42,433 research outputs found

    Dynamical low-rank approximation for Marshak waves

    Get PDF
    Marshak waves are temperature waves which can arise from the background radiation in a material. A core limitation in the simulation of these temperature waves is the high-dimensional phase space of the radiation solution, which depends on time, the spatial position as well as the direction of flight. To obtain computationally efficient methods, we propose to use dynamical low-rank approximation (DLRA) which is a model order reduction method that dynamically determines and adapts dominant modes of the numerical solution. This is done by projecting the original dynamics onto the tangent space of the low-rank manifold. In this work, we investigate discontinuous Galerkin discretizations for two robust time integrators. By performing the derivation of the DLRA evolution equations on the continuous level, we are able to apply the needed slope limiter on the low-rank factors instead of the full solution. The efficiency of the method is presented through computational results for a Marshak wave originating from a heated wall

    A rank-adaptive robust integrator for dynamical low-rank approximation

    Get PDF
    A rank-adaptive integrator for the dynamical low-rank approximation of matrix and tensor differential equations is presented. The fixed-rank integrator recently proposed by two of the authors is extended to allow for an adaptive choice of the rank, using subspaces that are generated by the integrator itself. The integrator first updates the evolving bases and then does a Galerkin step in the subspace generated by both the new and old bases, which is followed by rank truncation to a given tolerance. It is shown that the adaptive low-rank integrator retains the exactness, robustness and symmetry-preserving properties of the previously proposed fixed-rank integrator. Beyond that, up to the truncation tolerance, the rank-adaptive integrator preserves the norm when the differential equation does, it preserves the energy for Schrödinger equations and Hamiltonian systems, and it preserves the monotonic decrease of the functional in gradient flows. Numerical experiments illustrate the behaviour of the rank-adaptive integrator

    Dynamical low-rank approximation for stochastic differential equations

    Get PDF
    In this paper, we set the mathematical foundations of the Dynamical Low-Rank Approximation (DLRA) method for stochastic differential equations (SDEs). DLRA aims at approximating the solution as a linear combination of a small number of basis vectors with random coefficients (low-rank format) with the peculiarity that both the basis vectors and the random coefficients vary in time. While the formulation and properties of DLRA are now well understood for random/parametric equations, the same cannot be said for SDEs and this work aims to fill this gap. We start by rigorously formulating a Dynamically Orthogonal (DO) approximation (an instance of DLRA successfully used in applications) for SDEs, which we then generalize to define a parametrization independent DLRA for SDEs. We show local well-posedness of the DO equations and their equivalence with the DLRA formulation. We also characterize the explosion time of the DO solution by a loss of linear independence of the random coefficients defining the solution expansion and give sufficient conditions for global existence

    On dynamical low-rank integrators for matrix differential equations

    Get PDF
    This thesis is concerned with dynamical low-rank integrators for matrix differential equations, typically stemming from space discretizations of partial differential equations. We first construct and analyze a dynamical low-rank integrator for second-order matrix differential equations, which is based on a Strang splitting and the projector-splitting integrator, a dynamical low-rank integrator for first-order matrix differential equations proposed by Lubich and Osedelets in 2014. For the analysis, we derive coupled recursive inequalities, where we express the global error of the scheme in terms of a time-discretization error and a low-rank error contribution. The first can be treated with Taylor series expansion of the exact solution. For the latter, we make use of an induction argument and the convergence result derived by Kieri, Lubich, and Walach in 2016 for the projector-splitting integrator. From the original method, several variants are derived which are tailored to, e.g., stiff or highly oscillatory second-order problems. After discussing details on the implementation of dynamical low-rank schemes, we turn towards rank-adaptivity. For the projector-splitting integrator we derive both a technique to realize changes in the approximation ranks efficiently and a heuristic to choose the rank appropriately over time. The core idea is to determine the rank such that the error of the low-rank approximation does not spoil the time-discretization error. Based on the rank-adaptive pendant of the projector-splitting integrator, rank-adaptive dynamical low-rank integrators for (stiff and non-stiff) first-order and second-order matrix differential equations are derived. The thesis is concluded with numerical experiments to confirm our theoretical findings

    Time integration of tree tensor networks

    Get PDF
    Dynamical low-rank approximation by tree tensor networks is studied for the data-sparse approximation to large time-dependent data tensors and unknown solutions of tensor differential equations. A time integration method for tree tensor networks of prescribed tree rank is presented and analyzed. It extends the known projector-splitting integrators for dynamical low-rank approximation by matrices and Tucker tensors and is shown to inherit their favorable properties. The integrator is based on recursively applying the Tucker tensor integrator. In every time step, the integrator climbs up and down the tree: it uses a recursion that passes from the root to the leaves of the tree for the construction of initial value problems on subtree tensor networks using appropriate restrictions and prolongations, and another recursion that passes from the leaves to the root for the update of the factors in the tree tensor network. The integrator reproduces given time-dependent tree tensor networks of the specified tree rank exactly and is robust to the typical presence of small singular values in matricizations of the connection tensors, in contrast to standard integrators applied to the differential equations for the factors in the dynamical low-rank approximation by tree tensor networks
    corecore