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Abstract

Synchronization is central to many complex systems in engineering physics (e.g., the power-grid, 

Josephson junction circuits, and electro-chemical oscillators) and biology (e.g., neuronal, 

circadian, and cardiac rhythms). Despite these widespread applications—for which proper 

functionality depends sensitively on the extent of synchronization—there remains a lack of 

understanding for how systems can best evolve and adapt to enhance or inhibit synchronization. 

We study how network modifications affect the synchronization properties of network-coupled 

dynamical systems that have heterogeneous node dynamics (e.g., phase oscillators with non-

identical frequencies), which is often the case for real-world systems. Our approach relies on a 

synchrony alignment function (SAF) that quantifies the interplay between heterogeneity of the 

network and of the oscillators and provides an objective measure for a system’s ability to 

synchronize. We conduct a spectral perturbation analysis of the SAF for structural network 

modifications including the addition and removal of edges, which subsequently ranks the edges 

according to their importance to synchronization. Based on this analysis, we develop gradient-

descent algorithms to efficiently solve optimization problems that aim to maximize phase 

synchronization via network modifications. We support these and other results with numerical 

experiments.
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1. Introduction

The study of synchronization is a multidisciplinary pursuit [17, 40, 3] aimed to understand 

how dynamics occurring for individual oscillators (which can represent a wide array of 

phenomena ranging from populations of firing neurons to generators in a power grid [13, 34, 

45, 51]) can combine so that the system exhibits self-organized, collective behavior. For 

numerous systems, proper functionality requires an appropriate amount of synchronization. 

The power grid, for example, must provide electricity following regional specifications (e.g., 

alternating current at 120 volts and 60 hertz in the United States) and a breakdown of 

synchronization can lead to costly blackouts [38, 50, 59, 31]. Other technologies in which 

synchronization plays a crucial role include Josephson junctions circuits [64, 46], physical 

infrastructure [57], electro-chemical oscillators [23], synthetic biological oscillators [41], 

and distributed sensor networks [35, 48, 37, 36]. Synchronization is also ubiquitous in 

biological systems [66], where applications include coordinated neuronal activity in the 

brain [28, 49], cardiac rhythms of the heart [30, 22], circadian rhythms governing sleep 

cycles [47], gene regulation [26], and intestinal activity [15, 2]. Excess synchronization in 

the brain, for example, has been linked to tremors and seizures [49, 65].

Given these widespread applications, it is important to develop theory to control, engineer 

and optimize the synchronization properties of complex systems—particularly, 

heterogeneous systems. In this research, we explore what we believe to be one of the most 

fundamental pursuits in this direction, understanding the effect of a network modification 

such as the addition or removal of an edge or set of edges on phase synchronization. This 

fundamental topic has been previously studied for complete (perfect) synchronization of 

identical oscillators [5, 29, 11, 20] (i.e., based on the Master Stability Function [39]) and 

nonidentical oscillators in the weak synchronization regime [43, 29, 63, 60] (i.e., the onset 

of synchronization [42, 44]). We develop theory for phase synchronization of nonidentical 

oscillators in the strong synchronization regime, thereby filling an important gap in the 

established literature.

Our approach relies on a synchrony alignment function (SAF) [52] that quantifies the 

interplay between heterogeneity in the network and heterogeneity of the oscillators and 

provides insight into a network’s ability to synchronization. We showed in [52] that 

minimization of the SAF gives a maximization of phase synchronization, and we developed 

greedy, Monte-Carlo algorithms to optimize the phase synchronization of networks under 

various constraints. See Fig. 1.1 for a numerical experiment highlighting the effectiveness of 

this approach. Because this approach is based on a mathematical analysis, it is much more 

reliable than—yet in agreement with—known heuristics for enhancing synchronization such 

as implementing negative correlations between the frequencies of neighboring oscillators [9, 

10, 52] or incorporating positive correlations between the oscillators’ degrees and natural 

frequency magnitudes [9, 52]. In addition to optimization, the SAF can be used to explore 

fundamental limitations on phase synchronization for systems with frustrated coupling—a 

phenomenon referred to as the erosion of synchronization [56, 54]. In continuing to develop 

this theoretical framework, we recently generalized the SAF to directed networks [53].
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Here, we conduct a spectral perturbation analysis of the SAF to analyze the effect on phase 

synchronization due to structural network modifications. This analysis ranks the edges (and 

potential edges) according to their importance to synchronization. Importantly, this ranking 

(i.e., centrality measure [61]) takes into account the full system—that is, both the particular 

network structure and the oscillators’ (potentially) heterogeneous natural frequencies and is 

akin to other rankings that are specific to a particular class of dynamics [43, 18, 55]. 

Moreover, we study a class of optimization problem in which the goal is to maximally 

enhance phase synchronization through the addition and removal of a fixed numbers of 

edges. Using these rankings, we develop efficient gradient-descent algorithms to yield 

approximate solutions. We support these and other findings with numerical experiments.

The remainder of this paper is organized as follows. In Sec. 2, we introduce the oscillator 

models that we study and order parameters to quantify phase synchronization. In Sec. 3, we 

present the SAF, derive its upper and lower bounds, and describe two pedagogical network 

examples. In Sec. 4, we present a spectral perturbation analysis of the SAF for a system 

undergoing a network modification. In Sec. 5, we present the ranking of edges according to 

their importance to phase synchronization. In Sec. 6, we develop gradient-descent 

algorithms to efficiently enhance synchronization. We provide a discussion in Sec. 7.

2. Oscillator Models for Phase Synchronization

We define in Sec. 2.1 two related models that exhibit phase synchronization, the nonlinear 

Kuramoto phase-reduction model [25] and the linear heterogeneous Laplacian dynamics 
(HLD). As we showed in [52], the linear HLD approximates the synchronization of 

nonlinear systems in the regime of strong phase synchronization. To quantify the extent of 

phase synchronization of both systems, in Sec. 2.2 we define two order parameters, the 

Kuramoto order parameter r and variance order parameter R, and show that they are 

approximately equal in the strong synchronization regime.

2.1. Oscillator Models

We first define Kuramoto’s model for weakly coupled limit-cycle oscillators.

Definition 2.1 (Kuramoto Phase-Reduction Model [25])—Consider N phase 
oscillators in which θn ∈ [0, 2π) is the phase of oscillator n, ω̂n ∈ ℝ is the natural frequency 
of oscillator n, matrix Ânm encodes the network-coupling of oscillators, and Hnm : (−π, π) 

→ ℝ is an interaction-specific, 2π-periodic coupling function that is differentiable at 0. The 
Kuramoto phase-reduction model [19] is given by the system of first-order nonlinear 
differential equations

(2.1)

Kuramoto derived Eq. (2.1) as a phase-reduction model [19] to describe the synchronization 

of weakly interacting limit cycle oscillators (i.e., the coupling is sufficiently weak so that the 

limit cycles are not destroyed). Often, it is assumed that the oscillator interactions follow an 
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identical functional form, Hnm(θ) = H(θ). Under the choice H(θ) = sin(θ), which represents 

the first-order term of a Fourier expansion for an odd function H(θ), Eq. (2.1) is widely 

referred to simply as the “Kuramoto model,” and it is one of the most paradigmatic 

nonlinear systems for the study of synchronization. It has been used to study, for example, 

the power grid [13, 34, 51], animal movements [32], clapping audiences [62] and many 

more applications [1, 3, 40].

We also study synchronization according to the following linear system.

Definition 2.2 (Heterogeneous Laplacian Dynamics)—Consider N oscillators with 
phases {θn} and natural frequencies {ωn} that are coupled by a network given with 
adjacency matrix A, where Anm encodes the impact of oscillator m on oscillator n. Letting 
Lnm = −Anm + δnm ∑m Anm define the combinatorial Laplacian matrix corresponding to A, 
the system is given for n ∈ {1, …, N} by

(2.2)

which can be written in matrix form by dθ/dt = ω − KLθ.

In previous research [52, 53], we showed in the regime of strong phase synchronization that 

the dynamics of Eq. (2.1) can be approximated by Eq. (2.2). In particular, if one defines ωn 

= ω̂
n + K ∑m ÂnmHnm(0) and , then Eq. (2.2) gives the linearization of 

Eq. (2.1) around the synchronization manifold [52, 53]. For example, phase-locked solutions 

of Eq. (2.2) approximate phase-locked solutions of Eq. (2.1). In addition to providing insight 

into the synchronization of nonlinear systems, we note that Eq. (2.2) has many applications 

itself including consensus algorithms for sensor networks [35, 48, 37], where it is often 

assumed that ωn = ω for each n.

2.2. Quantifying Phase Synchronization

Many notions of synchronization have been studied, each capturing different physical 

characteristics of real-world systems. For identical oscillators (i.e., those in which ω̂
n = ω̂ or 

ωn = ω for every n), one often studies whether the oscillators obtain perfect phase 

synchronization, whereby all phases converge so that limt→∞ |θn(t) − θm(t)| = 0. For 

systems with heterogeneous dynamics, such as when {ωn} or {ωn̂} are non-identical (which 

is typical in real-world scenarios), this notion of synchronization is too restrictive [58]. Here, 

we study states in which the phase oscillators are phase-locked and the oscillators achieve 

strong phase synchronization. That is, for any oscillators n and m the phase difference θn(t) 
− θm(t) is assumed to relax to a small, constant value |θn(t) − θm(t)| ≪ 1. We note that phase 

locking implies perfect frequency synchronization so that dθn/dt = dθm/dt =Ω for any pair of 

nodes n and m, where Ω = N−1 ∑n ωn [55] is the collective frequency for undirected 

networks.

Because phase-locked oscillators need not converge—instead, they cluster around some 

central phase, or a mean field—it is important to measure (quantify) the extent of phase 
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synchronization. To this end, we study two measures of phase synchronization, the 

Kuramoto order parameter, r, and the variance order parameter, R, to be defined below. We 

note that r is the most common for Eq. (2.1); however, for analytical purposes, it is 

advantageous to measure phase synchronization based on R. In principle, either order 

parameter (r or R) can be applied to either system [Eq. (2.1) or Eq. (2.2)], and as we shall 

show, the order parameters are approximately equal in the strong synchronization regime.

Definition 2.3 (Kuramoto Order Parameter [25])—Given a system of coupled 
oscillators with phases {θn} [e.g., Eq. (2.1) or Eq. (2.2)], the Kuramoto order parameter r 
and mean field ψ are found by mapping the phases onto the unit circle and calculating the 
centroid,

(2.3)

where r ≥ 0 and ψ ∈ [0, 2π).

Remark 2.1—By definition, the value r ∈ [0,1]. Importantly, r ≈ 1 indicates strong phase 
synchronization, whereas r ≈ 0 typically indicates weak (or a lack of) phase synchronization. 
See Fig. 1.1(a) and (b) for illustrations of these two cases.

Definition 2.4 (Variance Order Parameter)—Given a system of coupled oscillators 
with phases {θn} [e.g., Eq. (2.1) or Eq. (2.2)], we define

(2.4)

where  is the variance of phases and the mean phase 

 defines a mean field.

Order parameters r and R both limit to unity for perfect synchronization, and “strong 

synchronization” is defined as the regime in which r ≈ R ≈ 1. We now establish that these 

order parameters are approximately equal in this regime through the following bounds.

Proposition 2.5 (Equivalence of Order Parameters)—Assume that the infinite 

sequence  for k ∈ {2, 4, …} monotonically converges to zero so that

(2.5)

where ‖·‖p denotes the p-norm, and
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(2.6)

then Eqs. (2.4) and (2.3) satisfy the following bounds,

(2.7)

Moreover, the difference between the two mean fields, ψ and θ̅, is bounded by

(2.8)

Proof: See Appendix A

As we show in Appendix A, the variance order parameter R captures the leading order term 

of an expansion of r near r = 1, and the upper and lower bounds in Eq. (2.3) come from the 

next terms in the expansion. Both  and  become vanishingly small in the 

strong synchronization regime, implying that r ≈ R is a valid and accurate approximation in 

this regime.

3. The Synchrony Alignment Function (SAF)

We now present a derivation of the SAF, which quantifies the ability for a heterogeneous 

system to synchronize by measuring the alignment of the heterogeneity of the nodal 

dynamics (e.g., oscillators’ natural frequencies) with that of the network (as measured 

through the spectral properties of the Laplacian matrix). In Sec. 3.1, we present the SAF and 

its connection to phase synchronization. In Sec. 3.2, we develop upper and lower bounds on 

the SAF. In Sec. 3.3, we study these bounds for two pedagogical network examples. In Sec. 

3.4, we describe a numerical experiment to highlight the applicability of using SAF for 

optimizing phase synchronization.

3.1. Phase Synchronization and the SAF

A main advantage of order parameter R versus r for HLD systems is that R can be solved 

exactly in terms of the SAF. Herein, we obtain a solution θ* for the phase-locked state of 

HLD systems given by Eq. (2.2). Using this solution, we obtain an analytical expression for 

R, which can be succinctly expressed in terms of the SAF.

We first present a solution to the phase-locked state of HLD systems.

Theorem 3.1 (Phase-locked State of Heterogeneous Laplacian Dynamics [52])
—Consider the Heterogeneous Laplacian Dynamics given by Eq. (2.2), for which we 
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assume L describes a connected, undirected network, and let  denote 
the Moore-Penrose pseudo-inverse [7] of the Laplacian matrix L. Then the equilibrium (i.e., 
phase-locked) solution is given by

(3.1)

and the variance order parameter R is given by

(3.2)

where J(ω, L) is the synchrony alignment function defined below.

Proof: See Appendix B

Definition 3.2 (Synchrony Alignment Function (SAF) for Undirected Networks [52]): Let 
ω denote a vector encoding oscillators’ natural frequencies and consider an undirected 
network with Laplacian L having eigenvalues 0 = λ1 < λ2 ≤ λ3 ≤ ⋯ ≤ λN and 

corresponding eigenvectors {υ(n)}. Let  denote the Moore-Penrose 
pseudo-inverse [7] of L. We define the SAF by

(3.3)

Remark 3.1: Given that the eigenvectors {υ(n)} of L form an orthonormal basis for ℝN and 

that the terms in the summation of Eq. (3.3) are proportional to  , the SAF will be 
smaller (larger) if the frequency vector ω is more strongly aligned with eigenvectors 
corresponding to large (small) eigenvalues.

3.2. Bounding the SAF—Equation (3.2) highlights for HLD systems that R can be solved 

in terms of the SAF, which is advantageous for the optimization of phase synchronization 

through tuning R (which approximates r in the strong synchronization regime). We now 

develop upper and lower bounds on the SAF and use them to solve the optimization 

problems of maximizing and minimizing R for a fixed network and natural frequencies with 

mean ω̅ = ∑n ωn and specified variance .

Proposition 3.3 (Bounding the SAF [52])—Consider the SAF given by Eq. (3.3), 

where the oscillators have natural frequencies with variance  and L denotes the Laplacian 
of an undirected, connected network. The SAF satisfies
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(3.4)

Proof: Recall that the eigenvectors {υ(n)} form an orthonormal basis for ℝN. It follows that 
the frequency vector can be expressed as ω = ∑n αnυ(n) where components αn are given by 

αn = ωT υ(n). After substituting this into Eq. (3.3), we find  . 

Note also that {αn} must satisfy the constraint  . We obtain the left-hand 

inequality by using  for any n. We obtain the right-hand inequality by using 

 for any n.

Corollary 3.4—The maximization and minimization of Eq. (3.3) for fixed L over the space 

of natural frequencies {ω : ω̅ = ∑n ωn and } have the solutions ω = 

ω̅ ± σωυ(2) and ω = ω̅ ± σωυ(N), respectively.

Proof: Substitution of ω = ω̅ ± σωυ(2) into Eq. (3.3) recovers the upper bound, whereas 
substitution of ω = ω̅ ± σωυ(N) into Eq. (3.3) recovers the lower bound.

Corollary 3.5—Considering the system in Eq. (2.2), the maximization and minimization of 
R given by Eq. (2.4) over the space of natural frequencies {ω : ω̅ = ∑n ωn and 

} for fixed L have the solutions ω = ω̅ ± σωυ(N) and ω = ω̅ ± 

σωυ(2), respectively.

Proof: From Eq. (3.2), we can see that R is a linear function of J(ω, L) so that argmaxωR = 

argminωJ(ω, L) and argminωR = argmaxωJ(ω, L).

Remark 3.2—Given the equivalence relation defined in Eq. (2.7), the maximization of R 
approximates the maximization of r, which is expected to be accurate in the regime of strong 
synchronization.

3.3. SAF for Pedagogical Network Examples

To provide intuition toward synchrony optimization with the SAF, in this section we study 

the maximization and minimization of R using the SAF for two pedagogical networks—an 

undirected chain and a star network.

We first consider an undirected chain, which is shown in Fig. 3.1(a),(b) and is a network 

consisting of sequentially linked nodes with end nodes indexed n = 1 and N. The Laplacian 

matrix for a chain takes the form
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(3.5)

and has eigenvalues

(3.6)

and corresponding eigenvectors {υ(n)} with entries

(3.7)

We depict the eigenvectors {υ(n)} for n ≥ 2 in Fig. 3.1(c). It follows that the SAF obtains a 

minimum value

(3.8)

when ω = υ(N) and a maximum value

(3.9)

when ω = υ(2). Recall that the maximization of R corresponds to minimization of the SAF, 

and vice versa.

We next consider the star network shown in Fig. 3.1(c),(d) in which there is a central hub 
node with degree d1 = N − 1 and is connected to leaf nodes of degree dn = 1 for n ≥ 2. The 

network Laplacian matrix is given by

(3.10)
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and has eigenvalues,

(3.11)

The corresponding eigenvectors are given by

(3.12)

and the remaining eigenvectors {υ(n)} form an orthonormal basis for the subspace, ℝN \ 

span{υ(1), υ(N)}. In particular, they must be orthonormal and satisfy  and 

. It follows that SAF obtains a minimum value

(3.13)

when ω = υ(N) and a maximum value

(3.14)

when ω = υ(2).

In Fig. 3.1, we illustrate (a)–(c) the chain network with N = 9 nodes and (d)–(e) star network 

with N = 13 nodes. We indicate the natural frequency vector ω by node color, and we choose 

ω to either (a),(d) maximize R by setting ω = υ(N)—thereby maximizing phase 

synchronization—or (b),(e) minimize R by setting ω = υ(2). In panel (c), we plot the 

eigenvectors {υ(n)} for the chain network given by Eq. (3.7), and we point out that 

expanding ω onto the basis {υ(n)} for a chain is equivalent to a discrete cosine transform. In 

general, υ(N) and υ(2) can be respectively construed as high- and low-frequency eigenvectors 

due to their oscillatory behavior. We point out that high-frequency eigenvectors are also well 

known to be prone to localization onto nodes with large degree (c.f. pg. 24 of [61]), and this 

phenomenon can be observed to occur for the hub in the star network [e.g., see Fig. 3.1(d) 

and Eq. (3.12)]. Because synchronization is enhanced by aligning ω with the high-frequency 

vector υ(N), properties of υ(N) reveal intuitive properties that enhance synchronization. In 

particular, synchronization is enhanced by implementing negative correlation between the 
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frequencies of neighboring nodes [e.g., see Fig. 3.1(a)], as well as by a positive correlation 

between |ωm| and node degree, dm [e.g., see Fig. 3.1(d)]. We note that these two types of 

correlations were previously studied for synchrony optimization for random networks [52, 

53].

3.4. Numerical Experiment: Effectiveness of Heterogeneity Alignment

The analysis presented in Sec. 3 has been developed for the strong synchronization regime in 

which r ≈ R ≈ 1. Importantly, as we showed in [52], the SAF provides a theoretical 

framework to optimize phase synchronization of systems with diverse properties, including a 

wide range of values for the coupling strength K. That is, by optimizing a system for the r ≈ 
R ≈ 1 regime, one inherently widens the parameter space in which the r ≈ R ≈ 1 

approximation is valid. Moreover, we illustrated the effectiveness of this approach with 

networks having diverse properties including networks that are both small and large as well 

as both heterogeneous and homogeneous. In fact, the only assumption is that the network 

must be connected (see [53] for a generalization of the SAF for directed networks).

We briefly support this approach with a numerical experiment in which we simulated Eq. 

(2.1) with H(θ) = sin(θ) for an undirected, random network with N = 500 nodes and mean 

degree 4, which we generated using the Erdős-Rényi model [14]. We enforced it to be 

connected by requiring that the nodes have minimum degree dmin = 2. For this network, we 

simulated oscillators with natural frequencies ω given by either (a) υ(N), the eigenvector that 

corresponds to the largest eigenvalue λN, or (b) υ(2), the eigenvector (i.e., Fiedler vector 

[16]) that corresponds to the smallest nonzero eigenvalue λ2. As shown in [52] and 

Corollary 3.5, these choices maximize and minimize R, respectively. We present results for 

this experiment in Fig. 1.1, where panels (a) and (b) depict phase-locked states at K = 0.8 for 

these two choices of natural frequencies. In panel (c), we depict r-versus-K synchronization 

profiles for these two systems.

4. Perturbation Analysis of the SAF

In this section, we develop a perturbation analysis for how the SAF [see Eq. (3.3)] is 

affected by structural network modifications. This analysis is built upon classical matrix 

perturbation theory. In Sec. 4.1, we present classical results for the perturbation of simple 

eigenvalues and eigenvectors of a symmetric matrix. In Sec. 4.2, we analyze general 

perturbations in which the Laplacian matrix L undergoes a symmetric perturbation. In Sec. 

4.3, we study the addition and removal of edges. In Sec. 4.4, we support the accuracy of the 

first-order approximation with a numerical experiment.

4.1. Classical Spectral Perturbation Results [4]

We begin by presenting a well-known result that describes the first-order perturbation of 

eigenvalues and eigenvectors of a symmetric matrix L.

Theorem 4.1 (Perturbation of Simple Eigenvalues and their Eigenvectors [4])—
Let L be a symmetric matrix with simple eigenvalues {λn} and normalized eigenvectors 
{υ(n)}. Consider a fixed symmetric perturbation matrix ΔL, and let L(ε) = L + εΔL. Denote 
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the eigenvalues and eigenvectors of L(ε) by λn(ε) and υ(n)(ε), respectively, for n = 1, 2, …, 

N. It follows that

(4.1)

and the derivatives with respect to ε at ε = 0 are given by

(4.2)

Proof: See [4].

Remark 4.1—Note for n = 1 that λ1(ε) = 0 and υ(1)(ε) = N−1/21 for any ε since the 
perturbation ΔL has the same null space as L, which is span(1).

Due to continuity, the approximations in Eq. (4.1) are accurate when the perturbations are 

small. However, the regime for which such approximation is valid (i.e., how small ε needs to 

be) generally depends on L, ε, and the perturbation matrix ΔL.

4.2. General Network Perturbations

We now present a first-order expansion of the SAF that is analogous to the expansions given 

by Eq. (4.1).

Theorem 4.2 (Perturbation of the SAF under a Network Modification)—Let J(ω, 

L) denote the SAF given by Eq. (3.3) for natural frequencies ω and symmetric network 
Laplacian L, and let J(ω, L(ε)) denote the SAF for the network after it undergoes a 
symmetric modification εΔL. Assume the eigenvalues of L and L(ε) = L + εΔL are simple, 
and that the original and perturbed networks are both connected. Then the first-order 
expansion in ε for the perturbed SAF is given by

(4.3)

where
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(4.4)

Proof: See Appendix C.

Remark 4.2—Due to continuity, Eq. (4.3) is accurate when the perturbation is small, i.e., |
ΔJ| ≪ J. Because Eq. (4.3) relies on Eq. (4.1), one heuristic to ensure accuracy is that we 
require Eq. (4.1) to be accurate for every eigenvalue, which is expected when ε(υ(n))T 

ΔLυ(n)/λn ≪ 1 for every n = 2, 3, …, N. (Recall that λ1 is always zero.) This suggests ε/λ2 

≪ 1, and we provide numerical support for this heuristic in Sec. 4.4. However, we conjecture 
that this heuristic may be too strong (i.e., sufficient but not necessary). We consider ε/λ̄ ≪ 1 

to be a reasonable heuristic in many situations, where λ̄ = N−1∑n λn.

Remark 4.3—The computation of Eq. (4.3) requires (MN + N2) multiplications, where M 
is the number of nonzero entries in ΔL. In contrast, direct computation of the new SAF 
requires solving N − 1 eigenvalues and eigenvectors, which typically involves (N3) 

multiplications in practice, and computing Eq. (3.3) involves (N2) multiplications. 
Therefore, for large networks and sparse ΔL (i.e., M ≪ (N2)), the perturbation result is 
much more efficient to compute, and in particular, it is (N2) versus (N3).

4.3. Edge Additions and Removals

Equation (4.3) gives a first-order approximation to the change in the SAF due to any 

symmetric perturbation εΔL of the Laplacian L. We now provide a more specific result for 

the addition and removal of undirected, unweighted edges.

Corollary 4.3 (Perturbation of the SAF under Edge Modifications)—Consider the 
SAF given by Eq. (3.3) and the perturbation of undirected edge (p, q) (e.g., Apq ↦ Apq ± ε 
and Apq ↦ Apq ± ε) and define

(4.5)

then Eq. (4.3) has the simplified form

(4.6)

where + and − correspond to edge addition and subtraction, respectively.

Proof: See Appendix D.
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Corollary 4.4 (Perturbation of the SAF under Subgraph Rewiring)—Consider the 
SAF given by Eq. (3.3) and a network in which a set of edges ℰ(+) ⊆ {1, …, N} × {1, …, N} 

are added and a set of edges ℰ(−) ⊆ {1, …, N} × {1, …, N} are removed, then Eq. (4.3) has 
the simplified form

(4.7)

Proof: See Appendix E

4.4. Numerical Experiment: Validation of the First-Order Approximation

We now present a numerical experiment to illustrate the accuracy of Eq. (4.3) and Eq. (4.6) 

by comparing predicted and observed values of the SAF upon edge additions. In particular, 

we considered a system given by Eq. (2.2) in which the natural frequencies {ωn} were 

randomly drawn from a normal distribution, and we constructed undirected, scale-free 

networks using the configuration model [6]. We generated networks with degrees {di} 

following the distribution P(d) ∝ d−γ with γ = 2.5, and either (a) N = 100 and dmin = 5 or (b) 

N = 250 and dmin = 25. We considered single-edge additions for each system, and for each 

new edge (p, q), we compared the observed change to the SAF, ΔJ = J(ω, L(ε)) − J(ω, L), 

and the first-order approximation Qpq given by Eqs. (4.5) and (4.6).

We plot these results in Fig. 4.1, and we describe the perturbation size in terms of the ratio 

ε/λ2 (see Remark 4.2). In panels (a) and (b), we plot predicted versus true values of ΔJ for 

various values of ε for two scale-free networks. Results indicate 50 randomly selected edge 

additions. In panel (c), we plot the mean approximation error—that is, the mean fractional 

error, |εQpq − ΔJ|/|ΔJ|, across 50 edge additions—as a function of ε/λ2, for several networks 

of different size and minimum degree. The arrows indicate the approximation error when ε 
= 1 (i.e., the addition of an undirected edge). Our first observation is that the approximation 

error vanishes with growing network size and density (i.e., increasing dmin). For example, 

the mean error is approximately 2% for the network with N = 500 and dmin = 50, whereas it 

is approximately 40% for the network with N = 100 and dmin = 5. Our second observation is 

that even when the mean approximation error is somewhat large (e.g., 40%), Eq. (4.5) still 

captures the correct magnitude of the perturbation of J, and this is significant because ΔJ can 

vary by several orders of magnitude for the different edge perturbations [see panels (a) and 

(b)].

5. Ranking Edges via Perturbation to the SAF

In this section, we use our perturbation analysis as a centrality measure [61] to rank the 

edges and potential edges according to their importance to the SAF. This ranking is akin to 

other rankings that are specific to a particular class of dynamics, including PageRank (which 

is important to random walks [18] and collective behavior [55]) and dynamical importance 

[43] (which is important to dynamics ranging from epidemic spreading to synchronization). 

For the ranking that we introduce here, the top-ranked edge is the one that yields the 

minimal SAF, and therefore maximal R upon its removal. Similarly, the top-ranked potential 
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edge is one that yields the minimal SAF, and therefore maximal R upon its addition. 

Importantly, this approach takes takes into account both the structure and dynamics of the 

system—that is, both the particular network structure and the oscillators’ heterogeneous 

natural frequencies.

This section is organized as follows: In Sec. 5.1, we rank the edges according to their 

importance to the SAF (and thus phase synchronization). In Sec. 5.2, we define a class of 

optimization problem that maximizes phase synchronization with edge modifications. In 

Sec. 5.3, we identify the top-ranked potential edges that can be added to the pedagogical 

chain network.

5.1. Ranking Edges According to the SAF

We first introduce some notation. Let G( , ℰ) define a network with a set of nodes  = {1, 

…, N} and a set of undirected edges, ℰ ⊆  × . We disallow self-edges so that {(n, n)} ∩ 
ℰ = ∅. For a given set of edges ℰ, we define a set of complementary edges (i.e., potential 

edges) ℰ =  ×  \ (ℰ ∪ {(n, n)}). The sets ℰ and ℰ define the edges that can 

potentially be removed and added, respectively.

We now introduce the rankings.

Definition 5.1 (SAF-Induced Ranking of Edges)—Given a connected network G = 

( , ℰ) with symmetric Laplacian matrix L and a frequency vector ω, we rank each edge (p, 
q) ∈ ℰ according to the first-order approximation for the perturbation of the SAF that is 
induced by its removal, ΔJ ≈ −Qpq. Specifically, we define

(5.1)

so that X(p, q) ∈ {1, …, |ℰ|} defines the rank of each edge (p, q) ∈ ℰ.

Definition 5.2 (SAF-Induced Ranking of Potential Edges)—Given a connected 
network G = ( , ℰ) with symmetric Laplacian matrix L and a frequency vector ω, we rank 
each potential edge (i, j) ∈ ℰ according to the first-order approximation for the 
perturbation of the SAF that is induced by its addition, ΔJ ≈ Qpq. We define

(5.2)

so that Y (p, q) ∈ {1, …, | ℰ|} defines the rank of each potential edge (p, q) ∈ ℰ.

We note that it is generally possible for more than one edge correspond to a given value 

Qnm, and in this situation the rankings {X(n, m)} of edges ℰ and {Y (n, m)} of potential 

edges ℰ can lead to ties. That is, multiple edges will have an identical rank, and the next-

ranked edge will have a rank that takes into account the number of edges that are tied. For 

some applications (e.g., the algorithms we develop in the following section), it can be 
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necessary that there are no ties, and in this case we break the tie by randomly assigning an 

appropriate rank to the edges that correspond to an identical Qnm value.

5.2. Optimizing Phase Synchrony with Edge Modifications

We will use the rankings {X(n, m)} and ℰ and {Y (n, m)} to efficiently solve the following 

optimization problem.

Definition 5.3 (Maximal Phase Synchrony with Edge Modifications)—Let R(ω, 

L) denote the variance order parameter given by Eq. (3.2) of the phase locked solution of Eq. 

(2.2) for natural frequencies ω and network Laplacian L. Through the removal of T(−) edges 
and the addition of T(+) new edges, we wish to solve

(5.3)

where

(5.4)

is the ensemble of appropriate perturbations to the Laplacian L that can be obtained by 
removing T(−) edges, ℰ(−) ⊆ ℰ, and adding T(+) new edges, ℰ(+) ⊆ ℰ, and

(5.5)

gives the change in L due to the addition of an edge (p, q).

Because R can be solved in terms of the SAF for HLD system [see Eq. (3.2)], Eq. (5.3) is 

equivalent to

(5.6)

Both Eq. (5.3) and Eq. (5.6) can be solved with an exhaustive search if N, T(−) and T(+) are 

very small. However, this approach is infeasible for practical situations in which the network 

is large or more than a few edges are modified, and one must instead search for approximate 

solutions that can be computed efficiently.

5.3. SAF-Based Edge Ranking for Chain Network

Before continuing, we present a numerical experiment to highlight that the rankings 

introduced in Sec. 5.1 take into account both the network structure and oscillator dynamics 
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(i.e., their natural frequencies {ωn}). That is, depending on the particular system it is 

possible for the rankings to be dominated by either the network structure or natural 

frequencies. We illustrate this phenomenon by studying the ranking of potential new edges 

for the chain network that was described in Sec. 3.3 as a pedagogical network for the SAF. 

In this study, we computed Qpq for all possible edge additions (p, q) ∈ ℰ for two choices 

of natural frequencies: (a) {ωn} are drawn independently from a normal distribution with 

unit variance, and (b) {ωn} are identical to those in (a) except we define ω5 = 10 for 

oscillator n = 5. The motivation for setting ω5 = 10 is that this oscillator becomes an outlier 
in that its natural frequency is much larger than any other oscillator (i.e., its magnitude is 10 

times larger than the standard deviation of the other oscillators).

In Fig. 5.1(a) and 5.1(a), we depict the values {Qpq} for these two choices for ω. In panels 

(c) and (d), respectively, we indicate by dashed curves the edges that correspond to the five 

top-ranked potential edges, Y (p, q) ∈ {1, …, 5} given by Eq. (5.2), for the Qpq values 

shown in panels (a) and (b). Note in panel (c) that the top-ranked potential edges connect 

together the ends of chain, which significantly changes the topology of the network and can 

be measured, for example, via the network diameter (which decreases from 8 to 4). In 

contrast, in the presence of the outlier oscillator, node n = 5, the top-rank edges connect to 

the outlier or its neighbors to mitigate its disruptive effect on synchronization. In the 

following section, we present formal algorithms that use the rankings of edges and potential 

edges to solve the optimization problem defined in Sec. 5.2.

Algorithm 6.1

Rank-Based Modifications without Updating

Require: Network with edges ℰ, potential edges ℰ, natural frequency vector ω,
    and numbers of edge additions, T(+), and removals, T(−)

Ensure: Set of edges to be added, ℰ(+), and removed, ℰ(−)

  1: Rank edges ℰ and potential edges ℰ according to Eqs. (5.1) and (5.2)

  2: Define ℰ(+) as the top-ranked edges, ℰ(+) = {(p, q) : Xpq ≥ |ℰ| − T(+)}

  3: Define ℰ(−) as the lowest-ranked edges, ℰ(−) = {(p, q) : Ypq ≤ T(−)}

6. Gradient-Descent Algorithms for Synchrony Optimization

In [52], we developed accept/reject (i.e., Monte Carlo) rewiring algorithms to approximately 

minimize the SAF—thereby maximizing phase synchronization. That is, we developed a 

process in which we iteratively propose an edge rewire (which we selected uniformly at 

random), compute the new SAF after the rewire, and then accept or reject the proposed 

rewiring based on whether or not the SAF decreases. Although we showed that this approach 

is effective for optimizing the synchronization properties of several types of networks, it is 

important to develop more efficient algorithms to address practical applications. We now 

leverage the results of Secs. 4 and 5 to develop gradient-descent algorithms that efficiently 

identify network modifications that optimally enhance phase synchronization.

This section is organized as follows: In Sec. 6.1, we develop gradient-descent algorithms 

based on the rankings to efficiently solve these optimization problems. In Sec. 6.2, we 
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support these results with numerical experiments. In Sec. 6.3, we provide an extended study 

of synchrony optimization under non-ideal scenarios.

6.1. Gradient-Descent Algorithms

We now describe two algorithms that can be used to approximately solve the class of 

optimization problem defined in Sec. 5.2. The first algorithm is formally presented in 

Algorithm 6.1, which we now describe. It consists of two steps. First, we remove the T(−) 

edges that have lowest rank, ℰ(−) = {(n, m) ∈ ℰ : X(n, m) ≥ |ℰ| − T(−)}. Next, we add the 

T(+) potential edges that have highest rank, ℰ(+) = {(n, m) ∈ ℰ : Y (n, m) ≤ T(+)}. To 

implement this algorithm, we assume there are no tied rankings so that X(n, m) ≠ X(p, q) 

and Y (n, m) ≠ Y (p, q) whenever (n, m) ≠ (p, q).

We note that Algorithm 6.1 is a 1-step gradient descent algorithm since the gradient of the 

SAF (i.e., its first-order approximation) due to the subgraph rewiring is given by Eq. (4.7). 

In particular, the selections of edges ℰ(+) and ℰ(−) according to Algorithm 6.1 correspond to 

the direction of the largest gradient. Also, due to Eq. (3.2), the gradient of the SAF equals 

the negative gradient of R for the phase-locked state of the system given by Eq. (2.2). 

However, we also note that Eq. (4.7) is an approximation to the actual change ΔJ that will 

occur to the SAF, and therefore Algorithm 6.1 only approximately solves the class of 

optimization problem given by Eq. (5.3). In fact, the solution error grows with the error of 

the first-order approximation (see Remark 4.2). Importantly, the accuracy of Eq. (4.7) 

decreases with increasing number of edge manipulations, |ℰ(−)| + |ℰ(+)|, and therefore we 

expect the performance of Algorithm 6.1 to become worse as this number increases. To 

obtain better approximate solutions to the optimization problem given by Eq. (5.3) with 

large T(−) or T(+), we now introduce a second algorithm.

Algorithm 6.2

Rank-Based Modifications with Updating

Require: Network with edges ℰ, potential edges ℰ, natural frequency vector ω,
    and numbers of edge additions, T(+), and removals, T(−)

Ensure: Set of edges to be added, ℰ(+), and removed, ℰ(−)

  1: Initialize sets of edges, ℰ̂ = ℰ, and potential edges, 𝒫̂ℰ = ℰ

  2: Initialize the sets of edges to be added, ℰ(+) = ∅, and removed, ℰ(−) = ∅

  3: for t ∈ {1, …, max(T(−), T(+))} do

  4:   if t ≤ T(−) then

  5:     Identify lowest-ranked edge (p*, q*) ∈ ℰ̂ such that Xpq = |ℰ̂|

  6:     Add lowest-ranked edge to removal set, ℰ(−) = ℰ(−) ∪ {(p*, q*)}

  7:     Update the set of edges ℰ̂ = ℰ̂ \ {(p*, q*)}

  8:   end if

  9:   if t ≤ T(+) then

10:     Identify top-ranked potential edge (p*, q*) ∈ 𝒫̂ℰ such that Ypq = 1

11:     Add top-ranked potential edge to addition set, ℰ(+) = ℰ(+) ∪ {(p*, q*)}

12:     Update the set of potential edges 𝒫̂ℰ = 𝒫̂ℰ \ {(p*, q*)}

13:   end if
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14: end for

We present in Algorithm 6.2 another algorithm that utilities the rankings of edges and 

potential edges according to the SAF. The main difference from Algorithm 6.1 is that in 

Algorithm 6.2, the edge modifications are made sequentially rather than simultaneously. 

That is, after each edge modification, the eigenvalues and eigenvectors of the resulting 

network Laplacian matrix are computed. In this way, it is a multi-step gradient-descent 

algorithm. In particular, we first remove the lowest-ranked edge and add the top-ranked 

potential edge. Then we compute the new rankings after the edge rewire. Next, according to 

these new rankings, we again remove the lowest-ranked edge, add the top-ranked potential 

edge, and compute the new rankings. We repeat this process until T(−) edges are removed 

and T(+) edges are added.

The main benefit of Algorithm 6.2 is that the error of the first-order approximation for 

subgraph rewiring [see Eq. (4.7)] remains small by keeping the perturbations small (i.e., 

only one rewire is made at a time). We note that it is also possible to update the rankings 

between the step of edge removal and edge addition to make the perturbations even smaller, 

but we do not explore this option. We find that Algorithm 6.2 yields improved approximate 

solutions for the optimization problem given by Eq.(5.3); however, it does so at an increased 

computational cost. In particular, whereas the matrix {Qpq} is calculated only once for 

Algorithm 6.1, it must be recalculated after each of the rewires for Algorithm 6.2. For some 

applications, we expect that will be beneficial to modify Algorithm 6.2 so that the matrix 

{Qpq} is updated after a few (and not every) rewire, and we leave this direction open for 

future work. Moreover, Algorithm 6.2 implements a 1-to-1 modification strategy in which 

we remove an edge, add an edge, and repeat; however, one could also explore different 

strategies for the ordering in which edges are removed and added (e.g., one could first 

removal all edges ℰ(−) and then add the new edges ℰ(+), or vice versa). Therefore, although 

we focus on two algorithms, we stress that the results presented in Secs. 3 and 4 provide a 

mathematical foundation that can serve as a starting point for developing even further 

optimization algorithms for phase synchronization in oscillator networks.

6.2. Numerical Experiment: Enhancing Phase Synchronization with Edge Modifications

We now support Algorithms 6.1 and 6.2 with numerical experiments. We constructed an 

initial system given by Eq. (2.2) with natural frequencies {ωn} drawn from a normal 

distribution, and we randomly assigned them to nodes in a scale-free network with N = 50 

nodes, exponent γ = 2.5, and minimum degree dmin = 10, which we constructed using the 

configuration model [6]. We conducted three experiments for the class of optimization 

problem defined by Eq. (5.3):

a. We studied the effect of edge additions and no edge removals by setting 

T(−) = 0 and considering various T(+).

b. We studied the effect of edge removals and no edge additions by setting 

T(+) = 0 and considering various T(−).

Taylor et al. Page 19

SIAM J Appl Math. Author manuscript; available in PMC 2017 October 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



c. We studied the effect of rewiring T edges by setting T(−) = T(+) = T and 

considering various T.

In Fig. 6.1(a), (b) and (c), we plot the linear order parameter R given by Eq. (3.2) versus 

T(+), T(−) and T for the solutions that were obtained by Algorithms 6.1 and 6.2 for these 

respective optimization problems. Note that Algorithm 6.2 provides better solutions than 

Algorithm 6.1; however, Algorithm 6.1 performs nearly as good when the number of 

modifications is small. Interestingly, we find that depending on the edge choice, both edge 

addition and removal can possibly increase or decrease R. By comparing panel (b) to (a), 

however, one can observe for this experiment that edge addition is much more effective than 

edge removal for the increase of R. Therefore, the enhanced synchronization that can be 

observed in panel (c) is mostly due to the edges that were added rather than the edges that 

were removed.

To gauge the effectiveness of Algorithms 6.1 and 6.2 for enhancing phase synchronization, 

we compare them to two other strategies for modifying a network. First, we define the 

“Random” strategy to indicate the situation in which the appropriate number of edges are 

removed and/or added uniformly at random. Second, we define “Strategy λ2” to indicate the 

selection of edges so as to maximize the eigenvalue λ2 per step, which is often referred to as 

the network's algebraic connectivity [16]. The motivation for comparing to this approach is 

that λ2 is often tuned to control the synchronization of network-coupled dynamical systems 

with identical oscillators [5, 50, 27, 31, 34]. To efficiently implement Strategy λ2, we use 

the first-order approximation for the perturbation of λ2 due to a network modification as 

given by Eq. (4.2) with n = 2 and ΔL = ΔL(pq) given by Eq. (5.5). Note that Algorithms 6.1 

and 6.2 both significantly outperform these baseline strategies, which do not take into 

account the heterogeneous dynamics (i.e., natural frequencies {ωn}) of the network-coupled 

dynamical system.

6.3. Numerical Experiment: Optimization in Non-Ideal Scenarios

Before concluding, we present an extended investigation in which we study the performance 

of Algorithm 6.2 in the following non-ideal situations:

a. when a fraction of the nodes are unavailable in that their edges cannot be 

perturbed.

b. when there is misinformation about the edges that are present in the 

network;

c. when there is misinformation about the natural frequencies.

We present results for these respective experiments in Figs. 6.2(a), (b) and (c). Unless 

otherwise specified, the natural frequencies are drawn from a normal distribution with unit 

variance, K = 0.02, and the network contains N = 50 nodes and is constructed by the 

configuration model [6] with node degrees generated according to a power-law distribution 

with γ = 2.5, dmin = 10.

In the first study, we investigated a constrained optimization problem in which new edges 

can only be added to a subset of the nodes—that is, a fraction of the nodes are unavailable 
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for modification. In particular, we select uniformly at random a set of nodes and remove all 

edges adjacency to them from the set of potential edges ℰ. We then modify the 

optimization problem in Sec. 5.2 and algorithms of Sec. 6.1 based on this reduced set of 

potential edges. In Fig. 6.2(a), we plot the dependence of R given by Eq. (3.2) after adding 

edges according to Algorithm 6.2 as a function of the fraction of nodes that are unavailable 

for modification. Note that phase synchronization can be effectively optimized even when a 

significant fraction of nodes are unavailable to receive new edges.

In the second study, we investigated the effect of misinformation about the network on the 

performance of synchrony optimization. That is, rather than implementing Algorithm 6.2 

using the true network, we used a misinformed network in which a fraction of the edges 

have been rewired so that there is some discrepancy between the actual network Laplacian L 
and the one used in the gradient descent algorithm. To construct a misinformed network, we 

implemented an edge rewiring process in which we iteratively removed an edge and created 

a new edge uniformly at random from the potential edges. In Fig. 6.2(b), we plot the 

dependence of R given by Eq. (3.2) after adding edges according to Algorithm 6.2 as a 

function of the fraction of edges that are rewired. Note that because matrix spectra are 

relatively robust to perturbations when the eigenvalues are well-spaced [12], we observe that 

phase synchrony can still be significantly enhanced even with considerable misinformation 

about the network structure.

Finally, in the third study we investigated the effect on algorithm performance when there is 

misinformation about the natural frequencies. That is, rather than implement Algorithm 6.2 

using the true natural frequencies, we added to the frequencies {ωn} Gaussian noise with 

variance η2. In Fig. 6.2(c), we plot the effect on R for edge additions via Algorithm 6.2 as a 

function of η2. Note that the algorithm performs well provided that η2 is smaller than the 

variance of the natural frequencies, which are normally distributed with unit variance, .

7. Discussion

Complex systems exhibiting synchronization are widespread, and for many systems—

ranging from the biological rhythms [66] that govern activity in our brains, hearts and other 

vital organs, to macroscopic systems such as power grids—it is essential that a precise 

amount of synchronization be present in order to retain proper functionality. For example, a 

lack of synchronization is a well-known to drive black-outs in power grids [31, 34, 51, 50, 

5], and many neurological tremors are linked to excessive synchronization between neurons 

[49, 65].

Here, we explored how to tune and control phase synchronization for network-coupled 

dynamical systems using network modifications such as adding and/or removing edges. Our 

analysis is based on recent research [52] in which we developed a synchrony alignment 

function (SAF) to measure the interplay between oscillators' heterogeneous natural 

frequencies and the structural heterogeneity of the network. The SAF is an objective 

measure for the ability for synchronization to occur for a system with heterogeneous 

dynamics (e.g., nonidentical natural frequencies {ωn}). Its optimization offers a 

mathematical framework to design synchrony-optimized systems. Importantly, this approach 
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take into account the actual heterogeneity of the node's dynamics and is complementary to 

previous research that either lacks or neglects this type of heterogeneity [21, 20, 33].

In this research1, we provided the SAF with a more rigorous footing and conducted a 

spectral perturbation analysis. We derived a first-order expansion that allowed us to 

approximate how the SAF is effected by network modifications, and this approach is much 

more computationally efficient than directly recomputing the SAF for the modified system. 

Specifically, when only a few edges are modified then the approximation is (N2) versus 

(N3) for recomputing the SAF, where N is the number of oscillators. By focusing on the 

addition and removal of edges, we obtained a ranking for the edges (and potential edges) 

that orders them according to their importance to the SAF and therefore, phase 

synchronization. Importantly, these rankings take into account both the network structure 

and the heterogeneous oscillator dynamics. Relying on these rankings, we developed 

gradient-descent algorithms to efficiently minimize the SAF, which simultaneously 

maximizes a linear order parameter R that approximates the Kuramoto order parameter r. 
These results complement previous work [52] where we designed synchrony optimized 

networks using accept/reject (i.e., Monte Carlo) algorithms. Importantly, here we study a 

different optimization problem: maximizing phase synchronization using a specified number 

of edge additions and removals. We showed with numerical experiments (see Fig. 6.1) that 

these algorithms significantly outperform other baseline strategies, such as random rewiring 

or tuning the algebraic connectivity λ2, which are naive in that they neglect the 

heterogeneity of oscillator dynamics (i.e., the natural frequencies {ωn}).

The theory that we developed here allows us to decide, quantitatively, the extent to which a 

particular set of connections promote or inhibit phase synchronization and can be used to 

control, engineer and optimize the synchronization properties of complex systems. Our work 

also provides a mathematical framework with which further optimization techniques can be 

developed and applied to oscillator networks. It would be interesting to combine the 

synchrony alignment framework with more advanced optimization techniques such as 

simulated annealing [24] and convex optimization [8]. In particular, (by design) gradient-

descent algorithms find local optima, not global optima. As previously explored for the 

optimization of identical oscillators [20], this shortcoming can likely be overcome using, for 

example, simulated annealing. It would also be interesting to explore the utility of the SAF 

for optimizing other aspects of synchronization such as the critical coupling strength at 

which the phase-locked state appears/disappears, which relates to the quantity 

 [13]. Synchrony optimization via the SAF minimizes the variance of 

steady-state phases, and we are currently exploring its utility for tuning the maximum 

difference. Finally, it is worth pointing out the rich set of open problems that remain to be 

tackled, including the dependence of the SAF on various network properties such as the 

scaling with N and mean degree, degree correlations, clustering, community structure, and 

so on.

1Note that we have made available several Matlab scripts and a demo to accompany this research at https://github.com/taylordr/
SAF_optimization.
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Appendix A. Proof to Proposition 2.5

Proof

We begin with the upper bound. We will first obtain a relation between  and 

. We find

(A.1)

Here, the last line uses that the second term vanishes since 〈θ − θ̄1, 1〉 = 0. It follows that

(A.2)

Next, we note that the Kuramoto order parameter is equivalent to the system of equations,

(A.3)

We Taylor expand the cosine functions in Eq. (A.3) around 0, isolate the first two terms, and 

use Eq. (A.1) to obtain
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(A.4)

Given that the terms in the summation oscillate in sign, our assumption of monotone 

convergence implies that the summation is upper bounded by the first term, 

. Combining this bound with Eq. (A.2) recovers the upper bound in Eq. 

(2.7). We next prove the lower bound. Monotone convergence also implies that the 

summation is positive, which gives the lower bound

(A.5)

To bound the difference between the mean fields, ψ and θ̄, we Taylor expand the sine 

functions in Eq. (A.3), isolate the first term, and rearrange to obtain

(A.6)

Note that terms in the summation oscillate in sign so that terms k = 1, 3, … have the same 

sign as θ̄ − ψ. Under our assumption of monotone convergence, the magnitude of the 

summation is bounded by the magnitude of the first term. We neglect the remaining terms 

and take the absolute value of both sides to obtain Eq. (2.8).

Appendix B. Proof to Theorem 3.1

Proof

In the state of phase-locked synchronization, dθn/dt = Ω for every oscillator so that Eq. (2.2) 

becomes

(B.1)

The Moore-Penrose inverse  is defined so that L†L†L = L and 

L†LL† = L†. Recall that the eigenvectors {υ(n)} of L define an orthonormal basis, and our 

assumption of a connected undirected network implies 0 = λ1 < λ2 ⋯ ≤ λN. We multiply 

both sides by K−1L† to obtain a general solution of the form
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(B.2)

where υ(1) = N−1/21 is the eigenvector corresponding to the trivial eigenvalue λ1 = 0 and c ∈ 
ℝ is a constant that accounts for the projection of θ* onto the nullspace, null(L†) = null(L) = 

span(υ(1)). Because 1 ∈ null(L†), L†(Ω1) = 0 and the second term vanishes. To solve for c, 

we multiply both sides of Eq. (B.2) by N−11T to obtain c = N1/2θ̄ (i.e., cυ(1) = θ̄1). To 

complete the proof, we use Eq. (3.1) to obtain

(B.3)

Appendix C. Proof to Theorem 4.2

Proof

We define

(C.1)

where fn(ε) = [ωT υ(n)(ε)]2 and , and we seek a solution of the form

(C.2)

Here, we use F′(ε) to denote the derivative with respect to ε, . Using the quotient 

rule, we find

(C.3)

where  and . Evaluation of this 

expression at ε = 0 yields

(C.4)
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where we have dropped the argument ε when ε = 0 to simplify our presentation. Recall that 

 and  are well-known perturbation 

results given in Eq. (4.2). We substitute these results into Eq. (C.4) and combine terms to 

obtain

(C.5)

Appendix D. Proof to Corollary 4.3

Proof

We first note that ε = 1 for the modification of an unweighted edge. Given a Laplacian 

matrix L, the new Laplacian matrix after adding or removing an undirected edge (p, q) has 

the form L′ = L + ΔL(pq) or L′ = L − ΔL(pq), respectively, where  is given by Eq. 

(5.5) Using Eq. (5.5), it is straightforward to show

(D.1)

We substitute this result into Eq. (4.3) to complete the proof.

Appendix E. Proof to Corollary 4.4

Proof

Due to linearity, it follows that

(E.1)

Thus

(E.2)

We substitute this result into Eq. (4.3) and simplify to recover Eq. (4.7).
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Fig. 1.1. 
Phase synchronization depends crucially on the alignment of heterogeneous oscillator 

dynamics (i.e., as indicated by their natural frequencies {ωn}) with the heterogeneity of the 

network structure (which is manifest in the eigenvalues and eigenvectors of the network 

Laplacian matrix L). (a), (b) Phase-locked oscillators {θn} (shown here embedded on the 

unit circle) for states of strong (r ≈ 1) and weak (r ≈ 0) phase synchronization, respectively. 

Here, r is the Kuramoto order parameter given by Eq. (2.3). These simulations reect phase 

synchronization of the Kuramoto model [Eq. (2.1) and H(θ) = sin(θ)] with coupling strength 

K = 0.8 and network coupling given by the Erdős-Rényi (ER) model [14] with N = 500 

nodes, mean degree 4, and minimum degree of dmin = 2. The only difference between the 

systems studied in panels (a) and (b) is how the natural frequencies align with the network 

structure; panels (a) and (b) correspond to maximizing and minimizing phase 

synchronization, respectively (in the notation introduced in Sec. 3.1, these correspond to 

 and  respectively, where υ(m) is the eigenvector corresponding to the m-th 

smallest eigenvalue of the network Laplacian). (c) Dependence of r on K for these two 

systems. The vertical dashed line indicates the value of K used to produce panels (a) and (b). 

See Sec. 3.4 for further discussion of the simulation.
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Fig. 3.1. 
Pedagogical network examples including (a)–(c) a chain network with N = 9 nodes and (d)–

(e) a star network with N = 13. The nodes’ colors indicate the optimal natural frequency ωm 

for each node m that either maximizes R (i.e., ω = υ(N)), which is shown in panels (a) and 

(d), or minimizes R (i.e., ω = υ(2)), which is shown in panels (b) and (e). Panel (c) depicts 

the eigenvectors {υ(n)} for the chain.
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Fig. 4.1. 
Approximation accuracy of Eq. (4.6) for the addition of 50 randomly selected edges. (a),(b) 

Scatter plots of the first-order prediction Qpq versus actual change ΔJ to SAF after we add an 

edge to scale-free networks, which we constructed using the configuration model [6] with 

exponent γ = 2.5 and either (a) N = 100 and dmin = 5 or (b) N = 250 and dmin = 25. By 

varying ε, we show results for several choices of ε/λ2. (c) We plot the mean approximation 

error versus ε/λ2 for networks of different size N and minimum degree dmin. Results 

indicate the mean across 50 randomly selected edge additions. The arrows indicate the error 

when ε = 1, which vanishes with growing λ2.
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Fig. 5.1. 
Perturbation Qpq given by Eq. (4.5) with ε = 1 for potential edges (p, q) ∈ ℰ for the chain 

network with N = 9 nodes and two choices for ω: (a) {ωn} are independently drawn from a 

normal distribution with unit variance, and (b) {ωn} are the same as those in (a) except we 

create an outlier oscillator by setting ω5 = 10. We indicate by dashed curves in panels (c) 

and (d), respectively, the five top-ranked potential edges, Y (p, q) ∈ {1, …, 5} given by Eq. 

(5.2), for the Qpq values shown in panels (a) and (b). Node color indicates ωn.
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Fig. 6.1. 
Maximizing phase synchronization with optimal edge modifications. In panels (a), (b), and 

(c), we illustrate the effectiveness of Algorithms 6.1 and 6.2 for the class of optimization 

problem defined in Eq. (5.3). In particular, we study (a) edge addition by setting T(−) = 0 and 

allowing T(+) to vary, (b) edge removal by setting T(+) = 0 and allowing T(−) to vary, (c) edge 

rewiring by setting T(−) = T(+) = T and allowing T to vary. We compare Algorithms 6.1 and 

6.2 to two other edge modification algorithms: Strategy “Random” corresponds to when the 

edges are added or removed uniformly at random, and “Strategy λ2” corresponds to when 

the edges are added or removed so as to maximize eigenvalue λ2, which is the network’s 

algebraic connectivity [16]. In all panels, the initial network is scale-free with N = 50 nodes, 

exponent γ = 2.5, and minimum degree dmin = 10. The coupling strength is K = 0.02 and the 

values of R are given by Eq. (3.2).
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Fig. 6.2. 
Performance of Algorithm 6.2 for non-ideal scenarios of synchrony optimization. (a) 

Dependence of R for a constrained optimization problem in which the edges adjacent to 

some fraction of the nodes are unavailable and cannot be modified. (b) Dependence of R 

when there is misinformation about the network due to a fraction of the edges being rewired. 

(c) Dependence of R when the natural frequencies have been subjected to Gaussian noise 

with variance η2. In all panels, curves and error bars indicate the mean and standard error 

across 10 simulations.
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