide a short in-
troductory guide for complex systems scientists to TDA,
clarifying underlying concepts, with a particular focus on
the theory of simplicial complexes and persistent homol-
ogy, and pointing to relevant introductory bibliography.
We then present salient results of applications of TDA to
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FIG. 1. Generators of the first homology groups for a triangu-
lation of the torus. The torus has two 1-dimensional holes, the
one surrounded by the blue cycle and the one surrounded by
the red cycle, so H1 has two elements, which are the equiva-
lence classes of 1-cycles. For example the two red cycles (and
any similar cycle on the torus) are in the same equivalence
class because they ”surround the same hole” while the blue
cycle (and any other similar) are in the other equivalence class
of H1. The Betti numbers are β0 = 1 (one connected compo-
nent), β1 = 2 (two 1-dimensional holes surrounded by a chain
of edges), β2 = 1 (one void enclosed within the surface).

examples of complex systems. Finally, we try to delin-
eate situations when these tools might be of relevance and
identify steps to turn TDA from a set of computational
tools to a framework for a science of complex topology.

II. TOPOLOGICAL DATA ANALYSIS IN A
NUTSHELL

The field of geometry studies properties of an object
that are invariant under rigid motion, such as the an-
gles in a triangle or the curvature of a surface. Topol-
ogy studies instead invariants under continuous deforma-
tions, called homotopies, that can be understood as the
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stretching and shrinking of an object. The larger set of
transformations leads to a characterisation of the shape
of a topological space. TDA offers computational tools
to translate raw data into structured sets of simplicial
complexes that can be analysed by means of topological
theory. The output of the algorithm provides topologi-
cal metrics characterising the empirical data and ways to
compare different datasets.

To introduce these ideas more formally, let us consider
the canonical example of a set of N points embedded in
a metric space, as mentioned in the introduction. We fix
a distance τ and say that 2 data points i and j are con-
nected if balls of radius τ with centres at i and j have a
non-empty intersection. Similarly, 3 points form a trian-
gle if the 3 corresponding balls have a point in common,
and so on. This construction is called a Čech complex,
a particular type of simplicial complex for metric spaces
[32]. A close alternative construction is the Vietoris-Rips
complex, where we form a k simplex whenever k+1 points
are pairwise within distance τ [31]. Clearly, a Vietoris-
Rips complex with given τ has more simplices than a
Čech Complex on the same N points with τ/2 threshold.
There are other ways to build complexes from data, but,
for the time being, let us assume that the object has been
built. Formally, one calls simplex a convex hull of affinely
independent points and its faces are simplices based on
subsets of points. Then an abstract simplicial complex is
a set of simplices with the following rules:

• Every face of a simplex in a complex is in the com-
plex

• The non-empty intersection of two simplices is a
face of each of them

Clearly the Čech complex verifies the properties of an
abstract simplicial complex. By definition, the dimension
of a simplex is equal to the number of its vertices minus
one. Note that this quantity should not be confused with
the dimension of the original metric space. Thus a single
node is a 0-simplex, an edge is a 1-simplex, etc. Let
us now take a simplicial complex and the set K of all
k-simplices, for some fixed dimension k. A k-chain is
defined as the formal sum

∑
i aiσi for σi ∈ K and ai in

some field F . A common convention is to take ai ∈ Z2,
so that the chain either contains a certain simplex, or
not. It is clear that, for a fixed object and dimension, a
set of chains is a vector space Ck.

Take a simplex σ = [v0, v1, ...vk] in a complex. By
definition, all of its faces also belong to the complex.
This is true, in particular, for faces of dimension k − 1.
This property permits to define a boundary operator
δk(σ) =

∑
i(−1)i[v0, ..., v

′
i, ..., vk], where v′i indicates that

vertex vi is deleted from the list. The corresponding
transformation defines a linear homomorphism from Ck

to Ck−1. In words the boundary operator maps a simplex
to a formal sum of its faces, so for example the boundary
of a triangle is simply the sum of its edges. It can be
shown that δk−1(δk(d)) = 0 for any complex d. These

FIG. 2. Example of a fixed set of points completed to a Čech
complex with radius τ .

FIG. 3. The boundary operator of a 2-simplex returns the
formal sum of its edges. Arrows represent orientation.

concepts allow to define a k-chain c (for cycle) as a sim-
plex verifying δk(c) = 0 and a k-chain b (for boundary) if
∃d ∈ Ck+1 such that δk+1(d) = b. Let Bk be the set of
all k-boundaries and Zk the set of all k-cycles, then we
have Bk ⊆ Zk ⊆ Ck and, due to linearity of δ, they are
actually subgroups.

The last paragraph clearly shows that the mathemat-
ics of simplicial complexes are far more challenging than
those of networks, for instance. For more through intro-
ductions on the topic, we point the reader to references
such as [19, 61, 65, 80]. Let us instead focus on the
computational tools that emerge from these formal def-
initions and what can be learnt from them. As a first
step, we define the k-th homology group Hk = Zk/Bk =
ker δk/im δk+1. By construction, two simplicial com-
plexes obtained from different datasets are topologically
equivalent, and are said to have the same shape, if they
produce the same homology groups. The k-th homology
group directly provides an important, interpretable quan-
tity, as its rank gives the k-th Betti number, equal to the
number of k-dimensional holes in the topological fabric.

In an applied setting, an important aspect is that the
construction of the simplicial complex depends on the
value of certain parameters, and that the choice of the
value can not be done a priori. Take the value of τ in
a Čech complex for instance. Increasing values of τ lead
to larger and larger simplices, until a simplex made of
the N points is formed, but what value of τ should be
chosen? This will depend on the kind of data and on what
is the object of investigation, but clearly the choice will
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affect the shape of data and the resulting analysis using
topological tools. Persistent homology [16, 25, 31] is a
way to consider the information obtained from all values
of parameters, and to represent into an understandable
and easy-to-interpret form.

For the purpose of this discussion, let us consider again
a Čech complex for the sake of simplicity. As τ increases,
more and more simplicies are formed in the complex but,
as no simplices are deleted, if a cycle exists for τ = τ1,
then it will be present for all τ > τ1. Along the way,
new cycles can also appear as well as new boundaries.
Homology groups thus evolve when τ changes and persis-
tent homology aims at extracting information from this
evolution. Tuning the value of τ for a Čech complex is an
example of the general idea of filtrations. By definition,
a filtration is a nested sequence of simplicial complexes
∅ ⊆ F1 ⊆ F2 ⊆ ... ⊆ Fn, which implies a partial order on
simplices. By looking at homology groups for different
values of the filtration, we may track when holes appear
(birth) and disappear (death), which can be visualised by
means of so-called barcodes. The length of the parameter
interval between the death and the birth of a hole is called
its persistence. It is usually assumed that holes with long
persistence convey important information about the sys-
tem, while short ones are associated to noise, but there
are cases in which short-lived holes may convey impor-
tant information [82]. Note that the filtration can be per-
formed on other model parameters, for instance on the
time when a hole appears or disappears [73], in the case of
temporal data, or on the weight of a simplex, in the case
of weighted simplices [67]. Another important concept is
that of persistence landscape [26]. Persistence landscapes
are piecewise-linear functions, defined in a separable Ba-
nach space, that convey the information about births and
deaths of homological cycles during the filtration. The
great advantage they offer with respect to other visuali-
sations (e.g. barcodes) is that it is possible to compute
average landscapes over different datasets and also to de-
fine an Lp distance between landscapes, which allows to
do statistical analysis on mesoscale structures [14].

III. FROM NETWORKS TO SIMPLICIAL
COMPLEXES FOR COMPLEX SYSTEMS

The operation leading to Čech complex is clearly remi-
niscent of the notion of geometric graph [3]. In the latter,
a network is constructed from points in a metric space via
a threshold, and pairs of nodes are connected by an edge.
Note that the relations between networks and geome-
try are both-ways. Complementary to geometric graphs,
aiming at defining networks from geometrical data, many
network methods aim at embedding nodes on a metric
space. Important examples include hyperbolic embed-
ding methods [45], that naturally produce heterogeneous
degree distributions and strong clustering in complex net-
works, where the nodes are assigned a location in an hy-
perbolic space. The resulting embedding can then be

used to help routing information on the network for in-
stance. Spectral embeddings such as diffusion maps [20]
also play an important role. Related to the notion of
kernel on graphs [29], they allow to project networks a
lower-dimensional spaces and to define distance or sim-
ilarity matrices between nodes. The latter can then be
exploited to cluster the nodes, e.g. by means of k-means,
in order to reveal modules hidden in the original network
[75].

Despite these connections with geometry, most of the
emphasis in network science is put on the existence of
pairwise edges between nodes in an abstract space, and
on indirect paths of interactions formed by a succession
of edges. This focus on connectivity has led to important
contributions in our understanding of complex systems,
as networks naturally provide a bridge between structure
and dynamics [58]. For instance, certain types of interac-
tion networks tend to facilitate diffusion, or to allow for
complex dynamical regimes. Important structural prop-
erties include the degree distribution, as the existence of
high degree nodes provides shorter paths and accelerates
diffusive processes [63], the over-representation of motifs
that allow for local reinforcement in the dynamics [60],
and community structure, as the presence of dense com-
munities is associated to different time scales for the dy-
namics and allows for the coexistence of different states
[78]. More importantly, complex systems are composed
by large numbers of interacting elements, and network
science thus provides a universal language, applicable to
a variety of domains, in order to decipher the myriads of
connections in the system.

Despite these successes, network science also has im-
portant limitations that may prevent it to properly rep-
resent the complexity of real-world interacting systems.
Moreover, these limitations become more and more ap-
parent with the availability of rich datasets, allowing to
track paths of diffusion in systems, and the temporal
characteristics of the system evolution [46]. For these rea-
sons, different attempts are currently developed in order
to provide appropriate models for higher-order networks
[47]. One of those models builds on TDA and represents
systems as simplicial complexes. From our previous dis-
cussion on the Čech complex, it is clear that an important
difference between networks and simplicial complexes is
the possibility to encode higher-order interactions, in-
volving more than 2 nodes. Simplicial complexes thus
provide an alternative to hypergraphs [30], where many-
body interactions can also be encoded but, at the same
time, they put a particular emphasis on the underlying
the geometrical nature of system. For these reasons, sim-
plicial complexes appear to be a good candidate to model
and analyse systems composed of many elements, inter-
acting via many-body interactions, and expected to have
a strong geometrical nature. When adopting a TDA ap-
proach, it is crucial to remember that the underlying
assumption of TDA is that the shape of data matters,
and that the existence of a lower-dimensional embedding
may correspond to underlying symmetries or constraints
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in the system. A good example would be noisy obser-
vations of a dynamical system in a periodic orbit. TDA
naturally provides tools to detect and quantify such re-
current motion. In that case, the identification of voids in
the data points indeed gives us critical information about
the system behaviour. In this direction, [51] introduced
a method to reconstruct the phase space of a real-world
dynamical system from time series using simplicial com-
plexes, which preserve the topology of the state space. In
that case, short-lived holes may be interpreted as tem-
porary inaccessible subspaces of the state space, while
persistent holes as permanent obstacles to the dynamics.
It is also important to bear in mind the additional con-
ceptual and computational costs associated to TDA, as
the number of faces rapidly explodes even in fairly small
systems.

Before turning to a presentation of tools and their ap-
plications, note that there exist different ways by which
data points can be encoded into simplicial complexes.
The first type of encoding deals with points embedded
into a metric space, as discussed above, for which stan-
dard methods like the Čech complex and the Vietoris-
Rips complex can be built. There exist also many situa-
tions when the system has the structure of a hypergraph,
with nodes interacting via non-binary interactions, and
where the hypergraph can be modelled as a simplicial
complex, called a nerve complex. Potential applications
can be found in chemistry, with biochemical reactions
may involve more than two species in a reaction [39],
and social systems, where group interactions naturally
appear in collaboration [28] and contact [77] networks.
In that case, each clique of size d in the hypergraph leads
to the a simplex of dimension d− 1, as well as all its in-
trinsic simplicies. Finally, simplicial complexes can also
be used to analyse standard networks. A first method
consist in embedding the nodes in a metric space, as was
discussed earlier in this section, and then to construct e.g.
a Čech complex. For a spectral embedding, the underly-
ing geometry of the problem would thus be associated to
the dominant eigenvectors of the network. Alternatively,
a clique-complex can be constructed by associating each
clique in the network to a simplex.

IV. IMPORTANT TOOLS

The first algorithm for the computation of persistent
homology was provided by [26], which allowed computa-
tion over a particular field, the field F2, and was later
extended for computation over general fields [84]. Algo-
rithms for computing homology are based on the reduc-
tion algorithm, which we briefly describe here following
[84]. The boundary operator δk can be represented by
an integer matrix Mk with entries in {−1, 0, 1}, where
columns are the k simplices and rows are the (k−1) sim-
plices. The null space of Mk corresponds to Zk and the
range-space to Bk−1. The reduction algorithm uses ele-
mentary row and column operations to reduce Mk to its

Smith normal form M̃k,

M̃k =



b1 0
. . . 0

0 blk

0 0


(1)

The computation of the Smith normal form in all di-
mensions is sufficient to characterize the homology of the
complex, as rankM̃k = rankMk = lk, rankZk = mk − lk
and rankB̃k = rankM̃k+1 = lk+1, so the Betti number
can be computed as

βk = mk − lk − lk+1. (2)

The vector space defined above captures the homology
of a single complex, while a filtration is constituted by
many complexes. To compute persistent homology, one
needs to find a basis that is compatible across the entire
filtration, which can be shown to exist [84]. A simplified
version of the reduction algorithm over a general field is
given in [84]. In the worst case, its complexity is cubic
in the number of simplices. Other algorithms have been
developed for the reduction of the matrix representation
of the boundary operator, and while some of them can be
faster for some specific datasets, the complexity remains
cubic in general.

Several publicly available software packages imple-
ment reduction and persistence homology: javaPlex [1],
Perseus [57], Dionysus [55], PHAT [7], DIPHA [6],
Gudhi [53], ripser [5] and jHoles [11]. A comparison
of their performance [61], tested on real and synthetic
datasets, concluded that the fastest package overall are
ripser, Gudhi and DIPHA, while javaPlex is the eas-
iest and best software for a beginner, as long as the anal-
ysis is done on small complexes.

V. APPLICATION OF TDA

In recent years the number of contributions relying on
topological data analysis tools is rapidly increasing, as
TDA provides alternative and complementary tools in
many disciplines dealing with complex systems. The dis-
cipline that is possibly benefiting the most from the adop-
tion of TDA is neuroscience: after the network paradigm
proved successful for studying a multitude of problems,
the adoption of simplicial complexes and the consequent
relaxation of the simplifying assumption that all can
be counted for by dyadic relationships seems the natu-
ral step forward considering the inherently complex and
rich structure of neural systems [33, 72, 80]. Several
works exploit the fact that a study of homological cy-
cles through persistent homology provides a way to de-
tect differences between neural systems, in terms of their
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FIG. 4. A visual summary of the many ways in which simplicial complexes can be built: from a cloud of data points, from a
network and from a hypergraph. The simplicial complex represented in the figure corresponds to the hypergraph on its left.

mesoscale structures. For example [66] finds evidence of
different brain activity in two states: under the effect of
a psychedelic drug and with a placebo. The homologi-
cal features of brain functional networks in the two cases
are significantly different, with an increased integration
between cortical region in the altered state. Developing
on the same methodology, [49] show that measures of
edges importance in homological cycles complement the
information provided by standard graph metrics. TDA
has also proved useful to understand the structure of
the brain, [79] find that homologycal cycles in structural
brain networks link regions of early and late evolution-
ary origin. A related stream of works uses persistence
landscape distance to detect changes in functional brain
networks during learning of a simple motor task [82], and
the functional equivalence between imagery and percep-
tion [35], providing empirical evidence that functional
equivalence is higher for highly hypnotisable individu-
als, a scenario that was suggested by behavioural studies
but could not be confirmed by means of standard com-
putational tools. This result serves as an example of
the ability of TDA to identify significant features that
would have remained blurred with standard methods,
including networks methods. Other examples of appli-
cations include studies on how topology of brain arteries
changes with age [8], how information flows in cortical
microcircuits in response to stimuli [71], how the homo-
logical features of connectivity for hyperactivity disorder
and autism spectrum are different compared to healthy
cases [48], how speech-related brain regions connectiv-
ity changes in different scenarios of speech perception
[38], and the topological differences between epileptic and
healthy EEG signals [69].

Granular physics is another field that benefited from
both network science and TDA methods (for a thorough

review see [62]). Granular materials are characterised
by dissipative interactions between particles, which pre-
vent them from reaching standard thermal equilibria. In
a granular packing, the forces between adjacent parti-
cles are represented by a weighted network, where the
weight is proportional to the the ongoing force. The re-
sulting networks can be analysed after being turned into
simplicial complexes. For instance, homological holes in
force networks of granular systems help identifying struc-
tural defects of the material [44] and persistence diagrams
identify differences in the structure of compressed gran-
ular materials in presence or absence of frictions [42, 43].
Even simple measures as Betti numbers provide a quan-
titative basis to differentiate between frictional and fric-
tionless systems [40], but persistent homology proves to
be more effective in identifying more subtle differences
between systems. As an example, in the force networks of
a tapped system composed of disks and pentagons, Betti
numbers allow to distinguish between the shapes [70] ,
but persistent homology allows to quantify finer differ-
ences that would be otherwise indistinguishable [41].

Another area of growing interest is that of machine
learning and, more specifically, that of neural networks
and deep neural networks. This set of methods have
proven to be extremely successful at recognising patterns
in noisy data, despite the fact that they take, as an in-
put, single data points or pixels. A promising research
direction is to combine TDA with neural networks, by
using shapes identified by TDA as input data in the ma-
chine learning framework. This technical aspect is far
from trivial, as persistent diagrams, for instance, contain
a variable number of intervals, while a structured input
of a fixed size is typically required in machine learning.
One possible solution is through the use of persistence
landscapes which, coupled with convolutional neural net-
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works, leads to so-called called a persistent convolutional
neural network model [36]. The key here is the piece-
wise linearity of persistence landscapes that makes back-
propagation straightforward. A successful application of
this methodology is in music classification, where an in-
corporation of the shape of audio signals helped to out-
perform the state of the art methods. As a next step, [34]
proposed to project persistence diagrams on a fixed-size
collection of structure elements, to let the algorithm de-
cide which information to consider in the training, with
excellent results for the classification of the shapes of 2D
objects. There exist other ways by which TDA and ma-
chine learning can be integrated, as in [15], where the
authors use weights of convolutional networks at differ-
ent training steps as an input for TDA, and many more
ways are expected to come in this rapidly evolving field
of research.

The applications of TDA in other fields of science are
more sparse and fragmented, but several examples show
its growing interest and its potential in a range of prob-
lems. Several works aim at classifying weighted networks
in terms of the persistence of their homological struc-
tures [67]. This is the case in biology, for instance, where
the method proved successful in identifying high-survival
breast cancers [59] and in deciphering noisy biological sig-
nals those in electromyographic data [68]. Persistent ho-
mology has also been used in genomic datasets to identify
evolutionary patterns of RNA viruses [18]. Applications
in finance and economics include the detection of crisis
in financial markets [50], a description of the connectiv-
ity of the banking networks using Betti numbers [23],
and a classification of countries in terms of the homology
of their trade networks [76]. In computational social sci-
ence, works have identified patterns of international com-
munities in mobile phone data [2]. Other research areas
include dynamical systems, through the study of conta-
gions maps [83], continuum percolation [81] and sciento-
metrics, to understand scientific collaborations [17, 64]
and co-occurrences relations of concepts in scientific ar-
ticles [73].

VI. PERSPECTIVES

The study of networks has emerged as a science
through the development of different facets that feed each
other: the design of algorithms, the identification of ubiq-
uitous patterns, the identification of mechanism leading
to the emergence of these patterns, and an understand-

ing on how they affect the behaviour of the system. As
an example, take the modular organisation of complex
networks, which has led to the design of efficient commu-
nity detection algorithms, a quantification of modularity
in a variety of systems, the identification, amongst oth-
ers, of evolutionary mechanisms driving the formation of
communities, and a study of their impact on synchronisa-
tion and diffusion [54]. The combination of these findings
have helped capture the evasive nature of complex sys-
tems. For TDA to achieve a similar status as a building
block of the science of complex systems, much remains to
be done. As we have discussed, much attention has been
dedicated, so far, at the design of computational methods
and the study of empirical systems. But large sections re-
main overall unexplored. A central yet intriguing notion
is that of hole. Assuming that a system presents certain
properties about the temporal properties and size of its
holes, we still lack understanding of the impact of these
holes on the function and behaviour of the system. Like-
wise, where does the complex topology emerge? Can
we find simple rules that explain why various datasets
from complex systems can be efficiently characterised by
means of TDA, as several empirical studies suggest?

Recent research has looked at the possibility to gener-
alise network concepts for simplical complexes. In partic-
ular, different attempts have focused on centrality mea-
sures [9, 27]leaving open a range of potential network
methods for example in community detection.

As we have written before, we believe that TDA is a
promising research venue in situations where the salient
features of a system are its connectivity and geometri-
cal patterns. It is thus unsurprising that a majority of
successes associated to TDA have been found in neu-
roscience. Similarly, another promising field of study,
still relatively unexplored, would the study of complex
urban systems, as cities also present a multi-scale inter-
connected organisation and their morphology plays a cru-
cial role in the functioning [4]. In terms of impact on
dynamics, finally, interesting research directions include
the study of higher-order analogs of the graph Laplacian,
called the Hodge Laplacian, which could provide math-
ematical grounds for the study of diffusion on simplicial
complexes [74]. Together with these considerations, the
increasing popularity of TDA is calling for a clarification
of the relation between network concepts and simplex
geometry [24] and a quantification of the statistical sig-
nificance of topological features, which motivates models
of random simplicial complexes [13, 21, 37], stochastic
models of growing complexes [10, 22].
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geometry of complex networks. Physical Review E,
82(3):036106, 2010.

[46] Renaud Lambiotte. Rich gets simpler. Proceedings of the
National Academy of Sciences, 113(36):9961–9962, 2016.

[47] Renaud Lambiotte, Martin Rosvall, and Ingo Scholtes.
Understanding complex systems: From networks
to optimal higher-order models. arXiv preprint
arXiv:1806.05977, 2018.

[48] H. Lee, M. K. Chung, H. Kang, B. N. Kim, and D. S. Lee.
Discriminative persistent homology of brain networks.
In 2011 IEEE International Symposium on Biomedical
Imaging: From Nano to Macro, pages 841–844, 2011.

[49] L-D Lord, P Expert, H M. Fernandes, G Petri, T J
Van Hartevelt, F Vaccarino, G Deco, F Turkheimer, and
M L Kringelbach. Insights into brain architectures from
the homological scaffolds of functional connectivity net-
works. Frontiers in Systems Neuroscience, 10:85, 2016.

[50] Gidea M and Katz Y. Topological data analysis of fi-
nancial time series: Landscapes of crashes. Physica A:
Statistical Mechanics and its Applications, 491:820 – 834,
2018.

[51] S Maletic, Y Zhao, and M Rajkovic. Persistent topo-
logical features of dynamical systems. Chaos, 26:053105
(1–14), 2016.

[52] Benoit B Mandelbrot. The fractal geometry of nature,
volume 1. WH freeman New York, 1982.

[53] C Maria, J-D Boissonnat, Marc Glisse, and M Yvinec.
The gudhi library: Simplicial complexes and persistent
homology. In H Hong and Chee Yap, editors, Mathe-
matical Software – ICMS 2014, pages 167–174, Berlin,
Heidelberg, 2014. Springer Berlin Heidelberg.

[54] David Meunier, Renaud Lambiotte, and Edward T Bull-
more. Modular and hierarchically modular organization
of brain networks. Frontiers in neuroscience, 4:200, 2010.

[55] D Morozov. Dionysus. http://www.mrzv.org/software/
dionysus/.

[56] Abubakr Muhammad. Graphs, simplicial complexes and
beyond: topological tools for multi-agent coordination.
PhD thesis, Georgia Institute of Technology, 2005.

[57] V Nanda. Perseus, the persistent homology software.
http://www.sas.upenn.edu/~vnanda/perseus.

[58] Mark EJ Newman. The structure and function of com-
plex networks. SIAM review, 45(2):167–256, 2003.

[59] M Nicolau, A J Levine, and G Carlsson. Topology
based data analysis identifies a subgroup of breast can-
cers with a unique mutational profile and excellent sur-
vival. Proceedings of the National Academy of Sciences,
108(17):7265–7270, 2011.

[60] David JP O’Sullivan, Gary James O’Keeffe, Peter G Fen-
nell, and James P Gleeson. Mathematical modeling of
complex contagion on clustered networks. Frontiers in
Physics, 3:71, 2015.

[61] N Otter, M A Porter, U Tillmann, P Grindrod, and

H Harrington. A roadmap for the computation of
persistent homology. EPJ Data Science, 6(17), 2017.
https://doi.org/10.1140/epjds/s13688-017-0109-5.

[62] Lia Papadopoulos, Mason A Porter, Karen E Daniels,
and Danielle S Bassett. Network analysis of particles
and grains. Journal of Complex Networks, 6(4):485–565,
2018.

[63] Romualdo Pastor-Satorras and Alessandro Vespignani.
Epidemic spreading in scale-free networks. Physical re-
view letters, 86(14):3200, 2001.

[64] A Patania, G Petri, and F Vaccarino. The shape of
collaborations. EPJ Data Science, 6(18), 2017. DOI
10.1140/epjds/s13688-017-0114-8.

[65] A Patania, G Petri, and F Vaccarino. Topological anal-
ysis of data. EPJ Data Science, 6(7), 2017. DOI
10.1140/epjds/s13688-017-0104-x.

[66] G Petri, P Expert, F Turkheimer, R Carhart-Harris,
D Nutt, P J Hellyer, and F Vaccarino. Homolog-
ical scaffolds of brain functional networks. Journal
of the Royal Society Interface, 11(20140873), 2014.
http://dx.doi.org/10.1098/rsif.2014.0873.

[67] G Petri, M Scolamiero, Donato I, and Vaccarino F. Topo-
logical strata of weighted complex networks. PLoS ONE,
8(6), 2013. doi:10.1371/ journal.pone.0066506.

[68] A Phinyomark, R N. Khushaba, E Ibáñez-Marcelo,
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