621 research outputs found

    Stability and bifurcation analysis of Westwood+ TCP congestion control model in mobile cloud computing networks

    Get PDF
    In this paper, we first build up a Westwood+ TCP congestion control model with communication delay in mobile cloud computing networks. We then study the dynamics of this model by analyzing the distribution ranges of eigenvalues of its characteristic equation. Taking communication delay as the bifurcation parameter, we derive the linear stability criteria depending on communication delay. Furthermore, we study the direction of Hopf bifurcation as well as the stability of periodic solution for the Westwood+ TCP congestion control model with communication delay. We find that the Hopf bifurcation occurs when the communication delay passes a sequence of critical values. The stability and direction of the Hopf bifurcation are determined by the normal form theory and the center manifold theorem. Finally, numerical simulation is done to verify the theoretical results

    Active Queue Management for Fair Resource Allocation in Wireless Networks

    Get PDF
    This paper investigates the interaction between end-to-end flow control and MAC-layer scheduling on wireless links. We consider a wireless network with multiple users receiving information from a common access point; each user suffers fading, and a scheduler allocates the channel based on channel quality,but subject to fairness and latency considerations. We show that the fairness property of the scheduler is compromised by the transport layer flow control of TCP New Reno. We provide a receiver-side control algorithm, CLAMP, that remedies this situation. CLAMP works at a receiver to control a TCP sender by setting the TCP receiver's advertised window limit, and this allows the scheduler to allocate bandwidth fairly between the users

    TCP performance enhancement in wireless networks via adaptive congestion control and active queue management

    Get PDF
    The transmission control protocol (TCP) exhibits poor performance when used in error-prone wireless networks. Remedy to this problem has been an active research area. However, a widely accepted and adopted solution is yet to emerge. Difficulties of an acceptable solution lie in the areas of compatibility, scalability, computational complexity and the involvement of intermediate routers and switches. This dissertation rexriews the current start-of-the-art solutions to TCP performance enhancement, and pursues an end-to-end solution framework to the problem. The most noticeable cause of the performance degradation of TCP in wireless networks is the higher packet loss rate as compared to that in traditional wired networks. Packet loss type differentiation has been the focus of many proposed TCP performance enhancement schemes. Studies conduced by this dissertation research suggest that besides the standard TCP\u27s inability of discriminating congestion packet losses from losses related to wireless link errors, the standard TCP\u27s additive increase and multiplicative decrease (AIMD) congestion control algorithm itself needs to be redesigned to achieve better performance in wireless, and particularly, high-speed wireless networks. This dissertation proposes a simple, efficient, and effective end-to-end solution framework that enhances TCP\u27s performance through techniques of adaptive congestion control and active queue management. By end-to-end, it means a solution with no requirement of routers being wireless-aware or wireless-specific . TCP-Jersey has been introduced as an implementation of the proposed solution framework, and its performance metrics have been evaluated through extensive simulations. TCP-Jersey consists of an adaptive congestion control algorithm at the source by means of the source\u27s achievable rate estimation (ARE) —an adaptive filter of packet inter-arrival times, a congestion indication algorithm at the links (i.e., AQM) by means of packet marking, and a effective loss differentiation algorithm at the source by careful examination of the congestion marks carried by the duplicate acknowledgment packets (DUPACK). Several improvements to the proposed TCP-Jersey have been investigated, including a more robust ARE algorithm, a less computationally intensive threshold marking algorithm as the AQM link algorithm, a more stable congestion indication function based on virtual capacity at the link, and performance results have been presented and analyzed via extensive simulations of various network configurations. Stability analysis of the proposed ARE-based additive increase and adaptive decrease (AJAD) congestion control algorithm has been conducted and the analytical results have been verified by simulations. Performance of TCP-Jersey has been compared to that of a perfect , but not practical, TCP scheme, and encouraging results have been observed. Finally the framework of the TCP-Jersey\u27s source algorithm has been extended and generalized for rate-based congestion control, as opposed to TCP\u27s window-based congestion control, to provide a design platform for applications, such as real-time multimedia, that do not use TCP as transport protocol yet do need to control network congestion as well as combat packet losses in wireless networks. In conclusion, the framework architecture presented in this dissertation that combines the adaptive congestion control and active queue management in solving the TCP performance degradation problem in wireless networks has been shown as a promising answer to the problem due to its simplistic design philosophy complete compatibility with the current TCP/IP and AQM practice, end-to-end architecture for scalability, and the high effectiveness and low computational overhead. The proposed implementation of the solution framework, namely TCP-Jersey is a modification of the standard TCP protocol rather than a completely new design of the transport protocol. It is an end-to-end approach to address the performance degradation problem since it does not require split mode connection establishment and maintenance using special wireless-aware software agents at the routers. The proposed solution also differs from other solutions that rely on the link layer error notifications for packet loss differentiation. The proposed solution is also unique among other proposed end-to-end solutions in that it differentiates packet losses attributed to wireless link errors from congestion induced packet losses directly from the explicit congestion indication marks in the DUPACK packets, rather than inferring the loss type based on packet delay or delay jitter as in many other proposed solutions; nor by undergoing a computationally expensive off-line training of a classification model (e.g., HMM), or a Bayesian estimation/detection process that requires estimations of a priori loss probability distributions of different loss types. The proposed solution is also scalable and fully compatible to the current practice in Internet congestion control and queue management, but with an additional function of loss type differentiation that effectively enhances TCP\u27s performance over error-prone wireless networks. Limitations of the proposed solution architecture and areas for future researches are also addressed

    FAST TCP: Motivation, Architecture, Algorithms, Performance

    Get PDF
    We describe FAST TCP, a new TCP congestion control algorithm for high-speed long-latency networks, from design to implementation. We highlight the approach taken by FAST TCP to address the four difficulties which the current TCP implementation has at large windows. We describe the architecture and summarize some of the algorithms implemented in our prototype. We characterize its equilibrium and stability properties. We evaluate it experimentally in terms of throughput, fairness, stability, and responsiveness

    Integration of Linux TCP and Simulation: Verification, Validation and Application

    Get PDF
    Network simulator has been acknowledged as one of the most flexible means in studying and developing protocol as it allows virtually endless numbers of simulated network environments to be setup and protocol of interest to be fine-tuned without requiring any real-world complicated and costly network experiment. However, depending on researchers, the same protocol of interest can be developed in different ways and different implementations may yield the outcomes that do not accurately capture the dynamics of the real protocol. In the last decade, TCP, the protocol on which the Internet is based, has been extensively studied in order to study and reevaluate its performance particularly when TCP based applications and services are deployed in an emerging Next Generation Network (NGN) and Next Generation Internet (NGI). As a result, to understand the realistic interaction of TCP with new types of networks and technologies, a combination of a real-world TCP and a network simulator seems very essential. This work presents an integration of real-world TCP implementation of Linux TCP/IP network stack into a network simulator, called INET. Moreover, verification and validation of the integrated Linux TCP are performed within INET framework to ensure the validity of the integration. The results clearly confirm that the integrated Linux TCP displays reasonable and consistent dynamics with respect to the behaviors of the real-world Linux TCP. Finally, to demonstrate the application of the INET with Linux TCP extension, algorithms of other Linux TCP variants and their dynamic over a large-bandwidth long-delay network are briefly presented

    Transfer Control for Resilient End-to-End Transport

    Get PDF
    Residing between the network layer and the application layer, the transport layer exchanges application data using the services provided by the network. Given the unreliable nature of the underlying network, reliable data transfer has become one of the key requirements for those transport-layer protocols such as TCP. Studying the various mechanisms developed for TCP to increase the correctness of data transmission while fully utilizing the network's bandwidth provides us a strong background for our study and development of our own resilient end-to-end transport protocol. Given this motivation, in this thesis, we study the different TCP's error control and congestion control techniques by simulating them under different network scenarios using ns-3. For error control, we narrow our research to acknowledgement methods such as cumulative ACK - the traditional TCP's way of ACKing, SACK, NAK, and SNACK. The congestion control analysis covers some TCP variants including Tahoe, Reno, NewReno, Vegas, Westwood, Westwood+, and TCP SACK
    corecore