
Time integration of tree tensor networks

Gianluca Ceruti, Christian Lubich, Hanna Walach

CRC Preprint 2020/5, February 2020

KARLSRUHE INSTITUTE OF TECHNOLOGY

KIT – The Research University in the Helmholtz Association www.kit.edu

CORE Metadata, citation and similar papers at core.ac.uk

Provided by KITopen

https://core.ac.uk/display/289271097?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Participating universities

Funded by

ISSN 2365-662X

2

TIME INTEGRATION OF TREE TENSOR NETWORKS

GIANLUCA CERUTI∗, CHRISTIAN LUBICH∗, AND HANNA WALACH∗

Abstract. Dynamical low-rank approximation by tree tensor networks is studied for the data-
sparse approximation to large time-dependent data tensors and unknown solutions of tensor dif-
ferential equations. A time integration method for tree tensor networks of prescribed tree rank is
presented and analyzed. It extends the known projector-splitting integrators for dynamical low-rank
approximation by matrices and Tucker tensors and is shown to inherit their favorable properties.
The integrator is based on recursively applying the Tucker tensor integrator. In every time step, the
integrator climbs up and down the tree: it uses a recursion that passes from the root to the leaves of
the tree for the construction of initial value problems on subtree tensor networks using appropriate
restrictions and prolongations, and another recursion that passes from the leaves to the root for the
update of the factors in the tree tensor network. The integrator reproduces given time-dependent
tree tensor networks of the specified tree rank exactly and is robust to the typical presence of small
singular values in matricizations of the connection tensors, in contrast to standard integrators applied
to the differential equations for the factors in the dynamical low-rank approximation by tree tensor
networks.

Key words. Tree tensor network, tensor differential equation, dynamical low-rank approxima-
tion, time integrator

AMS subject classifications. 15A69, 65L05, 65L20, 65L70

1. Introduction. For the approximate solution of the initial value problem for
a (huge) system of differential equations for the tensor A(t) ∈ Rn1×...×nd ,

Ȧ(t) = F (t, A(t)), (1.1)

we aim to construct Y (t) ≈ A(t) in an approximation manifold M of much smaller
dimension, which in the present work will be chosen as a manifold of tree tensor net-
works of fixed tree rank. This shall provide a data-sparse computational approach to
high-dimensional problems that cannot be treated by direct time integration because
of both excessive memory requirements and computational cost.

A differential equation for Y (t) ∈M is obtained by choosing the time derivative
Ẏ (t) as that element in the tangent space TY (t)M for which

‖Ẏ (t)− F (t, Y (t))‖ is minimal,

where the norm is chosen as the Euclidean norm of the vector of the tensor entries. In
the quantum physics and chemistry literature, this approach is known as the Dirac–
Frenkel time-dependent variational principle, named after work by Dirac in 1930 who
used the approach in the context of what is nowadays known as the time-dependent
Hartree–Fock method for the multi-particle time-dependent Schrödinger equation;
see, e.g., [14, 15]. Equivalently, this minimum-defect condition can be stated as a
Galerkin condition on the state-dependent approximation space TY (t)M,

Ẏ (t) ∈ TY (t)M such that 〈Ẏ (t)− F (t, Y (t)), Z〉 = 0 ∀Z ∈ TY (t)M.

Using the orthogonal projection P (Y) onto the tangent space TYM, this can be
reformulated as the (abstract) differential equation on M,

Ẏ (t) = P (Y (t))F (t, Y (t)). (1.2)

∗Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, D–72076 Tübingen,
Germany. Email: {ceruti,lubich,walach}@na.uni-tuebingen.de

1

This equation needs to be solved numerically in an efficient and robust way. For
fixed-rank matrix and tensor manifolds, the orthogonal projection P (Y) turns out
to be an alternating sum of subprojections, which reflects the multilinear structure
of the problem. The explicit form of the tangent space projection in the low-rank
matrix case as an alternating sum of three subprojections was derived in [12] and
was used in [17] to derive a projector-splitting integrator for low-rank matrices, which
efficiently updates an SVD-like low-rank factorization in every time step and which is
robust to the typically arising small singular values that cause severe difficulties with
standard integrators applied to the system of differential equations for the factors of
the SVD-like decomposition of the low-rank matrices; see [11]. The projector-splitting
integrator was extended to tensor trains / matrix product states in [18]; see also [9] for
a description of the algorithm in a physical idiom. The projector-splitting integrator
was extended to Tucker tensors of fixed multilinear rank in [16]. A reinterpretation
was given in [19], in which the Tucker tensor integrator was rederived by recursively
performing inexact substeps in the matrix projector-splitting integrator applied to
matricizations of the tensor differential equation followed by retensorization. This in-
terpretation made it possible to show that the Tucker integrator inherits the favorable
robustness properties of the low-rank matrix projector-splitting integrator.

In the present paper we take up such a recursive approach to derive an integrator
for general tree tensor networks, which is shown to be efficiently implementable (pro-
vided that the righthand side function F can be efficiently evaluated on tree tensor
networks in factorized form) and to inherit the robust convergence properties of the
low-rank matrix, Tucker tensor and tensor train / matrix product state integrators
shown previously in [11, 19]. The proposed integrator for tree tensor networks reduces
to the well-proven projector-splitting integrators in the particular cases of Tucker ten-
sors and tensor trains / matrix product states. We expect (but will not prove) that
it can itself be interpreted as a projector-splitting integrator based on splitting the
tangent space projection of the fixed-rank tree tensor network manifold.

In Section 2 we introduce notation and the formulation of tree tensor networks as
multilevel-structured Tucker tensors and give basic properties, emphasizing orthonor-
mal factorizations. The tree tensor network (TTN) is constructed from the basis
matrices at the leaves and the connection tensors at the inner vertices of the tree in
a multilinear recursion that passes from the leaves to the root of the tree.

In Section 3 we recall the algorithm of the Tucker tensor integrator of [19] and
extend it to the case of several Tucker tensors with the same basis matrices. This
extended Tucker integrator, which is nothing but the Tucker integrator for an extended
Tucker tensor, is a basic building block of the integrator for tree tensor networks.

In Section 4, the main algorithmic section of this paper, we derive the recursive
TTN integrator and discuss the basic algorithmic aspects. In every time step, the
integrator uses a recursion that passes from the root to the leaves of the tree for the
construction of initial value problems on subtree tensor networks using appropriate
restrictions and prolongations, and another recursion that passes from the leaves to
the root for the update of the factors in the tree tensor network. The integrator
only solves low-dimensional matrix differential equations (of the dimension of the
basis matrices at the leaves) and low-dimensional tensor differential equations (of the
dimension of the connection tensors at the inner vertices of the tree), alternating with
orthogonal matrix decompositions of such small matrices and of matricizations of the
connection tensors.

In Section 5 we prove a remarkable exactness property: if F (t, Y) = Ȧ(t) for

2

a given tree tensor network A(t) of the specified tree rank, then the recursive TTN
integrator for this tree rank reproduces A(t) exactly. This exactness property is proved
using the analogous exactness property of the Tucker tensor integrator proved in [19],
which in turn was proved using the exactness property for the matrix projector-
splitting integrator that was discovered and proved in [17].

In Section 6 we prove first-order error bounds that are independent of small
singular values of matricizations of the connecting tensors. The proof relies on the
similar error bound for the Tucker integrator [19], which in turn relies on such an error
bound for the fixed-rank matrix projector-splitting integrator proved in [11], in a proof
that uses in an essential way the exactness property. The robustness to small singular
values distinguishes the proposed integrator substantially from standard integrators
applied to the differential equations for the basis matrices and connection tensors
derived in [24]. We note that the proposed TTN integrator foregoes the formulation of
these differential equations for the factors. The ill-conditioned density matrices whose
inverses appear in these differential equations are never formed, let alone inverted, in
the TTN integrator.

The present paper thus completes a path to extend the low-rank matrix projector-
splitting integrator of [17], together with its favorable properties, from the dynamical
low-rank approximation by matrices of a prescribed rank to Tucker tensors of pre-
scribed multilinear rank to general tree tensor networks of prescribed tree rank.

In Section 7 we present a numerical experiment which shows the error behaviour
of the proposed integrator in accordance with the theory. We choose the example of
retraction of the sum of a tree tensor network and a tangent network, which is an
operation needed in many optimization algorithms for tree tensor networks; cf. [1] for
the low-rank matrix case. The corresponding example was already chosen in numerical
experiments for the low-rank matrix, tensor train and Tucker tensor cases in [17, 18,
19], respectively. It is beyond the scope of this paper to present the results of numerical
experiments with the recursive TTN integrator in actual applications of tree tensor
networks in physics, chemistry or other sciences. We note, however, that striking
numerical experiments with precisely this integrator (given in an ad hoc formulation)
are already reported in [4] for the Vlasov–Poisson equation of plasma physics, for a
tree tensor network where the tree is given by the separation ((x1, x2, x3), (v1, v2, v3))
of the position and velocity variables, which are further separated into their Cartesian
coordinates.

2. Preparation: Matrices, Tucker tensors, tree tensor networks, and
their ranks.

2.1. Matrices of rank r. The singular value decomposition shows that a matrix
A ∈ Rm×n is of rank r if and only if it can be factorized as

A = U S V>,

where U ∈ Rm×r and V ∈ Rn×r have orthonormal columns, and S ∈ Rr×r has full
rank r. The real m × n matrices of rank (exactly) r are known to form a smooth
embedded manifold in Rm×n [10].

2.2. Tucker tensors of multilinear rank (ri). For a tensor A ∈ Rn1×···×nd ,
the multilinear rank (r1, . . . , rd) is defined as the d-tuple of the ranks ri of the matri-
cizations Mati(A) ∈ Rni×n¬i for i = 1, . . . , d, where n¬i =

∏
j 6=i nj . We recall that

the ith matricization aligns in the kth row (for k = 1, . . . , ni) all entries of A that

3

have the index k in the ith position, usually ordered co-lexicographically. The inverse
operation is retensorisation of the matrix, denoted by Teni:

A(i) = Mati(A) ∈ Rni×n¬i if and only if A = Teni(A(i)) ∈ Rn1×···×nd .

It is known from [3] that the tensor A has multilinear rank (r1, . . . , rd) if and only if
it can be factorized as a Tucker tensor (we adopt the shorthand notation from [13])

A = C Xdi=1 Ui, i.e., ak1,...,kd =

r1∑
l1=1

· · ·
rd∑
ld=1

cl1,...,lduk1,l1 . . . ukd,ld , (2.1)

where the basis matrices Ui ∈ Rni×ri have orthonormal columns and the core tensor
C ∈ Rr1×···×rd has full multilinear rank (r1, . . . , rd). (This requires a compatibility
condition among the ranks: ri ≤

∏
j 6=i rj . In particular, this condition is satisfied if

all ranks ri are equal.)
A useful formula for the matricization of Tucker tensors is

Mati
(
C Xdj=1 Uj

)
= Ui Mati(C)

⊗
j 6=i

U>j , (2.2)

where ⊗ denotes the Kronecker product of matrices.
The tensors of given dimensions (n1, . . . , nd) and fixed multilinear rank (r1, . . . , rd)

are known to form a smooth embedded manifold in Rn1×···×nd .

2.3. Orthonormal tree tensor networks of tree rank (rτ). A tree tensor
network is a multilevel-structured Tucker tensor where the configuration is described
by a tree. The notion of a ‘tree tensor network’ was coined in the quantum physics
literature [22], but tree tensor networks were actually already used a few years earlier
in the multilayer MCTDH method of chemical physics [24]. In the mathematical
literature, tree tensor networks with binary trees have been studied as ‘hierarchical
tensors’ [8] and with general trees as tensors in ‘tree-based tensor format’ [5, 6]. We
remark that Tucker tensors and matrix product states / tensor trains [21, 20] are
particular instances of tree tensor networks, whose trees are trees of minimal height
(bushes) and binary trees of maximal height, respectively. As there does not appear
to exist a firmly established notation for tree tensor networks, we give a formulation
from scratch that we find useful for our purposes.

Definition 2.1 (Ordered trees with distinct leaves). Let L be a given finite set,
to which we refer as the set of leaves. We define the set T of trees with leaves in L
recursively as follows:

(i) L ⊂ T , L(`) := {`} for each ` ∈ L.
(ii) If, for some m ≥ 2,

τ1, . . . , τm ∈ T , L(τi) ∩ L(τj) = ∅ ∀i 6= j,

then the ordered m-tuple

τ := (τ1, . . . , τm) ∈ T , L(τ) :=
⋃̇m

i=1
L(τi) .

The graphical interpretation is that (i) leaves are trees and (ii) every other tree
τ ∈ T is formed by connecting a root to several trees with distinct leaves. (Note that
m = 1 is excluded: the 1-tuple τ = (τ1) is considered as identical to τ1.) L(τ) is the
set of leaves of the tree τ .

4

τ1

1 3 5

τ1 = (1, 3, 5) τ2

4 2

τ2 = (4, 2)

6

τ3 = 6

τ

τ1

1 3 5

τ2

4 2

6

τ = (τ1, τ2, τ3)

Fig. 2.1. Graphical representation of a tree and three subtrees with the set of leaves L =
{1, 2, 3, 4, 5, 6}.

The trees τ1, . . . , τm are called direct subtrees of the tree τ = (τ1, . . . , τm), which
together with direct subtrees of direct subtrees of τ etc. are called the subtrees of τ .
We let T (τ) be the set of subtrees of a tree τ ∈ T , including τ . More formally, we set

T (`) := {`} for ` ∈ L, and T (τ) := {τ} ∪̇
⋃̇m

i=1
T (τi) for τ = (τ1, . . . , τm).

In the graphical interpretation, the subtrees are in a bijective correspondence with
the vertices of the tree, by assigning to each subtree its root; see Figure 2.1.

On the set of trees T we define a partial ordering by writing, for σ, τ ∈ T ,

σ ≤ τ if and only if σ ∈ T (τ),

σ < τ if and only if σ ≤ τ and σ 6= τ.

On a given tree τ̄ ∈ T , we work with the following set of data:

• To each leaf ` we associate a dimension n`, a rank r` ≤ n` and a basis matrix
U` ∈ Rn`×r` of full rank r`.

• To every subtree τ = (τ1, . . . , τm) ≤ τ̄ we associate a rank rτ and a connection
tensor Cτ ∈ Rrτ×rτ1×···×rτm of full multilinear rank (rτ , rτ1 , . . . , rτm). We set
rτ̄ = 1.

This can be interpreted as associating a tensor to the root of each subtree. In this
way every vertex of the given tree carries either a matrix — if it is a leaf — or else a
tensor whose order equals the number of edges leaving the vertex.

With these data, a tree tensor network (TTN) is constructed in a recurrence
relation that passes from the leaves to the root of the tree.

Definition 2.2 (Tree tensor network). For a given tree τ̄ ∈ T , we recursively
define a tree tensor network Xτ̄ as follows:

(i) If τ = ` ∈ L, we set

X` := U>` ∈ Rr`×n` .
5

(ii) If τ = (τ1, . . . , τm) ≤ τ̄ , we set nτ =
∏m
i=1 nτi and Iτ the identity matrix of

dimension rτ , and

Xτ := Cτ ×0 Iτ X
m
i=1 Uτi ∈ Rrτ×nτ1×···×nτm ,

Uτ := Mat0(Xτ)> ∈ Rnτ×rτ .

We note that the expression on the righthand side of the definition of Xτ can
be viewed as an rτ -tuple of m-tensors with the same basis matrices Uτi but different
core tensors Cτ (k, :) ∈ Rnτ1×···×nτm for k = 1, . . . , rτ . The vectorizations of these rτ
m-tensors, which are of dimension nτ , form the columns of the matrix Uτ . The index
0 in ×0 and Mat0 refers to the mode of dimension rτ of Xτ ∈ Rrτ×nτ1×···×nτm , which
we count as mode 0.

It is favorable to work with orthonormal matrices, so that each tensor Xτ is in
the Tucker tensor format.

Definition 2.3 (Orthonormal tree tensor network). A tree tensor network Xτ̄

(more precisely, its representation in terms of the matrices Uτ) is called orthonormal
if for each subtree τ < τ̄ , the matrix Uτ has orthonormal columns.

The following is a key lemma.
Lemma 2.4. For a tree τ = (τ1, . . . , τm) ∈ T , let the matrices Uτ1 , . . . ,Uτm have

orthonormal columns. Then, the matrix Uτ has orthonormal columns if and only if
the matricization Mat0(Cτ)> ∈ Rrτ1 ...rτm×rτ has orthonormal columns.

Proof. We have, by the definition of Uτ and Xτ and the unfolding formula (2.2),

U>τ = Mat0(Xτ) = Iτ Mat0(Cτ)

m⊗
i=1

U>τi = Mat0(Cτ)

m⊗
i=1

U>τi .

It follows that

U>τ Uτ = Mat0(Cτ)
(m⊗
i=1

U>τi Uτi

)
Mat0(Cτ)> =

(
Mat0(Cτ)>

)>
Mat0(Cτ)>,

which proves the result.
We observe that due to the recursive definition of a tree tensor network it thus

suffices to require that for each leaf the matrix U` and for every other subtree τ < τ̄
the matrix Mat0(Cτ)> have orthonormal columns. Unless stated otherwise, we intend
the tree tensor networks to be orthonormal in this paper.

The orthonormality condition of Lemma 2.4 is very useful, because it reduces
the orthonormality condition for the large, recursively constructed and computation-
ally inaccessible matrix Uτ ∈ Rnτ1 ...nτm×rτ to the orthonormality condition for the
smaller, given matrix Mat0(Cτ)> ∈ Rrτ1 ...rτm×rτ . To our knowledge, the first use of
this important property was made in the chemical physics literature in the context of
the multilayer MCTDH method [24].

A further consequence of Lemma 2.4 is that every tree tensor network has an
orthonormal representation. This is shown using a QR decomposition of non-ortho-
normal matrices Mat0(Cτi)

> and including the non-orthonormal factor in the tensor
Cτ of the parent tree τ = (τ1, . . . , τm). It is of full tree rank (rτ) if all these matrices
are of full rank.

We rely on the following property, which we can be proved as in [23], where binary
trees are considered (this corresponds to the case m = 2 above); see also [5].

Lemma 2.5. The set Mτ̄ =M(τ̄, (n`)`∈L(τ̄), (rτ)τ∈T (τ̄)) of tree tensor networks
for a tree τ̄ ∈ T of given dimensions (n`)`∈L(τ̄) and ranks (rτ)τ∈T (τ̄) is a smooth
embedded manifold in the tensor space R×`∈L(τ̄)n` .

6

3. Extended Tucker Integrator. In Subsection 3.1 we recapitulate the algo-
rithm of the Tucker tensor integrator of [16, 19], and in Subsection 3.2 we extend the
algorithm to r-tuples of Tucker tensors with the same basis matrices. This will be a
basic building block for the tree tensor network integrator derived in the next section.

3.1. Tucker tensor integrator. Let Mr be the manifold of Tucker Tensors
with fixed multi-linear rank r=(r1, . . . , rd). Let us consider an approximation Y 0 ∈
Mr to the initial data A0,

Y 0 = C0 Xdi=1 U0
i ∈ Rn1×···×nd .

The nested Tucker integrator is a numerical procedure that gives, after (d+1) substeps,
an approximation in Tucker tensor format, Y 1 ∈ Mr, to the full solution A(t1) after
a time step t1 = t0 + h. The procedure is repeated over further time steps to yield
approximations Y n ∈Mr to A(tn). At each substep of the algorithm, only one factor
of the Tucker representation is updated while the others, with the exception of the
core tensor, remain fixed. The essential structure of the algorithm can be summarized
in the following algorithmic scheme.

Algorithm 1: Time step of the Tucker integrator

Data: Core tensor C0 and orthonormal-basis matrices U0
i of

Y 0 = C0 Xdi=1 U0
i , righthand side function F (t, Y), t0, t1

Result: Core tensor C1 and orthonormal-basis matrices U1
i of

Y 1 = C1 Xdi=1 U1
i

begin
Set C0

0 = C0

for i = 1 . . . d do

Update U0
i → U1

i , Modify C0
i−1 → C0

i

end
Update C0

d → C1

end

The update process in the Tucker integrator is the most intensive and technical
part of the algorithm. In order to reduce the complexity of the explanation we intro-
duce the subflows Φ(i) and Ψ, corresponding to the update of the basis matrices and
of the core tensor, respectively. We set r¬i =

∏
j 6=i ri.

7

Algorithm 2: Subflow Φ(i)

Data: Y 0 = C0 Xdj=1 U0
j in factorized form, F (t, Y), t0, t1

Result: Y 1 = C1 Xdj=1 U1
j in factorized form

begin
set U1

j = U0
j ∀j 6= i

compute the QR decomposition Mati(C
0)> = Q0

i S0,>
i ∈ Rr¬i×ri

set K0
i = U0

i S0
i ∈ Rni×ri

solve the ni × ri matrix differential equation
K̇i(t) = Fi(t,Ki(t)) with initial value Ki(t0) = K0

i

and return K1
i = Ki(t1); here

Fi(t,Ki) = Mati(F (t,Teni(Ki(t)V
0,>
i))V0

i with

V0,>
i = Mati(Teni(Q

0,>
i)Xj 6=i U0

j)

compute the QR decomposition K1
i = U1

i Ŝ1
i

solve the ri × ri matrix differential equation
Ṡi(t) = −F̂i(t,Si(t)) with initial value Si(t0) = Ŝ1

i

and return S̃0
i = Si(t1); here

F̂i(t,Si) = U1,>
i Fi(t,U

1
i Si)

set C1 = Teni(S̃
0
i Q0,>

i)
end

The remaining subflow Ψ describes the final update process of the core.

Algorithm 3: Subflow Ψ

Data: Y 0 = C0 Xdj=1 U0
j in factorized form, F (t, Y), t0, t1

Result: Y 1 = C1 Xdj=1 U1
j in factorized form

begin

set U1
j = U0

j ∀j = 1, . . . , d.
solve the r1 × · · · × rd tensor differential equation

Ċ(t) = F̃ (t, C(t)) with initial value C(t0) = C0

and return C1 = C(t1); here

F̃ (t, C) = F (t, C Xdj=1 U1
j)X

d
j=1 U1,>

j

end

Finally, the result of the Tucker tensor integrator after one time step can be
expressed in a compact way as

Y 1 = Ψ ◦ Φ(d) ◦ · · · ◦ Φ(1)(Y 0) . (3.1)

We refer the reader to [19] for a detailed derivation and major properties of this
Tucker tensor integrator.

The efficiency of the implementation of this algorithm depends on the possi-
bility to evaluate the functions Fi without explicitly forming the large slim matrix
V0
i ∈ Rn¬i×ri and the tensor Teni(Ki(t)V

0,>
i) ∈ Rn1×···×nd . This is the case if

F (t, C Xdj=1 Uj) is a linear combination of Tucker tensors of moderate rank whose
factors can be computed directly from the factors C and Uj without actually com-
puting the entries of the Tucker tensor.

8

3.2. Extended Tucker Integrator. We consider the case of a (1 + d)-dimen-
sional Tucker tensor where the first basis matrix in the decomposition of the initial
data is the identity matrix of dimension r × r,

Y 0 = C0 ×0 Ir X
d
i=1 U0

i ∈ Rr×n1×···×nd ,

as appears in the recursive construction of orthonormal tree tensor networks. This
can be viewed as a collection of r Tucker tensors in Rn1×···×nd with the same basis
matrices U0

i . Recalling (3.1), the action of the Tucker integrator after one time step
can be represented as

Y 1 = Ψ ◦ Φ(d) ◦ · · · ◦ Φ(1) ◦ Φ(0)(Y 0) .

The following result holds.
Lemma 3.1. The action of the subflow Φ(0) on Y 0 is trivial, i.e.

Φ(0)(Y 0) = Y 0.

Proof. In the first step of the subflow Φ(0), we matricize the core tensor C0 in the
zero mode and we perform a QR decomposition,

Mat0(C0)> = Q0
0 S0,>

0 .

We define

V0,>
0 = Mat0(Ten0(Q0,>

0)Xdl=1 U0,>
l)

and we set

K0
0 = Ir S0

0 ∈ Rr×r.

The next step consists of solving the differential equation

K̇0(t) = Mat0(F (t,Ten0(K0(t)V0,>
0))V0

0,

K0(t0) = K0
0 .

We define

K1
0 = K0(t1) ∈ Rr×r

and we compute the corresponding QR decomposition,

K1
0 = Ir K1

0 .

To conclude, we solve the differential equation

Ṡ0(t) = − I>r Mat0(F (t,Ten0(Ir S0(t)V0,>
0))V0

0,

S0(t0) = K1
0 .

We now observe that due to the presence of the negative sign, the solution of the
equation can be directly computed, i.e.

S0(t1) = K0(t0) = S0
0.

9

Therefore, C1 = C0 and we conclude that Φ(0)(Y 0) = Y 0.
During the update process the structure of the initial data is preserved and we

can now introduce the extended Tucker integrator as follows.

Algorithm 4: Extended Tucker Integrator

Data: Y 0 = C0 ×0 Ir X
d
j=1 U0

j in factorized form, F (t, Y), t0, t1

Result: Y 1 = C1 ×0 Ir X
d
j=1 U1

j in factorized form

begin
Set Y [0] = Y 0

for i = 1 . . . d do
Compute Y [i] = Φ(i)(Y [i−1]) in factorized form

end

Compute Y 1 = Ψ(Y [d]) in factorized form
end

4. Recursive tree tensor network integrator. We now come to the cen-
tral algorithmic section of this paper. We derive an integrator for orthonormal tree
tensor networks, which updates the orthonormal-basis matrices of the leaves and the
orthonormality-constrained core tensors of the other vertices of the tree by a recursive
TTN integrator.

4.1. Derivation. Let τ̄ ∈ T be a given tree with the set of leaves L(τ̄) =
{1, . . . , d} and (rτ)τ∈T (τ̄) a specified family of tree ranks, where we assume rτ̄ = 1.
For each subtree τ = (τ1, . . . , τm) ∈ T (τ̄) we introduce the space

Vτ := Rrτ×nτ1×···×nτm . (4.1)

In the following, we associate to each subtree τ of the given tree τ̄ a tensor-valued
function Fτ : [0, t∗] × Vτ → Vτ . Its actual recursive construction, starting from the
root with Fτ̄ = F and passing to the leaves, will be given in the next subsection.

Consider a tree τ = (τ1, . . . , τm) and an extended Tucker tensor Y 0
τ associated to

the tree τ ,

Y 0
τ = C0

τ ×0 Iτ X
m
i=1 U0

τi .

Applying the extended Tucker integrator with the function Fτ we have that

Y 1
τ = Ψτ ◦ Φ(m)

τ ◦ · · · ◦ Φ(1)
τ (Y 0

τ) .

We recall that the subflow Φ
(i)
τ gives the update process of the basis matrix U0

τi ∈
Rnτi×rτi . The extra subscript τ indicates that the subflow is computed for the function
Fτ .

We have two cases:
(i) If τi is a leaf, we directly apply the subflow Φ

(i)
τ and update the basis matrix.

(ii) Else, we apply Φ
(i)
τ only approximately (but call the procedure still Φ

(i)
τ). We

tensorize the basis matrix and we construct new initial data Y 0
τi and a function

Fτi . We iterate the procedure in a recursive way, reducing the dimensionality of
the problem at each recursion.

This leads to the definition of the recursive tree tensor network (TTN) integrator. It
has the same general structure as the extended Tucker integrator.

10

Algorithm 5: Recursive TTN Integrator

Data: tree τ = (τ1, . . . , τm), TTN in factorized form
Y 0
τ = C0

τ ×0 Iτ X
m
j=1 U0

τj with U0
τj = Mat0(X0

τj)
>,

function Fτ (t, Yτ), t0, t1
Result: TTN Y 1

τ = C1
τ ×0 Iτ X

m
j=1 U1

τj with U1
τj = Mat0(X1

τj)
>

in factorized form
begin

set Y
[0]
τ = Y 0

τ

for i = 1 . . .m do

compute Y
[i]
τ = Φ

(i)
τ (Y

[i−1]
τ) in factorized form

end

compute Y 1
τ = Ψτ (Y

[m]
τ) in factorized form

end

The difference to the Tucker integrator is that now the subflow Φ
(i)
τ is no longer

the same as for the extended Tucker integrator, but it recursively uses the TTN
integrator for the subtrees. This approximate subflow is defined in close analogy to
the subflow Φ(i) for Tucker tensors, but the first differential equation is solved only
approximately unless τi is a leaf.

11

Algorithm 6: Subflow Φ
(i)
τ

Data: tree τ = (τ1, . . . , τm), TTN in factorized form
Y 0
τ = C0

τ ×0 Iτ X
m
j=1 U0

τj with U0
τj = Mat0(X0

τj)
>,

function Fτ (t, Yτ), t0, t1
Result: TTN Y 1

τ = C1
τ ×0 Ir X

m
j=1 U1

τj with U1
τj = Mat0(X1

τj)
>

in factorized form
begin

set U1
τj = U0

τj ∀j 6= i

compute the QR factorization Mati(C
0
τ)> = Q0

τi S0,>
τi

set Y 0
τi = X0

τi ×0 S0,>
τi

if τi = ` is a leaf, then solve the n` × r` matrix differential equation
Ẏτi(t) = Fτi(t, Yτi(t)) with initial value Yτi(t0) = Y 0

τi
and return Y 1

τi = Yτi(t1)
else

compute Y 1
τi = Recursive TTN Integrator (τi, Y

0
τi , Fτi , t0, t1)

compute the QR decomposition Mat0(C1
τi)
> = Q̂1

τi Ŝ
1
τi , where

C1
τi is the connecting tensor of Y 1

τi

set U1
τi = Mat0(X1

τi), where the TTN X1
τi is obtained from Y 1

τi by

replacing the connecting tensor with Ĉ1
τi = Ten0(Q̂1,T

τi)

solve the rτi × rτi matrix differential equation

Ṡτi(t) = −F̂τi(t,Sτi(t)) with initial value Sτi(t0) = Ŝ1
τi

and return S̃0
τi = Sτi(t1); here

F̂τi(t,Sτi) = U1,>
τi Mat0

(
Fτi(t,X

1
τi ×0 S>τi)

)>
set C1

τ = Teni(S̃
0
τi Q0,>

τi)

end

The subflow Ψτ is the same as for the Tucker integrator, for the function Fτ
instead of F .

Algorithm 7: Subflow Ψτ

Data: tree τ = (τ1, . . . , τm), TTN in factorized form
Y 0
τ = C0

τ ×0 Iτ X
m
j=1 U0

τj with U0
τj = Mat0(X0

τj)
>,

function Fτ (t, Yτ), t0, t1
Result: TTN Y 1

τ = C1
τ ×0 Iτ X

m
j=1 U1

τj with U1
τj = Mat0(X1

τj)
>

in factorized form
begin

set U1
τj = U0

τj ∀j = 1, . . . ,m.
solve the rτ × rτ1 × · · · × rτm tensor differential equation

Ċτ (t) = F̃τ (t, Cτ (t)) with initial value Cτ (t0) = C0
τ

and return C1
τ = Cτ (t1); here

F̃τ (t, Cτ) = Fτ (t, Cτ X
m
j=1 U1

τj)X
m
j=1 U1,>

τj

end

The efficiency of the implementation of this algorithm depends on the possibility
to evaluate the functions Fτ , F̂τ and F̃τ efficiently for all subtrees τ of τ̄ , without

12

explicitly forming large matrices or tensors whose dimension exceeds by far that of
the basis matrices and connecting tensors. This is the case if F maps TTNs into
linear combinations of TTNs of moderate tree rank whose factors can be computed
directly from the basis matrices and connecting tensors without actually computing
the entries of the TTN.

4.2. Constructing Fτ and Y 0
τ via restrictions/prolongations. In a recur-

sion that passes from the root to the leaves of τ̄ , we construct for each subtree τ of τ̄
the tensor-valued function Fτ that is used in the recursive TTN integrator. We note
that Vτ̄ is isomorphic to Rn1×···×nd (since rτ̄ = 1) and we start the construction by
setting Fτ̄ = F : [0, t∗] × Vτ̄ → Vτ̄ . Given a subtree τ = (τ1, . . . , τm) ∈ T , we now
assume by induction that

Fτ : [0, t∗]× Vτ → Vτ

is already defined. For each i = 1, . . . ,m, we need to determine the tensor-valued

function Fτi that appears in the subflow Φ
(i)
τ of the recursive TTN integrator. For

the initial data Y 0
τ = C0

τ ×0 Iτ X
m
i=1 U0

τi the subflow Φ
(i)
τ given by Algorithm 6 first

computes the QR decomposition

Mati(C
0
τ)> = Q0

τi S0,>
τi ,

where Q0
τi ∈ Rrτr¬τi×rτi with r¬τi =

∏
j 6=i rτj has orthonormal columns and S0

τi ∈
Rrτi×rτi . Since

Y 0
τ = C0

τ ×0 Iτ X
m
i=1 U0

τi = Teni(S
0
τi Q0,>

τi)×0 Iτ X
m
i=1 U0

τi

= Teni(Q
0,>
τi)×0 Iτ Xj 6=i U0

τj ×i(U
0
τi S0

τi),

we then have the SVD-like decomposition

Mati(Y
0
τ) = U0

τi S0
τi V0,>

τi (4.2)

with the (computationally inaccessible) matrix

V0
τi = Mati(Teni(Q

0,>
τi)×0 Iτ Xj 6=i U0

τj)
> ∈ Rrτn¬τi×rτi

for n¬τi =
∏
j 6=i nτj = nτ/nτi . We note that both U0

τi and V0
τi have orthonormal

columns.
Like in Algorithm 2 for the subflow Φ(i) of the Tucker integrator, we consider the

differential equation for Kτi(t) ∈ Rnτi×rτi ,

K̇τi(t) = Fτi(t,Kτi(t)),

Kτi(t0) = U0
τi S0

τi ,
(4.3)

where

Fτi(Kτi) = Mati
(
Fτ (t,Teni(Kτi V0,>

τi))
)
V0
τi .

Algorithm 6 retensorizes this differential equation and solves it approximately by
recurrence down to the leaves. By definition of the tree tensor network, there exists
X0
τi ∈ Vτi such that

U0
τi = Mat0(X0

τi)
>, i.e., X0

τi = Ten0(U0,>
τi).

13

This implies that the initial condition in (4.3) can be rewritten as

Kτi(t0) = U0
τi S0

τi = Mat0(X0
τi)
>S0

τi = Mat0(X0
τi ×0 S0,>

τi)>,

which is the initial value chosen in Algorithm 6. We introduce

Yτi(t) = Ten0(Kτi(t)
>), i.e., Kτi(t) = Mat0(Yτi(t))

>.

By substitution, (4.3) can be rewritten as

Ẏτi(t) = Fτi(t, Yτi(t))

Yτi(t0) = Y 0
τi := X0

τi ×0 S0,>
τi ,

where

Fτi(t, Yτi) = Ten0

(
Fτi(t,Mat0(Yτi)

>) (4.4)

= Ten0

((
Mati(Fτ (t,Teni(Mat0(Yτi)

>V0,>
τi)))V0

τi

)>)
.

The construction of the tensor-valued function Fτi becomes more transparent by in-
troducing the prolongation

πτ,i(Yτi) := Teni
(
(V0

τi Mat0(Yτi))
>) ∈ Vτ for Yτi ∈ Vτi (4.5)

and the restriction

π†τ,i(Zτ) := Ten0

(
(Mati(Zτ) V0

τi)
>) ∈ Vτi , for Zτ ∈ Vτ , (4.6)

where the tensorization Ten0 is for a matrix in Rrτi×nτi according to the dimensions
of the subtrees of τi.

We note the following properties.
Lemma 4.1. Let τ = (τ1, . . . , τm) and i = 1, . . . ,m. The restriction π†τ,i : Vτ →

Vτi is both a left inverse and the adjoint (with respect to the tensor Euclidean inner
product) of the prolongation πτ,i : Vτi → Vτ , that is,

π†τ,i(πτ,i(Yτi)) = Yτi for Yτi ∈ Vτi (4.7)

〈πτ,i(Yτi), Zτ 〉Vτ = 〈Yτi , π
†
τ,i(Zτ)〉Vτi for Yτi ∈ Vτi , Zτ ∈ Vτ . (4.8)

Moreover, ‖πτ,i(Yτi)‖Vτ = ‖Yτi‖Vτi and ‖π†τ,i(Zτ)‖Vτi ≤ ‖Zτ‖Vτ , where the norms are
the tensor Euclidean norms.

Proof. Since V0,>
τi V0

τi = I, we obtain (4.7). Using that the tensorization Teni
is the adjoint of the matricization Mati for the Frobenius inner product and that
taking transposes in both matrices of a Frobenius inner product does not change the
inner product, we arrive at (4.8). The norm equality follows from the definition (4.5)
and the fact that the matrix V0

τi has orthonormal columns. The norm bound follows
from (4.6) on noting the general matrix norm inequality ‖AB‖F ≤ ‖A‖2 ‖B‖F and
the fact that ‖V0,>

τi ‖2 = 1.

We emphasize that the mappings πτ,i and π†τ,i depend on the initial data Y 0
τ . We

observe that we can write (4.4) more compactly as Fτi = π†τ,i ◦Fτ ◦πτ,i. For the initial
data we find from (4.2) and (4.3) that

Y 0
τi = Ten0(Kτi(t0)>) = Ten0

(
(U0

τi S0
τi)
>) = Ten0

(
(Mati(Y

0
τ) V0

τi)
>) = π†τ,i(Y

0
τ).

14

We thus arrive at the following.
Definition 4.2. For the given tensor-valued function Fτ̄ = F : [t0, t

∗] × Vτ̄ →
Vτ̄ and a tree tensor network Y 0

τ̄ ∈ Mτ̄ , we define recursively for each tree τ =
(τ1, . . . , τm) ∈ T (τ̄) and for i = 1, . . . ,m

Fτi = π†τ,i ◦ Fτ ◦ πτ,i

Y 0
τi = π†τ,i(Y

0
τ).

These are the nonlinear operators and initial data that are used in the recursive
TTN integrator. We remark that their construction has a formal similarity to that of
operators and functions in multilevel methods; cf. [7].

An important observation is the following.
Lemma 4.3. If the initial tree tensor network Y 0

τ̄ has full tree rank (rσ)σ≤τ̄ , then
Y 0
τ has full tree rank (rσ)σ≤τ for every subtree τ ≤ τ̄ .

Proof. Let τ = (τ1, . . . , τm) ∈ T (τ̄) and i = 1, . . . ,m. From the above derivation
we have, with the tensor network Xτi = Ten0(U0,>

τi) of full tree rank,

Y 0
τi = Ten0((U0

τi S0
τi)
>) = X0

τi ×0 S0,>
τi .

If Y 0
τ has full tree rank, then S0

τi is invertible, and hence also Y 0
τi has full tree rank.

By induction we find that for every subtree τ ≤ τ̄ , the restricted initial tensor Y 0
τ has

full tree rank.
In terms of the manifold (see Lemma 2.5)

Mτ =M(τ, (n`)`∈L(τ), (rσ)σ≤τ) (4.9)

of tree tensor networks for the tree τ ∈ T of given dimensions (n`)`∈L(τ) and full
tree rank (rσ)σ≤τ , Lemma 4.3 can be restated as saying that for τ = (τ1, . . . , τm)

and Y 0
τ ∈ Mτ , the restriction π†τ,i(Y

0
τ) is in Mτi . This statement is not true for

an arbitrary Yτ ∈ Mτ that is different from Y 0
τ (recall that the chosen restriction

operator π†τ,i depends on Y 0
τ). In particular, a loss of rank occurs if for some j, the

basis matrices are such that U0,>
τj Uτj is a singular rτj × rτj matrix. However, for the

prolongation we have the following.
Lemma 4.4. Let τ = (τ1, . . . , τm) ∈ T and i = 1, . . . ,m. If Yτi ∈ Mτi , then the

prolongation πτ,i(Yτi) is in Mτ .
Proof. We have, using the definition of V0

τi and writing Uτi := Mat0(Yτi)
>,

πτ,i(Yτi) = Teni
(
(V0

τi Mat0(Yτi))
>)

= Teni
(
(Mati(Teni(Q

0,>
τi)×0 Iτ Xj 6=i U0

τj)
>Mat0(Yτi))

>)
= Teni

(
Uτi Mati(Teni(Q

0,>
τi)×0 Iτ Xj 6=i U0

τj)
)

= Teni(Q
0,>
τi)×0 Iτ Xj 6=i U0

τj ×i Uτi ,

which is of full tree rank.

4.3. QR decomposition. Given a tree τ = (τ1, . . . , τm) ∈ T , a critical step in
the recursive TTN integrator is computing the QR-decomposition of Kτ (t1).
The matrix Kτ (t1) can be extremely large and this may affect the computational
cost of the recursive TTN integrator. This difficulty is overcome if the tree tensor

15

network is orthonormal: the QR-decomposition of the full matrix is equivalent to the
QR-decomposition of the matricization of a small core tensor. In fact, by construction
we have that

Kτ (t1) = Mat0(Yτ)>,

where

Yτ = Cτ ×0 Iτ X
m
i=1 Uτi .

This implies that

Kτ (t1) =
(m⊗
i=1

Uτi

)
Mat0(Cτ)>.

We recall that the Kronecker product of orthonormal matrices is orthonormal. To
conclude, it suffices to perform a QR-decomposition of the small matrix Mat0(Cτ)> ∈
Rrτ1 ...rτm×rτ .

4.4. Efficient computation of the prolongation πτ,i. The construction of

the extremely large matrix V0,>
τi appearing in the integrator must be avoided. In fact,

recalling that

V0,>
τi = Mati(Teni(Q

0,>
τi)Xj 6=i U0

τj) ∈ Rrτi×rτn¬τi

the mapping πτ,i can be easily computed,

πτ,i(Y) = Teni(Mat0(Y)>V0,>
τi)

= Teni(Mat0(Y)>Mati(Teni(Q
0,>
τi)Xj 6=i U0

τj))

= Teni
(
Mati(Teni(Q

0,>
τi)×i Mat0(Y)>Xj 6=i U0

τj)
)

= Teni(Q
0,>
τi)×i Mat0(Y)>Xj 6=i U0

τj .

The action of the prolongation πτ,i on the tree tensor Y ∈ Vτi is a new larger tree

tensor having core Teni(Q
0,>
τi).

4.5. Efficient computation of the restriction π†τ,i. The computation of the

mapping π†τi(Zτ) can be done efficiently by contraction if Zτ is itself a tree tensor
network on the tree τ = (τ1, . . . , τm) with the same dimensions nτ and nτi but possibly
different bond dimensions sτ and sτi instead of rτ and rτi , respectively:

Zτ = Gτ ×0 Iτ X
m
i=1 Wτi ∈ Vτ

with the core tensor Gτ ∈ Rsτ×sτ1×···×sτm (not necessarily of full multilinear rank)
and matrices Wτi ∈ Rnτi×sτi (not necessarily of full rank). We have that

π†τi(Zτ) = Ten0(V0,>
τi Mati(Zτ)>)

= Ten0(Q0,>
τi

(
Iτ
⊗
j 6=i

U0,>
τj

)
Mati(Zτ)>)

= Ten0(Q0,>
τi Mati(Gτ ×0 Iτ Xj 6=i(U0,>

τj Wτj)×i Wτi)
>)

= Ten0(Q0,>
τi Mati(Gτ ×0 Iτ Xj 6=i(U0,>

τj Wτj))
>W>

τi)

16

If we define the small matrix

Rτi := Q0,>
τi Mati(Gτ ×0 Iτ Xj 6=i(U0,>

τj Wτj))
> ∈ Rrτi×sτi ,

and we recall that by definition of the tree tensor network,

∃Zτi ∈ Vτi : Wτi = Mat0(Zτi)
>,

we have that,

π†τi(Zτ) = Ten0(Rτi W>
τi)

= Ten0(Rτi Mat0(Zτi))

= Ten0(Mat0(Zτi ×0 Rτi))

= Zτi ×0 Rτi .

The action of the restriction π†τi on the tree tensor network Zτ ∈ Vτ is reduced to the
multiplication of the small core tensor Gτi of Zτi with the tiny matrix Rτi .

5. Exactness property of the TTN integrator. We will show that under
a non-degeneracy condition, the TTN integrator with the tree rank (rτ) reproduces
time-dependent tree tensor networksA(t) with the same tree rank exactly at every time
step when the integrator is applied with F (t, Y) = Ȧ(t) and exact initial value Y 0 =
A(t0). Such an exactness result is already known for the special cases of projector-
splitting integrators for low-rank matrices [17], tensor trains / matrix product states
[18], and Tucker tensors [19]. The latter result will now be used in a recursive way to
prove the exactness property of the TTN integrator.

We first formulate the non-degeneracy condition. Consider a time-dependent
family of tree tensor networks A(t) of full tree rank (rτ)τ≤τ̄ , and set Y 0

τ̄ = A(t0),
for which we consider the restricted tensor networks Aτ (t) :=

(
A(t)

)
τ

defined by the

restrictions (4.6) associated with Y 0
τ̄ for the subtrees τ ≤ τ̄ . By Lemma 4.3, we then

have for every subtree τ ≤ τ̄ that

Aτ (t0) has full tree rank (rσ)σ≤τ for every subtree τ ≤ τ̄ . (5.1)

We impose the condition that the same full-rank property still holds at t1 > t0:

Aτ (t1) has full tree rank (rσ)σ≤τ for every subtree τ ≤ τ̄ . (5.2)

Theorem 5.1 (Exactness). Let A(t) be a continuously differentiable time-depen-
dent family of tree tensor networks A(t) of full tree rank (rτ)τ≤τ̄ for t0 ≤ t ≤ t1, and
suppose that the non-degeneracy condition (5.2) is satisfied. Then the recursive TTN
integrator used with the same tree rank (rτ)τ∈T (τ̄) for F (t, Y) = Ȧ(t) is exact: starting
from Y 0 = A(t0) we obtain Y 1 = A(t1) .

Proof. The result is obtained from the exactness result of the Tucker integrator
that was proved in [19] and an induction argument over the height of the trees. The
height is defined in a formal way as follows:

(i) If τ = ` ∈ L, then we set h(τ) = 0; i.e., leaves have height 0.
(ii) If τ = (τ1, . . . , τm) ∈ T , then we set h(τ) = 1 + max{h(τ1), . . . , h(τm)}.

We note that, since the restricitions π†τ for τ ≤ τ̄ do not depend on time t, time
differentiation commutes with these linear maps and we have

Ȧτ (t) :=
d

dt
Aτ (t) =

(
Ȧ(t)

)
τ
.

17

(i) Consider first trees τ = (τ1, . . . , τm) of height 1. The tree tensor network
Aτ (t) is then a Tucker tensor, which by (5.1) and (5.2) has full multilinear rank
(rτ , rτ1 , . . . , rτm) at both t = t0 and t = t1. The TTN integrator with Fτ (t, Yτ) =
Ȧτ (t) is in this case the same as the Tucker integrator of [19] and hence reproduces
Aτ (t1) exactly by [19, Theorem 4.1].

(ii) For trees of height k ≥ 2 we work with the induction hypothesis that the
recursive TTN integrator with Fτ (t, Yτ) = Ȧτ (t) is exact for all trees τ < τ̄ of height
strictly smaller than k. For a tree τ = (τ1, . . . , τm) of height k the TTN integrator is
therefore exact for the subtrees τi, and hence the recursive steps in the TTN integrator
are solved exactly. This reduces the recursive TTN integrator to the Tucker integrator
for Fτ (t, Yτ) = Ȧτ (t), where by (5.1) and (5.2), the tensor Aτ (t), viewed as a Tucker
tensor Aτ (t) = Cτ (t)Xmi=1 Uτi(t), has full multilinear rank (rτ , rτ1 , . . . , rτm) at both
t = t0 and t = t1. From the exactness result of [19, Theorem 4.1] it then follows that
the integrator reproduces Aτ (t1) exactly. This completes the induction argument.
Finally, we thus obtain the exactness result for τ̄ , which is the stated result.

6. Error bound. We derive an error bound for the integrator that is inde-
pendent of singular values of matricizations of the connecting tensors, based on the
corresponding result for Tucker tensors proved in [19], which in turn was based on
the corresponding result for matrices proved in [11]. We recall the notation Vτ for the
tensor space (4.1) andMτ for the tree tensor network manifold (4.9). We set V = Vτ̄
and M =Mτ̄ for the full tree τ̄ .

We assume that F : [0, t∗]×M→ V is Lipschitz continuous and bounded,

‖F (t, Y)− F (t, Ỹ)‖ ≤ L‖Y − Ỹ ‖ for all Y, Ỹ ∈M, (6.1)

‖F (t, Y)‖ ≤ B for all Y ∈M. (6.2)

Here and in the following, the chosen norm ‖·‖ is the tensor Euclidean norm. As usual
in the numerical analysis of ordinary differential equations, this could be weakened to
a local Lipschitz condition and local bound in a neighborhood of the exact solution
A(t) of the tensor differential equation (1.1) to the initial data A(t0) = A0 ∈ V, but
for convenience we will work with the global Lipschitz condition and bound.

We further assume that F (t, Y) is in the tangent space TYM up to a small
remainder: with P (Y) denoting the orthogonal projection onto TYM, we assume
that for some ε > 0,

‖F (t, Y)− P (Y)F (t, Y)‖ ≤ ε (6.3)

for all (t, Y) ∈ [0, t∗]×M in some neighborhood of the exact solution (t, A(t)).
Finally, we assume that the initial value A0 and the starting value Y 0 ∈ M of

the numerical method are δ-close:

‖Y 0 −A0‖ ≤ δ. (6.4)

We write Y n for the numerical approximation obtained after n time steps of the
TTN integrator with step size h > 0.

Theorem 6.1. Under the above assumptions, the errors of the recursive TTN
integrator at tn = nh are bounded by

‖Y n −A(tn)‖ ≤ c0δ + c1ε+ c2h for tn ≤ t∗,

where ci depend only on L, B, t∗, and the tree τ̄ .

18

The proof works recursively, based on the corresponding result for Tucker tensors
given in [19] and using a similar induction argument to the proof of Theorem 5.1.
To make this feasible, we need that the conditions on F = Fτ̄ are also satisfied for
the reduced functions Fτ for every subtree τ ≤ τ̄ , which are constructed recursively
in Definition 4.2. For Yτ ∈ Mτ , let Pτ (Yτ) be the orthogonal projection onto the
tangent space TYτMτ . We have the following remarkable property.

Lemma 6.2. If Fτ̄ = F satisfies conditions (6.1)–(6.3), then we have for every
subtree τ ≤ τ̄ , with the same L, B, and ε,

‖Fτ (t, Yτ)− Fτ (t, Ỹτ)‖ ≤ L‖Yτ − Ỹτ‖ for all Yτ , Ỹτ ∈Mτ , (6.5)

‖Fτ (t, Yτ)‖ ≤ B for all Yτ ∈Mτ (6.6)

and

‖Fτ (t, Yτ)− Pτ (Yτ)Fτ (t, Yτ)‖ ≤ ε (6.7)

for all (t, Yτ) ∈ [0, t∗]×Mτ in some neighborhood of the restricted exact solution.
The proof of the ε-bound (6.7) is based on the following lemma.
Lemma 6.3. Let τ = (τ1, . . . , τm) ∈ T and i = 1, . . . ,m. Let Mτ :Mτ → Vτ be

such that it maps into the tangent space:

Mτ (Yτ) ∈ TYτMτ for all Yτ ∈Mτ .

Let π†τ,i and πτ,i be the restrictions and prolongations corresponding to some Y 0
τ ∈

Mτ , and define

Mτi = π†τ,i ◦Mτ ◦ πτ,i.

Then, Mτi :Mτi → Vτi also maps into the tangent space:

Mτi(Yτi) ∈ TYτiMτi for all Yτi ∈Mτi .

Proof. Let Yτi ∈ Mτi and define Yτ = πτ,i(Yτi), which by Lemma 4.4 is in
Mτ . By assumption, Mτ (Yτ) ∈ TYτMτ , and hence there exists a path Xτ (θ) ∈ Mτ ,
for θ near 0, with Xτ (0) = Yτ and d

dθ |θ=0Xτ = Mτ (Yτ). Then, the restricted path

Xτi(θ) = π†τ,iXτ (θ) has

Xτi(0) = π†τ,i(Yτ) = π†τ,i(πτ,i(Yτi)) = Yτi ,

because π†τ,i is a left inverse of πτ,i by Lemma 4.1. By local continuity of the rank,
we then have Xτi(θ) ∈Mτi . Moreover,

d

dθ

∣∣∣∣
θ=0

Xτi = π†τ,i
d

dθ

∣∣∣∣
θ=0

Xτ = π†τ,iMτ (Yτ) = Mτi(Yτi).

Hence, Mτi(Yτi) ∈ TYτiMτi .
Proof. (of Lemma 6.2) The Lipschitz bound and the norm bound of Fτ follow

directly from the corresponding bounds of F , using that restriction and prolongation
are operators of norm 1 by Lemma 4.1. It then remains to show (6.7). For Y ∈ M
we write

F (t, Y) = P (Y)F (t, Y) + (I − P (Y))F (t, Y) ≡M(t, Y) +R(t, Y)

19

with M(t, Y) ∈ TYM and ‖R(t, Y)‖ ≤ ε by (6.3). We let Mτ̄ = M and Rτ̄ = R and
define recursively, for τ = (τ1, . . . , τm) ≤ τ̄ ,

Mτi = π†τ,i ◦Mτ ◦ πτ,i,

Rτi = π†τ,i ◦Rτ ◦ πτ,i.

By Lemma 6.3, for every subtree τ ≤ τ̄ , Mτ maps into the tangent space:

Mτ (Yτ) ∈ TYτMτ for all Yτ ∈Mτ .

Hence,

(I − Pτ (Yτ))Fτ (t, Yτ) = (I − Pτ (Yτ))Rτ (t, Yτ),

and once again, since restriction and prolongation are operators of norm 1, it follows
from (6.3) that

‖(I − Pτ (Yτ))Fτ (t, Yτ)‖ ≤ ‖Rτ (t, Yτ)‖ ≤ ε.

This proves Lemma 6.2.

Proof. (of Theorem 6.1) It suffices to assume that Y 0 = A(t0) ∈ M, since the
difference of exact solutions of the differential equation (1.1)corresponding to initial
values that differ at most by δ, is bounded by c0δ for t0 ≤ t ≤ t∗ under the imposed
Lipschitz condition on F . Moreover, it then suffices to show that the local error after
one time step is of magnitude O(h(ε + h)). The result for the global error is then
obtained with the familiar Lady Windermere’s fan argument, as in [11] and [19].

As in the proof of Theorem 5.1, we proceed by induction on the height of the
tree.

For trees of height 1, the recursive TTN integrator coincides with the Tucker
integrator of [19], for which the error estimate has been proved in [19].

For trees τ = (τ1, . . . , τm) of higher height, we observe that in the recursive TTN
integrator, the differential equations for Yτi are solved approximately by intermediate
tree tensor networks with lower height, for which the O(h(ε+ h)) error bound holds
by the induction hypothesis. If instead the differential equations for Yτi were solved
exactly, then the integrator would again reduce to the Tucker integrator and error in
this idealized Yτ after one step would be O(h(ε+h)). By studying the influence of the
inexact solution of the differential equation for Yτi on the error (as in [11, Subsection
2.6.3]), we find that the error of the actual Yτ is still of magnitude O(h(ε + h)). We
omit the details of this perturbation argument, since it is cumbersome to write down
explicitly and requires no ideas beyond using the triangle inequality.

This completes the induction argument. Finally, we thus obtain the error bound
for τ̄ , which yields the result of Theorem 6.1.

7. Numerical Experiments. In various specific tree formats, the recursive
TTN integrator has already been applied to problems appearing in kinetic theory
and quantum dynamics. The numerical integrator presented in this paper generalizes
and provides a systematic theoretical approach to the results presented in [4, 18, 19].
In the following numerical examples, we choose the tree of Figure 2.1.

The dimensions of the leaves and the ranks are taken the same for all the nodes
and are fixed to n = 16 and r = 5.

20

7.1. Tree tensor addition. Let τ̄ be the given tree with associated rank rτ̄ = 1
and let A ∈Mτ̄ and B ∈ TAMτ̄ . We consider the addition of two given tensors,

C = A+B,

where C ∈ Vτ̄ is a tree tensor network not necessarily of the same rank and we want
to compute a tree tensor network retraction to Mτ̄ . Such a retraction is typically
required in optimization problems on low-rank manifolds and needs to be computed
in each iterative step. The approach considered here consists of reformulating the
addition problem as the solution of the following differential equation at time t = 1:

Ċ(t) = B, C(0) = A.

We compare the approximation Y 1 ∈Mτ̄ , computed with one time step of the recur-
sive TTN integrator with step size h = 1, with the retraction obtained by computing
the full addition C and recursively retracting to the manifoldMτ for each τ ≤ τ̄ . For
the latter, we use the built-in function tucker als of the Tensor Toolbox Package
[2]; we recursively apply the function to the full tensor C and its retensorized basis
matrices.

The advantage of the retraction via the TTN integrator is that the result is com-
pletely built within the tree tensor network manifold. No further retraction is needed,
which is favorable for storage and computational complexity.

10
-2

10
-1

10
0

||B||

10
-5

10
-4

10
-3

10
-2

10
-1

e
rr

o
r

Fig. 7.1. Error of retracted tree tensor network sum.

We observe that decreasing the norm of the tensor B reduces the approximation
error as expected, proportional to ‖B‖2.

7.2. Verification of the exactness property. We consider a tree tensor net-
work A0 ∈ Mτ̄ . For each subtree τ ≤ τ̄ , let Wτ ∈ Rrτ×rτ be a skew-symmetric
matrix which we choose of norm 1. We consider a time-dependent tree tensor network
A(t) ∈Mτ̄ such that A(t0) = A0 with basis matrices propagated in time through

U`(t) = etW` U0
` , ` ∈ L(τ̄)

21

and the connection tensors changed according to

Cτ (t) = C0
τ ×0 e

tWτ , τ ≤ τ̄, τ /∈ L(τ̄).

The time-dependent tree tensor network does not change rank and as predicted by
Theorem 5.1, it is reproduced exactly by the recursive TTN integrator, up to round-
off errors. The absolute errors ‖Yn − A(tn)‖ calculated at time tn = nh with step
sizes h = 0.1, 0.01, 0.001 until time t∗ = 1 are shown in Figure 7.2.

0 0.2 0.4 0.6 0.8 1 1.2

Time

10
-16

10
-15

10
-14

10
-13

10
-12

E
rr

o
r

h=0.1

h=0.01

h=0.001

Fig. 7.2. Error vs. time in a case of exactness up to round-off errors.

Acknowledgements. Funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) – Project-ID 258734477 – SFB 1173 and DFG GRK
1838.

REFERENCES

[1] P.-A. Absil and I. V. Oseledets. Low-rank retractions: a survey and new results. Comput.
Optim. Appl., 62(1):5–29, 2015.

[2] B. W. Bader, T. G. Kolda, et al. Matlab tensor toolbox version 2.6. Available online, February
2015.

[3] L. De Lathauwer, B. De Moor, and J. Vandewalle. A multilinear singular value decomposition.
SIAM J. Matrix Anal. Appl., 21:1253–1278, 2000.

[4] L. Einkemmer and C. Lubich. A low-rank projector-splitting integrator for the Vlasov-Poisson
equation. SIAM J. Sci. Comput., 40(5):B1330–B1360, 2018.

[5] A. Falcó, W. Hackbusch, and A. Nouy. Geometric structures in tensor representations (final
release). arXiv preprint arXiv:1505.03027, 2015.

[6] A. Falcó, W. Hackbusch, and A. Nouy. Tree-based tensor formats. SeMA J., pages 1–15, 2018.
[7] W. Hackbusch. Multigrid methods and applications, volume 4 of Springer Series in Computa-

tional Mathematics. Springer-Verlag, Berlin, 1985.
[8] W. Hackbusch. Tensor Spaces and Numerical Tensor Calculus. Springer, 2012.
[9] J. Haegeman, C. Lubich, I. Oseledets, B. Vandereycken, and F. Verstraete. Unifying time

evolution and optimization with matrix product states. Physical Review B, 94(16):165116,
2016.

[10] U. Helmke and J. B. Moore. Optimization and dynamical systems. Communications and
Control Engineering Series. Springer-Verlag, London, 1994.

[11] E. Kieri, C. Lubich, and H. Walach. Discretized dynamical low-rank approximation in the
presence of small singular values. SIAM J. Numer. Anal., 54:1020–1038, 2016.

22

[12] O. Koch and C. Lubich. Dynamical low-rank approximation. SIAM J. Matrix Anal. Appl.,
29(2):434–454, 2007.

[13] T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM Review, 51:455–
500, 2009.

[14] P. Kramer and M. Saraceno. Geometry of the time-dependent variational principle in quantum
mechanics, volume 140 of Lecture Notes in Physics. Springer-Verlag, Berlin-New York,
1981.

[15] C. Lubich. From quantum to classical molecular dynamics: reduced models and numerical anal-
ysis. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS),
Zürich, 2008.

[16] C. Lubich. Time integration in the multiconfiguration time-dependent Hartree method of
molecular quantum dynamics. Appl. Math. Res. Express, 2015:311–328, 2015.

[17] C. Lubich and I. V. Oseledets. A projector-splitting integrator for dynamical low-rank approx-
imation. BIT, 54:171–188, 2014.

[18] C. Lubich, I. V. Oseledets, and B. Vandereycken. Time integration of tensor trains. SIAM J.
Numer. Anal., 53:917–941, 2015.

[19] C. Lubich, B. Vandereycken, and H. Walach. Time integration of rank-constrained Tucker
tensors. SIAM J. Numer. Anal., 56:1273–1290, 2018.

[20] I. V. Oseledets. Tensor-train decomposition. SIAM J. Sci. Comput., 33(5):2295–2317, 2011.
[21] D. Perez-Garćıa, F. Verstraete, M. M. Wolf, and J. I. Cirac. Matrix product state representa-

tions. Quantum Information and Computation, 7(5-6):401–430, 2007.
[22] Y.-Y. Shi, L.-M. Duan, and G. Vidal. Classical simulation of quantum many-body systems

with a tree tensor network. Physical Review A, 74(2):022320, 2006.
[23] A. Uschmajew and B. Vandereycken. The geometry of algorithms using hierarchical tensors.

Linear Algebra Appl., 439(1):133–166, 2013.
[24] H. Wang and M. Thoss. Multilayer formulation of the multiconfiguration time-dependent

Hartree theory. J. Chem. Phys., 119(3):1289–1299, 2003.

23

