3 research outputs found

    Available Bandwidth and RSRP Based Handover Algorithm for LTE/LTE-Advanced Networks Tested in LTE-Sim Simulator

    Get PDF
    In this paper, we propose a new algorithm that improves the performance of the operation of Handover (HO) in LTE-Advanced (LTE-A) networks. As recognized, Mobility Management (MM) is an important pillar in LTE/LTE-A systems to provide high quality of service to users on the move. The handover algorithms define the method and the steps to follow to ensure a reliable transfer of the UEs from one cell to another without interruption or degradation of the services offered by the network. In this paper, the authors proposed a new handover algorithm for LTE/LTE-A networks based on the measurement and calculation of two important parameters, namely the available bandwidth and the Received Power (RSRP) at the level of eNodeBs. The proposed scheme named LTE Available Bandwidth and RSRP Based Handover Algorithm (LABRBHA) was tested in comparison with well-known algorithms in the literature as the LHHA, LHHAARC and the INTEGRATOR scheme using the open source simulator LTE-Sim. Finally, the network performances were investigated via three indicators: the number of lost packets during the handover operation, the latency as well as the maximum system throughput. The results reported that our algorithm shows remarkable improvements over other transfer schemes

    Predicting the Probability of Spectrum Sensing with LMS Process in Heterogeneous LTE Networks

    Get PDF
    Mobile communication systems present an actuality subject in academic and industrial research activities due to several phenomena such as interferences, multipath, fading, and shadowing. All this lead to a severe perturbation on handover mechanism which depends on specific reports, essentially, reference signal received power (RSRP) and signal-to-interference and noise ratio(SINR). In this paper, we design a new technique in handover domain; it consists of combining energy detection method used in cognitive radio with least mean square (LMS) process in order to prognosticate the handover impact in a realistic scenario of heterogeneous LTE network. More exactly, technique sense of the word "triggering" will be changed to a probability of detection Pd. The proposed algorithm cycle follows two main steps; Firstly, predict at what time the absence of spectrum (primary user) will occur, using a predicted sensing probability Pˆd (t+p) . Secondly, search others spectrums in this time by calculating Pd(t) for each sensed signal and hand-off secondary user in the best spectrum. The results achieved of the simulation are evaluating, it shows that the proposed method predict the original Pd correctly with minimal errors and select the best spectrum successfully

    Dynamic user equipment-based hysteresis-adjusting algorithm in LTE femtocell networks

    No full text
    In long-term evolution (LTE) femtocell networks, hysteresis is one of the main parameters which affects the performance of handover with a number of unnecessary handovers, including ping-pong, early, late and incorrect handovers. In this study, the authors propose a hybrid algorithm that aims to obtain the optimised unique hysteresis for an individual mobile user moving at various speeds during the inbound handover process. This algorithm is proposed for two-tier scenarios with macro and femto. The centralised function in this study evaluates the overall handover performance indicator. Then, the handover aggregate performance indicator (HAPI) is used to determine an optimal configuration. Based on the received reference signal-to-interference-plus-noise ratio, the distributed function residing on the user equipment (UE) is able to obtain an optimal unique hysteresis for the individual UE. Theoretical analysis with three indication boundaries is provided to evaluate the proposed algorithm. A system-level simulation is presented, and the proposed algorithm outperformed the existing approaches in terms of handover failure, call-drop and redundancy handover ratios and also achieved better overall system performance
    corecore