67 research outputs found

    Maximum-Entropy-Model-Enabled Complexity Reduction Algorithm in Modern Video Coding Standards

    Get PDF
    Symmetry considerations play a key role in modern science, and any differentiable symmetry of the action of a physical system has a corresponding conservation law. Symmetry may be regarded as reduction of Entropy. This work focuses on reducing the computational complexity of modern video coding standards by using the maximum entropy principle. The high computational complexity of the coding unit (CU) size decision in modern video coding standards is a critical challenge for real-time applications. This problem is solved in a novel approach considering CU termination, skip, and normal decisions as three-class making problems. The maximum entropy model (MEM) is formulated to the CU size decision problem, which can optimize the conditional entropy; the improved iterative scaling (IIS) algorithm is used to solve this optimization problem. The classification features consist of the spatio-temporal information of the CU, including the rate–distortion (RD) cost, coded block flag (CBF), and depth. For the case analysis, the proposed method is based on High Efficiency Video Coding (H.265/HEVC) standards. The experimental results demonstrate that the proposed method can reduce the computational complexity of the H.265/HEVC encoder significantly. Compared with the H.265/HEVC reference model, the proposed method can reduce the average encoding time by 53.27% and 56.36% under low delay and random access configurations, while Bjontegaard Delta Bit Rates (BD-BRs) are 0.72% and 0.93% on average

    Complexity control of HEVC through quadtree depth estimation

    Full text link

    Low complexity in-loop perceptual video coding

    Get PDF
    The tradition of broadcast video is today complemented with user generated content, as portable devices support video coding. Similarly, computing is becoming ubiquitous, where Internet of Things (IoT) incorporate heterogeneous networks to communicate with personal and/or infrastructure devices. Irrespective, the emphasises is on bandwidth and processor efficiencies, meaning increasing the signalling options in video encoding. Consequently, assessment for pixel differences applies uniform cost to be processor efficient, in contrast the Human Visual System (HVS) has non-uniform sensitivity based upon lighting, edges and textures. Existing perceptual assessments, are natively incompatible and processor demanding, making perceptual video coding (PVC) unsuitable for these environments. This research allows existing perceptual assessment at the native level using low complexity techniques, before producing new pixel-base image quality assessments (IQAs). To manage these IQAs a framework was developed and implemented in the high efficiency video coding (HEVC) encoder. This resulted in bit-redistribution, where greater bits and smaller partitioning were allocated to perceptually significant regions. Using a HEVC optimised processor the timing increase was < +4% and < +6% for video streaming and recording applications respectively, 1/3 of an existing low complexity PVC solution. Future work should be directed towards perceptual quantisation which offers the potential for perceptual coding gain

    Análise do HEVC escalável : desempenho e controlo de débito

    Get PDF
    Mestrado em Engenharia Eletrónica e TelecomunicaçõesEsta dissertação apresenta um estudo da norma de codificação de vídeo de alta eficiência (HEVC) e a sua extensão para vídeo escalável, SHVC. A norma de vídeo SHVC proporciona um melhor desempenho quando codifica várias camadas em simultâneo do que quando se usa o codificador HEVC numa configuração simulcast. Ambos os codificadores de referência, tanto para a camada base como para a camada superior usam o mesmo modelo de controlo de débito, modelo R-λ, que foi otimizado para o HEVC. Nenhuma otimização de alocação de débito entre camadas foi até ao momento proposto para o modelo de testes (SHM 8) para a escalabilidade do HEVC (SHVC). Derivamos um novo modelo R-λ apropriado para a camada superior e para o caso de escalabilidade espacial, que conduziu a um ganho de BD-débito de 1,81% e de BD-PSNR de 0,025 em relação ao modelo de débito-distorção existente no SHM do SHVC. Todavia, mostrou-se também nesta dissertação que o proposto modelo de R-λ não deve ser usado na camada inferior (camada base) no SHVC e por conseguinte no HEVC.This dissertation provides a study of the High Efficiency Video Coding standard (HEVC) and its scalable extension, SHVC. The SHVC provides a better performance when encoding several layers simultaneously than using an HEVC encoder in a simulcast configuration. Both reference encoders, in the base layer and in the enhancement layer use the same rate control model, R-λ model, which was optimized for HEVC. No optimal bitrate partitioning amongst layers is proposed in scalable HEVC (SHVC) test model (SHM 8). We derived a new R-λ model for the enhancement layer and for the spatial case which led to a DB-rate gain of 1.81% and DB-PSNR gain of 0.025 in relation to the rate-distortion model of SHM-SHVC. Nevertheless, we also show in this dissertation that the proposed model of R-λ should not be used neither in the base layer nor in HEVC

    Efficient video coding using visual sensitive information for HEVC coding standard

    Get PDF
    The latest high efficiency video coding (HEVC) standard introduces a large number of inter-mode block partitioning modes. The HEVC reference test model (HM) uses partially exhaustive tree-structured mode selection, which still explores a large number of prediction unit (PU) modes for a coding unit (CU). This impacts on encoding time rise which deprives a number of electronic devices having limited processing resources to use various features of HEVC. By analyzing the homogeneity, residual, and different statistical correlation among modes, many researchers speed-up the encoding process through the number of PU mode reduction. However, these approaches could not demonstrate the similar rate-distortion (RD) performance with the HM due to their dependency on existing Lagrangian cost function (LCF) within the HEVC framework. In this paper, to avoid the complete dependency on LCF in the initial phase, we exploit visual sensitive foreground motion and spatial salient metric (FMSSM) in a block. To capture its motion and saliency features, we use the dynamic background and visual saliency modeling, respectively. According to the FMSSM values, a subset of PU modes is then explored for encoding the CU. This preprocessing phase is independent from the existing LCF. As the proposed coding technique further reduces the number of PU modes using two simple criteria (i.e., motion and saliency), it outperforms the HM in terms of encoding time reduction. As it also encodes the uncovered and static background areas using the dynamic background frame as a substituted reference frame, it does not sacrifice quality. Tested results reveal that the proposed method achieves 32% average encoding time reduction of the HM without any quality loss for a wide range of videos

    Machine Learning-Based Quality-Aware Power and Thermal Management of Multistream HEVC Encoding on Multicore Servers

    Get PDF
    The emergence of video streaming applications, together with the users’ demand for high-resolution contents, has led to the development of new video coding standards, such as High Efficiency Video Coding (HEVC). HEVC provides high efficiency at the cost of increased complexity. This higher computational burden results in increased power consumption in current multicore servers. To tackle this challenge, algorithmic optimizations need to be accompanied by content-aware application-level strategies, able to reduce power while meeting compression and quality requirements. In this paper, we propose a machine learning-based power and thermal management approach that dynamically learns and selects the best encoding configuration and operating frequency for each of the videos running on multicore servers, by using information from frame compression, quality, encoding time, power, and temperature. In addition, we present a resolution-aware video assignment and migration strategy that reduces the peak and average temperature of the chip while maintaining the desirable encoding time. We implemented our approach in an enterprise multicore server and evaluated it under several common scenarios for video providers. On average, compared to a state-of-the-art technique, for the most realistic scenario, our approach improves BD-PSNR and BD-rate by 0.54 dB, and 8%, respectively, and reduces the encoding time, power consumption, and average temperature by 15.3%, 13%, and 10%, respectively. Moreover, our proposed approach increases BD-PSNR and BD-rate compared to the HEVC Test Model (HM), by 1.19 dB and 24%, respectively, without any encoding time degradation, when power and temperature constraints are relaxed

    Resource-Constrained Low-Complexity Video Coding for Wireless Transmission

    Get PDF
    corecore