591 research outputs found

    Data-Driven Evolution of Activity Forms in Object- and Process-Aware Information Systems

    Get PDF
    Abstract. Object-aware processes enable the data-driven generation of forms based on the object behavior, which is pre-specified by the respective object lifecycle process. Each state of a lifecycle process comprises a number of object attributes that need to be set (e.g., via forms) before transitioning to the next state. When initially modeling a lifecycle process, the optimal ordering of the form fields is often unknown and only a guess of the lifecycle process modeler. As a consequence, certain form fields might be obsolete, missing, or ordered in a non-intuitive manner. Though this does not affect process executability, it decreases the usability of the automatically generated forms. Discovering respective problems, therefore, provides valuable insights into how object- and process-aware information systems can be evolved to improve their usability. This paper presents an approach for deriving improvements of object lifecycle processes by comparing the respective positions of the fields of the generated forms with the ones according to which the fields were actually filled by users during runtime. Our approach enables us to discover missing or obsolete form fields, and additionally considers the order of the fields within the generated forms. Finally, we can derive the modeling operations required to automatically restructure the internal logic of the lifecycle process states and, thus, to automatically evolve lifecycle processes and corresponding forms

    A One-Dimensional Kalman Filter for Real-Time Progress Prediction in Object Lifecycle Processes

    Get PDF
    Real-time monitoring of business processes offers promising perspectives to discover problems and optimisation potentials. Early detection is a key part in this endeavour. One crucial aspect of real-time monitoring is to determine the current progress of a running business process. This is particularly challenging for business processes that consist of a multitude of loosely coupled, smaller processes that interact with each other, like object lifecycle processes in data-centric approaches to business process management. In this paper, an approach to predict the remaining portion of the process path to be still executed in relation to the overall process is proposed. This prediction is based on a one-dimensional Kalman Filter. As a major benefit of this approach, real-time progress determination can start directly with the first run of the process, i.e., without need for comprehensive event log data. This becomes possible due to the procedure applied by the Kalman Filter, which requires no log data. A quantitative study with 250 progress estimations for large object lifecycle processes results in a deviation of the average estimated progress from the real progress, calculated after the completion of the process, of about 5%. This emphasises that reasonable progress predictions are possible even in the absence of an event log, as it is the case when deploying new or changed processes to the run-time system

    Designing Digital Work

    Get PDF
    Combining theory, methodology and tools, this open access book illustrates how to guide innovation in today’s digitized business environment. Highlighting the importance of human knowledge and experience in implementing business processes, the authors take a conceptual perspective to explore the challenges and issues currently facing organizations. Subsequent chapters put these concepts into practice, discussing instruments that can be used to support the articulation and alignment of knowledge within work processes. A timely and comprehensive set of tools and case studies, this book is essential reading for those researching innovation and digitization, organization and business strategy

    Diagnosis of Errors in Stalled Inter-Organizational Workflow Processes

    Get PDF
    Fault-tolerant inter-organizational workflow processes help participant organizations efficiently complete their business activities and operations without extended delays. The stalling of inter-organizational workflow processes is a common hurdle that causes organizations immense losses and operational difficulties. The complexity of software requirements, incapability of workflow systems to properly handle exceptions, and inadequate process modeling are the leading causes of errors in the workflow processes. The dissertation effort is essentially about diagnosing errors in stalled inter-organizational workflow processes. The goals and objectives of this dissertation were achieved by designing a fault-tolerant software architecture of workflow system’s components/modules (i.e., workflow process designer, workflow engine, workflow monitoring, workflow administrative panel, service integration, workflow client) relevant to exception handling and troubleshooting. The complexity and improper implementation of software requirements were handled by building a framework of guiding principles and the best practices for modeling and designing inter-organizational workflow processes. Theoretical and empirical/experimental research methodologies were used to find the root causes of errors in stalled workflow processes. Error detection and diagnosis are critical steps that can be further used to design a strategy to resolve the stalled processes. Diagnosis of errors in stalled workflow processes was in scope, but the resolution of stalled workflow process was out of the scope in this dissertation. The software architecture facilitated automatic and semi-automatic diagnostics of errors in stalled workflow processes from real-time and historical perspectives. The empirical/experimental study was justified by creating state-of-the-art inter-organizational workflow processes using an API-based workflow system, a low code workflow automation platform, a supported high-level programming language, and a storage system. The empirical/experimental measurements and dissertation goals were explained by collecting, analyzing, and interpreting the workflow data. The methodology was evaluated based on its ability to diagnose errors successfully (i.e., identifying the root cause) in stalled processes caused by web service failures in the inter-organizational workflow processes. Fourteen datasets were created to analyze, verify, and validate hypotheses and the software architecture. Amongst fourteen datasets, seven datasets were created for end-to-end IOWF process scenarios, including IOWF web service consumption, and seven datasets were for IOWF web service alone. The results of data analysis strongly supported and validated the software architecture and hypotheses. The guiding principles and the best practices of workflow process modeling and designing conclude opportunities to prevent processes from getting stalled. The outcome of the dissertation, i.e., diagnosis of errors in stalled inter-organization processes, can be utilized to resolve these stalled processes

    Lifecycle Management for Business Process Variants

    Get PDF
    This chapter deals with advanced concepts for the configuration and management of business process variants. Typically, for a particular business process, different variants exist. Each of them constitutes an adjustment of a master process (e.g., a reference process) to specific requirements building the process context. Contemporary Business Process Management tools do not adequately support the modeling and management of such process variants. Either the variants have to be specified in separate process models or they are expressed in terms of conditional branches within the same process model. Both methods can result in high model redundancies, which make model adaptations a time-consuming and error-prone task. In this chapter, we discuss advanced concepts of our Provop approach, which provides a flexible and powerful solution for managing business process variants along their lifecycle. Such variant support will foster more systematic process configuration as well as process maintenance

    Enabling Personalized Business Process Modeling: The Clavii BPM Platform

    Get PDF
    Increasing adoption of business process management systems has resulted in large business process models comprising hundreds of activities. Particularly, such process models are hard to understand and maintain. This issue requires innovative approaches to simplify and personalize process models. Therefore, this thesis introduces fundamentals for process views offering personalized perspectives for process participants by abstracting not necessary information. Furthermore, an approach for a domain-specific process modeling language, so-called Process Query Language, is presented. The latter offers process modeling notation independent abilities to define, search, and modify process models as well as process views. The proof-of-concept implementation, so-called Clavii BPM platform, shows up as integrated solution for simple, web-based business process modeling and execution. Thus, it implements basic concepts for process views and the PQL language

    Koostööäriprotsesside läbiviimine plokiahelal: süsteem

    Get PDF
    Tänapäeval peavad organisatsioonid tegema omavahel koostööd, et kasutada ära üksteise täiendavaid võimekusi ning seeläbi pakkuda oma klientidele parimaid tooteid ja teenuseid. Selleks peavad organisatsioonid juhtima äriprotsesse, mis ületavad nende organisatsioonilisi piire. Selliseid protsesse nimetatakse koostööäriprotsessideks. Üks peamisi takistusi koostööäriprotsesside elluviimisel on osapooltevahelise usalduse puudumine. Plokiahel loob detsentraliseeritud pearaamatu, mida ei saa võltsida ning mis toetab nutikate lepingute täitmist. Nii on võimalik teha koostööd ebausaldusväärsete osapoolte vahel ilma kesksele asutusele tuginemata. Paraku on aga äriprotsesside läbiviimine selliseid madala taseme plokiahela elemente kasutades tülikas, veaohtlik ja erioskusi nõudev. Seevastu juba väljakujunenud äriprotsesside juhtimissüsteemid (Business Process Management System – BPMS) pakuvad käepäraseid abstraheeringuid protsessidele orienteeritud rakenduste kiireks arendamiseks. Käesolev doktoritöö käsitleb koostööäriprotsesside automatiseeritud läbiviimist plokiahela tehnoloogiat kasutades, kombineerides traditsioonliste BPMS- ide arendusvõimalused plokiahelast tuleneva suurendatud usaldusega. Samuti käsitleb antud doktoritöö küsimust, kuidas pakkuda tuge olukordades, milles uued osapooled võivad jooksvalt protsessiga liituda, mistõttu on vajalik tagada paindlikkus äriprotsessi marsruutimisloogika muutmise osas. Doktoritöö uurib tarkvaraarhitektuurilisi lähenemisviise ja modelleerimise kontseptsioone, pakkudes välja disainipõhimõtteid ja nõudeid, mida rakendatakse uudsel plokiahela baasil loodud äriprotsessi juhtimissüsteemil CATERPILLAR. CATERPILLAR-i süsteem toetab kahte lähenemist plokiahelal põhinevate protsesside rakendamiseks, läbiviimiseks ja seireks: kompileeritud ja tõlgendatatud. Samuti toetab see kahte kontrollitud paindlikkuse mehhanismi, mille abil saavad protsessis osalejad ühiselt otsustada, kuidas protsessi selle täitmise ajal uuendada ning anda ja eemaldada osaliste juurdepääsuõigusi.Nowadays, organizations are pressed to collaborate in order to take advantage of their complementary capabilities and to provide best-of-breed products and services to their customers. To do so, organizations need to manage business processes that span beyond their organizational boundaries. Such processes are called collaborative business processes. One of the main roadblocks to implementing collaborative business processes is the lack of trust between the participants. Blockchain provides a decentralized ledger that cannot be tamper with, that supports the execution of programs called smart contracts. These features allow executing collaborative processes between untrusted parties and without relying on a central authority. However, implementing collaborative business processes in blockchain can be cumbersome, error-prone and requires specialized skills. In contrast, established Business Process Management Systems (BPMSs) provide convenient abstractions for rapid development of process-oriented applications. This thesis addresses the problem of automating the execution of collaborative business processes on top of blockchain technology in a way that takes advantage of the trust-enhancing capabilities of this technology while offering the development convenience of traditional BPMSs. The thesis also addresses the question of how to support scenarios in which new parties may be onboarded at runtime, and in which parties need to have the flexibility to change the default routing logic of the business process. We explore architectural approaches and modelling concepts, formulating design principles and requirements that are implemented in a novel blockchain-based BPMS named CATERPILLAR. The CATERPILLAR system supports two methods to implement, execute and monitor blockchain-based processes: compiled and interpreted. It also supports two mechanisms for controlled flexibility; i.e., participants can collectively decide on updating the process during its execution as well as granting and revoking access to parties.https://www.ester.ee/record=b536494
    corecore