12 research outputs found

    Stochastic Analysis of a Churn-Tolerant Structured Peer-to-Peer Scheme

    Full text link
    We present and analyze a simple and general scheme to build a churn (fault)-tolerant structured Peer-to-Peer (P2P) network. Our scheme shows how to "convert" a static network into a dynamic distributed hash table(DHT)-based P2P network such that all the good properties of the static network are guaranteed with high probability (w.h.p). Applying our scheme to a cube-connected cycles network, for example, yields a O(logN)O(\log N) degree connected network, in which every search succeeds in O(logN)O(\log N) hops w.h.p., using O(logN)O(\log N) messages, where NN is the expected stable network size. Our scheme has an constant storage overhead (the number of nodes responsible for servicing a data item) and an O(logN)O(\log N) overhead (messages and time) per insertion and essentially no overhead for deletions. All these bounds are essentially optimal. While DHT schemes with similar guarantees are already known in the literature, this work is new in the following aspects: (1) It presents a rigorous mathematical analysis of the scheme under a general stochastic model of churn and shows the above guarantees; (2) The theoretical analysis is complemented by a simulation-based analysis that validates the asymptotic bounds even in moderately sized networks and also studies performance under changing stable network size; (3) The presented scheme seems especially suitable for maintaining dynamic structures under churn efficiently. In particular, we show that a spanning tree of low diameter can be efficiently maintained in constant time and logarithmic number of messages per insertion or deletion w.h.p. Keywords: P2P Network, DHT Scheme, Churn, Dynamic Spanning Tree, Stochastic Analysis

    Storage and Search in Dynamic Peer-to-Peer Networks

    Full text link
    We study robust and efficient distributed algorithms for searching, storing, and maintaining data in dynamic Peer-to-Peer (P2P) networks. P2P networks are highly dynamic networks that experience heavy node churn (i.e., nodes join and leave the network continuously over time). Our goal is to guarantee, despite high node churn rate, that a large number of nodes in the network can store, retrieve, and maintain a large number of data items. Our main contributions are fast randomized distributed algorithms that guarantee the above with high probability (whp) even under high adversarial churn: 1. A randomized distributed search algorithm that (whp) guarantees that searches from as many as no(n)n - o(n) nodes (nn is the stable network size) succeed in O(logn){O}(\log n)-rounds despite O(n/log1+δn){O}(n/\log^{1+\delta} n) churn, for any small constant δ>0\delta > 0, per round. We assume that the churn is controlled by an oblivious adversary (that has complete knowledge and control of what nodes join and leave and at what time, but is oblivious to the random choices made by the algorithm). 2. A storage and maintenance algorithm that guarantees (whp) data items can be efficiently stored (with only Θ(logn)\Theta(\log{n}) copies of each data item) and maintained in a dynamic P2P network with churn rate up to O(n/log1+δn){O}(n/\log^{1+\delta} n) per round. Our search algorithm together with our storage and maintenance algorithm guarantees that as many as no(n)n - o(n) nodes can efficiently store, maintain, and search even under O(n/log1+δn){O}(n/\log^{1+\delta} n) churn per round. Our algorithms require only polylogarithmic in nn bits to be processed and sent (per round) by each node. To the best of our knowledge, our algorithms are the first-known, fully-distributed storage and search algorithms that provably work under highly dynamic settings (i.e., high churn rates per step).Comment: to appear at SPAA 201

    Controlling the cost of reliability in peer-to-peer overlays

    Get PDF
    Abstract-Structured peer-to-peer overlay networks provide a useful substrate for building distributed applications but there are general concerns over the cost of maintaining these overlays. The current approach is to configure the overlays statically and conservatively to achieve the desired reliability even under uncommon adverse conditions. This results in high cost in the common case, or poor reliability in worse than expected conditions. We analyze the cost of overlay maintenance in realistic dynamic environments and design novel techniques to reduce this cost by adapting to the operating conditions. With our techniques, the concerns over the overlay maintenance cost are no longer warranted. Simulations using real traces show that they enable high reliability and performance even in very adverse conditions with low maintenance cost

    Tiny Groups Tackle Byzantine Adversaries

    Full text link
    A popular technique for tolerating malicious faults in open distributed systems is to establish small groups of participants, each of which has a non-faulty majority. These groups are used as building blocks to design attack-resistant algorithms. Despite over a decade of active research, current constructions require group sizes of O(logn)O(\log n), where nn is the number of participants in the system. This group size is important since communication and state costs scale polynomially with this parameter. Given the stubbornness of this logarithmic barrier, a natural question is whether better bounds are possible. Here, we consider an attacker that controls a constant fraction of the total computational resources in the system. By leveraging proof-of-work (PoW), we demonstrate how to reduce the group size exponentially to O(loglogn)O(\log\log n) while maintaining strong security guarantees. This reduction in group size yields a significant improvement in communication and state costs.Comment: This work is supported by the National Science Foundation grant CCF 1613772 and a C Spire Research Gif

    Peer-to-Peer Networks and Computation: Current Trends and Future Perspectives

    Get PDF
    This research papers examines the state-of-the-art in the area of P2P networks/computation. It attempts to identify the challenges that confront the community of P2P researchers and developers, which need to be addressed before the potential of P2P-based systems, can be effectively realized beyond content distribution and file-sharing applications to build real-world, intelligent and commercial software systems. Future perspectives and some thoughts on the evolution of P2P-based systems are also provided

    Attack, Defense and Contagion in Networks

    Get PDF
    Connections between individuals facilitate the exchange of goods, resources and information and create benefits. These connections may be exploited by adversaries to spread their attacks as well. What is the optimal way to design and defend networks in the face of attacks We develop a model with a Designer and an Adversary. The Designer moves first and chooses a network and an allocation of defense resources across nodes. The Adversary then allocates attack resources on nodes and determines how successful attacks should navigate the network. Our main result is that, in a wide variety of circumstances, a star network with all defense resources allocated to the central hub node is optimal for the Designer. The Adversary targets undefended peripheral nodes; upon capture of these nodes the resources mount a concerted attack on the center

    Networks, complexity and internet regulation: scale-free law

    Get PDF
    No description supplie

    Dynamically Fault-Tolerant Content Addressable Networks

    No full text
    We describe a content addressable network which is robust in the face of massive adversarial attacks and in a highly dynamic environment. Our network is robust in the sense that at any time, an arbitrarily large fraction of the peers can reach an arbitrarily large fraction of the data items. The network can be created and maintained in a completely distributed fashion
    corecore