10 research outputs found

    Synchronization of heterogeneous oscillators under network modifications: Perturbation and optimization of the synchrony alignment function

    Get PDF
    Synchronization is central to many complex systems in engineering physics (e.g., the power-grid, Josephson junction circuits, and electro-chemical oscillators) and biology (e.g., neuronal, circadian, and cardiac rhythms). Despite these widespread applications---for which proper functionality depends sensitively on the extent of synchronization---there remains a lack of understanding for how systems evolve and adapt to enhance or inhibit synchronization. We study how network modifications affect the synchronization properties of network-coupled dynamical systems that have heterogeneous node dynamics (e.g., phase oscillators with non-identical frequencies), which is often the case for real-world systems. Our approach relies on a synchrony alignment function (SAF) that quantifies the interplay between heterogeneity of the network and of the oscillators and provides an objective measure for a system's ability to synchronize. We conduct a spectral perturbation analysis of the SAF for structural network modifications including the addition and removal of edges, which subsequently ranks the edges according to their importance to synchronization. Based on this analysis, we develop gradient-descent algorithms to efficiently solve optimization problems that aim to maximize phase synchronization via network modifications. We support these and other results with numerical experiments.Comment: 25 pages, 6 figure

    Coordinated Robot Navigation via Hierarchical Clustering

    Get PDF
    We introduce the use of hierarchical clustering for relaxed, deterministic coordination and control of multiple robots. Traditionally an unsupervised learning method, hierarchical clustering offers a formalism for identifying and representing spatially cohesive and segregated robot groups at different resolutions by relating the continuous space of configurations to the combinatorial space of trees. We formalize and exploit this relation, developing computationally effective reactive algorithms for navigating through the combinatorial space in concert with geometric realizations for a particular choice of hierarchical clustering method. These constructions yield computationally effective vector field planners for both hierarchically invariant as well as transitional navigation in the configuration space. We apply these methods to the centralized coordination and control of nn perfectly sensed and actuated Euclidean spheres in a dd-dimensional ambient space (for arbitrary nn and dd). Given a desired configuration supporting a desired hierarchy, we construct a hybrid controller which is quadratic in nn and algebraic in dd and prove that its execution brings all but a measure zero set of initial configurations to the desired goal with the guarantee of no collisions along the way.Comment: 29 pages, 13 figures, 8 tables, extended version of a paper in preparation for submission to a journa

    Nonlinear consensus on networks: equilibria, effective resistance and trees of motifs

    Full text link
    We study a generic family of nonlinear dynamics on undirected networks generalising linear consensus. We find a compact expression for its equilibrium points in terms of the topology of the network and classify their stability using the effective resistance of the underlying graph equipped with appropriate weights. Our general results are applied to some specific networks, namely trees, cycles and complete graphs. When a network is formed by the union of two subnetworks joined in a single node, we show that the equilibrium points and stability in the whole network can be found by simply studying the smaller subnetworks instead. Applied recursively, this property opens the possibility to investigate the dynamical behaviour on families of networks made of trees of motifs.Comment: 27 pages, 4 figures. Preprint - To be published in SIAM Journal on Applied Dynamical System

    Synchronization of Heterogeneous Oscillators Under Network Modifications: Perturbation and Optimization of the Synchrony Alignment Function

    Get PDF
    Synchronization is central to many complex systems in engineering physics (e.g., the power-grid, Josephson junction circuits, and electro-chemical oscillators) and biology (e.g., neuronal, circadian, and cardiac rhythms). Despite these widespread applications—for which proper functionality depends sensitively on the extent of synchronization—there remains a lack of understanding for how systems can best evolve and adapt to enhance or inhibit synchronization. We study how network modifications affect the synchronization properties of network-coupled dynamical systems that have heterogeneous node dynamics (e.g., phase oscillators with non-identical frequencies), which is often the case for real-world systems. Our approach relies on a synchrony alignment function (SAF) that quantifies the interplay between heterogeneity of the network and of the oscillators and provides an objective measure for a system’s ability to synchronize. We conduct a spectral perturbation analysis of the SAF for structural network modifications including the addition and removal of edges, which subsequently ranks the edges according to their importance to synchronization. Based on this analysis, we develop gradient-descent algorithms to efficiently solve optimization problems that aim to maximize phase synchronization via network modifications. We support these and other results with numerical experiments

    Synchronization of heterogeneous oscillators under network modifications: Perturbation and optimization of the synchrony alignment function

    Get PDF
    Synchronization is central to many complex systems in engineering physics (e.g., the power-grid, Josephson junction circuits, and electro-chemical oscillators) and biology (e.g., neuronal, circadian, and cardiac rhythms). Despite these widespread applications---for which proper functionality depends sensitively on the extent of synchronization---there remains a lack of understanding for how systems evolve and adapt to enhance or inhibit synchronization. We study how network modifications affect the synchronization properties of network-coupled dynamical systems that have heterogeneous node dynamics (e.g., phase oscillators with non-identical frequencies), which is often the case for real-world systems. Our approach relies on a synchrony alignment function (SAF) that quantifies the interplay between heterogeneity of the network and of the oscillators and provides an objective measure for a system\u27s ability to synchronize. We conduct a spectral perturbation analysis of the SAF for structural network modifications including the addition and removal of edges, which subsequently ranks the edges according to their importance to synchronization. Based on this analysis, we develop gradient-descent algorithms to efficiently solve optimization problems that aim to maximize phase synchronization via network modifications. We support these and other results with numerical experiments

    Analysis and control of agreement and disagreement opinion cascades

    Full text link
    We introduce and analyze a continuous time and state-space model of opinion cascades on networks of large numbers of agents that form opinions about two or more options. By leveraging our recent results on the emergence of agreement and disagreement states, we introduce novel tools to analyze and control agreement and disagreement opinion cascades. New notions of agreement and disagreement centrality, which depend only on network structure, are shown to be key to characterizing the nonlinear behavior of agreement and disagreement opinion formation and cascades. Our results are relevant for the analysis and control of opinion cascades in real-world networks, including biological, social and artificial networks, and for the design of opinion-forming behaviors in robotic swarms. We illustrate an application of our model to a multi-robot task-allocation problem and discuss extensions and future directions opened by our modeling framework

    Dynamics of decision making in animal group motion

    No full text
    We present a continuous model of a multi-agent system motivated by simulation studies on dynamics of decision making in animal groups in motion. Each individual moves at constant speed in the plane and adjusts its heading in response to relative headings of others in the population. Two subgroups of the population are informed such that individuals in each subgroup have a preferred direction of motion. The model exhibits fast and slow time scales allowing for a reduction in the dimension of the problem. The stable solutions for the reduced model correspond to compromise by individuals with conflicting preferences. We study the global phase space for the proposed reduced model by computing equilibria and proving stability and bifurcations.
    corecore