64,884 research outputs found

    Security in Pervasive Computing: Current Status and Open Issues

    Get PDF
    Million of wireless device users are ever on the move, becoming more dependent on their PDAs, smart phones, and other handheld devices. With the advancement of pervasive computing, new and unique capabilities are available to aid mobile societies. The wireless nature of these devices has fostered a new era of mobility. Thousands of pervasive devices are able to arbitrarily join and leave a network, creating a nomadic environment known as a pervasive ad hoc network. However, mobile devices have vulnerabilities, and some are proving to be challenging. Security in pervasive computing is the most critical challenge. Security is needed to ensure exact and accurate confidentiality, integrity, authentication, and access control, to name a few. Security for mobile devices, though still in its infancy, has drawn the attention of various researchers. As pervasive devices become incorporated in our day-to-day lives, security will increasingly becoming a common concern for all users - - though for most it will be an afterthought, like many other computing functions. The usability and expansion of pervasive computing applications depends greatly on the security and reliability provided by the applications. At this critical juncture, security research is growing. This paper examines the recent trends and forward thinking investigation in several fields of security, along with a brief history of previous accomplishments in the corresponding areas. Some open issues have been discussed for further investigation

    Context-aware Authorization in Highly Dynamic Environments

    Get PDF
    Highly dynamic computing environments, like ubiquitous and pervasive computing environments, require frequent adaptation of applications. Context is a key to adapt suiting user needs. On the other hand, standard access control trusts users once they have authenticated, despite the fact that they may reach unauthorized contexts. We analyse how taking into account dynamic information like context in the authorization subsystem can improve security, and how this new access control applies to interaction patterns, like messaging or eventing. We experiment and validate our approach using context as an authorization factor for eventing in Web service for device (like UPnP or DPWS), in smart home security

    CRiBAC: Community-centric role interaction based access control model

    Get PDF
    As one of the most efficient solutions to complex and large-scale problems, multi-agent cooperation has been in the limelight for the past few decades. Recently, many research projects have focused on context-aware cooperation to dynamically provide complex services. As cooperation in the multi-agent systems (MASs) becomes more common, guaranteeing the security of such cooperation takes on even greater importance. However, existing security models do not reflect the agents' unique features, including cooperation and context-awareness. In this paper, we propose a Community-based Role interaction-based Access Control model (CRiBAC) to allow secure cooperation in MASs. To do this, we refine and extend our preliminary RiBAC model, which was proposed earlier to support secure interactions among agents, by introducing a new concept of interaction permission, and then extend it to CRiBAC to support community-based cooperation among agents. We analyze potential problems related to interaction permissions and propose two approaches to address them. We also propose an administration model to facilitate administration of CRiBAC policies. Finally, we present the implementation of a prototype system based on a sample scenario to assess the proposed work and show its feasibility. Ā© 2012 Elsevier Ltd. All rights reserved

    Context for Ubiquitous Data Management

    Get PDF
    In response to the advance of ubiquitous computing technologies, we believe that for computer systems to be ubiquitous, they must be context-aware. In this paper, we address the impact of context-awareness on ubiquitous data management. To do this, we overview different characteristics of context in order to develop a clear understanding of context, as well as its implications and requirements for context-aware data management. References to recent research activities and applicable techniques are also provided

    CamFlow: Managed Data-sharing for Cloud Services

    Full text link
    A model of cloud services is emerging whereby a few trusted providers manage the underlying hardware and communications whereas many companies build on this infrastructure to offer higher level, cloud-hosted PaaS services and/or SaaS applications. From the start, strong isolation between cloud tenants was seen to be of paramount importance, provided first by virtual machines (VM) and later by containers, which share the operating system (OS) kernel. Increasingly it is the case that applications also require facilities to effect isolation and protection of data managed by those applications. They also require flexible data sharing with other applications, often across the traditional cloud-isolation boundaries; for example, when government provides many related services for its citizens on a common platform. Similar considerations apply to the end-users of applications. But in particular, the incorporation of cloud services within `Internet of Things' architectures is driving the requirements for both protection and cross-application data sharing. These concerns relate to the management of data. Traditional access control is application and principal/role specific, applied at policy enforcement points, after which there is no subsequent control over where data flows; a crucial issue once data has left its owner's control by cloud-hosted applications and within cloud-services. Information Flow Control (IFC), in addition, offers system-wide, end-to-end, flow control based on the properties of the data. We discuss the potential of cloud-deployed IFC for enforcing owners' dataflow policy with regard to protection and sharing, as well as safeguarding against malicious or buggy software. In addition, the audit log associated with IFC provides transparency, giving configurable system-wide visibility over data flows. [...]Comment: 14 pages, 8 figure

    ConXsense - Automated Context Classification for Context-Aware Access Control

    Full text link
    We present ConXsense, the first framework for context-aware access control on mobile devices based on context classification. Previous context-aware access control systems often require users to laboriously specify detailed policies or they rely on pre-defined policies not adequately reflecting the true preferences of users. We present the design and implementation of a context-aware framework that uses a probabilistic approach to overcome these deficiencies. The framework utilizes context sensing and machine learning to automatically classify contexts according to their security and privacy-related properties. We apply the framework to two important smartphone-related use cases: protection against device misuse using a dynamic device lock and protection against sensory malware. We ground our analysis on a sociological survey examining the perceptions and concerns of users related to contextual smartphone security and analyze the effectiveness of our approach with real-world context data. We also demonstrate the integration of our framework with the FlaskDroid architecture for fine-grained access control enforcement on the Android platform.Comment: Recipient of the Best Paper Awar

    The SECURE collaboration model

    Get PDF
    The SECURE project has shown how trust can be made computationally tractable while retaining a reasonable connection with human and social notions of trust. SECURE has produced a well-founded theory of trust that has been tested and refined through use in real software such as collaborative spam filtering and electronic purse. The software comprises the SECURE kernel with extensions for policy specification by application developers. It has yet to be applied to large-scale, multi-domain distributed systems taking different application contexts into account. The project has not considered privacy in evidence distribution, a crucial issue for many application domains, including public services such as healthcare and police. The SECURE collaboration model has similarities with the trust domain concept, embodying the interaction set of a principal, but SECURE is primarily concerned with pseudonymous entities rather than domain-structured systems
    • ā€¦
    corecore