3 research outputs found

    Dynamic view-dependent visualization of unstructured tetrahedral volumetric meshes

    Get PDF
    Visualization of large volumetric datasets has always been an important problem. Due to the high computational requirements of volume-rendering techniques, achieving interactive rates is a real challenge. We present a selective refinement scheme that dynamically refines the mesh according to the camera parameters. This scheme automatically determines the impact of different parts of the mesh on the output image and refines the mesh accordingly, without needing any user input. The view-dependent refinement scheme uses a progressive mesh representation that is based on an edge collapse-based tetrahedral mesh simplification algorithm. We tested our view-dependent refinement framework on an existing state-of-theart volume renderer. Thanks to low overhead dynamic view-dependent refinement, we achieve interactive frame rates for rendering common datasets at decent image resolutions. © 2012 The Visualization Society of Japan

    Dynamic view-dependent visualization of unstructured tetrahedral volumetric meshes

    No full text
    Visualization of large volumetric datasets has always been an important problem. Due to the high computational requirements of volume-rendering techniques, achieving interactive rates is a real challenge. We present a selective refinement scheme that dynamically refines the mesh according to the camera parameters. This scheme automatically determines the impact of different parts of the mesh on the output image and refines the mesh accordingly, without needing any user input. The view-dependent refinement scheme uses a progressive mesh representation that is based on an edge collapse-based tetrahedral mesh simplification algorithm. We tested our view-dependent refinement framework on an existing state-of-the-art volume renderer. Thanks to low overhead dynamic view-dependent refinement, we achieve interactive frame rates for rendering common datasets at decent image resolutions

    Dynamic view-dependent visualization of unstructured tetrahedral volumetric meshes

    Get PDF
    Visualization of large volumetric datasets has always been an important problem. Due to the high computational requirements of volume-rendering techniques, achieving interactive rates is a real challenge. We present a selective refinement scheme that dynamically refines the mesh according to the camera parameters. This scheme automatically determines the impact of different parts of the mesh on the output image and refines the mesh accordingly, without needing any user input. The view-dependent refinement scheme uses a progressive mesh representation that is based on an edge collapse-based tetrahedral mesh simplification algorithm. We tested our view-dependent refinement framework on an existing state-of-the-art volume renderer. Thanks to low overhead dynamic view-dependent refinement, we achieve interactive frame rates for rendering common datasets at decent image resolutions
    corecore