
�

Abstract—Network simulator has been acknowledged as
one of the most flexible means in studying and developing
protocol as it allows virtually endless numbers of simulated
network environments to be setup and protocol of interest
to be fine-tuned without requiring any real-world
complicated and costly network experiment. However,
depending on researchers, the same protocol of interest can
be developed in different ways and different
implementations may yield the outcomes that do not
accurately capture the dynamics of the real protocol. In the
last decade, TCP, the protocol on which the Internet is
based, has been extensively studied in order to study and re-
evaluate its performance particularly when TCP based
applications and services are deployed in an emerging Next
Generation Network (NGN) and Next Generation Internet
(NGI). As a result, to understand the realistic interaction of
TCP with new types of networks and technologies, a
combination of a real-world TCP and a network simulator
seems very essential. This work presents an integration of
real-world TCP implementation of Linux TCP/IP network
stack into a network simulator, called INET. Moreover,
verification and validation of the integrated Linux TCP are
performed within INET framework to ensure the validity of
the integration. The results clearly confirm that the
integrated Linux TCP displays reasonable and consistent
dynamics with respect to the behaviors of the real-world
Linux TCP. Finally, to demonstrate the application of the
INET with Linux TCP extension, algorithms of other Linux
TCP variants and their dynamic over a large-bandwidth
long-delay network are briefly presented.
�

Keywords- Linux TCP, Network Stack, INET, Integration,
Verification, Validation, Application

I. INTRODUCTION

A combination of a Transmission Control Protocol
(TCP) implementation and a simulation framework
allows realistic evaluation of TCP with less complication
and lower cost than a network experiment. This paper
presents an integration of an existing TCP based on
Linux implementation and OMNeT++ (v3.3) simulation

���
Manuscript received November 14, 2008; revised April 28, 2009;

accepted June 1, 2009
S. Kittiperachol, Centre for Communication Systems Research,

Faculty of Electronic and Physical Science, University of Surrey,
Guildford, Surrey, GU2 7XH, UK (phone: +44-(0)1483-683465; fax:
+44-(0)1483-300803; email: s.kittiperachol@surrey.ac.uk).

framework [1]. OMNeT++ is a well-known open-source
Discrete Event Simulation (DES) environment. It utilizes
a modular component design architecture where small
and simple components, programmed in C++, can be
assembled into larger and more complex modules by
using OMNeT++ built-in NEtwork Description (NED)
language. In addition, OMNeT++ features Graphical
User Interface (GUI) that enables the design and the
execution to be visualized and animated. Most
importantly, OMNeT++ presents simulation kernel
support that allows other kernels to be embedded into the
framework. Although OMNeT++ itself is not a network
simulator, it is gaining widespread acceptance in
scientific communities as a network simulation platform
due to its generic and flexible framework. Many open-
source network simulator models have been developed
with OMNeT++, for examples, INET Framework [1] in
the field of the Internet, Mobility Framework [1] in
mobility and ad-hoc networks, Castalia [2] wireless
sensor network, Chsim [3] in wireless channel modeling
and OverSim [4] in Peer-to-Peer network.

INET Framework (v20062010) was developed mainly
for the simulation of the Internet. Although INET
maintains a number of protocol implementations, only
the 4th layer protocols or the transport layer protocols are
of interest. In general, the responsibility of the transport
layer protocols is to establish end-to-end data connections
between peers in an either reliable or unreliable manner.
For a reliable service, TCP is primarily used. TCP offers
byte-oriented in-order-delivery data transport services.
As documented by INET, two TCP variants, i.e. Tahoe
and Reno, already exist in the framework. However,
study [5] shows that both variants do not perform well
when they are deployed in the network with high data
loss rate. Thus, the use of Tahoe and Reno is no longer
practical in the modern Internet where data loss rate can
be high. As opposed to the original Internet, i.e. slow
networks and best-effort services, Next Generation
Internet (NGI) aims at offering high speed broadband
wired or wireless Internet access and multiservice
applications of different qualities. Undoubtedly, NGI is
growing beyond the original design of both Tahoe and
Reno [6] where network reliability and best effort service
are often assumed. The main weakness of both variants

Integration of Linux TCP and Simulation:
Verification, Validation and Application

Songrith Kittiperachol, Zhili Sun, Haitham Cruickshank

Centre for Communication Systems Research
Faculty of Electronic and Physical Science

University of Surrey
Guildford, Surrey, GU2 7XH, United Kingdom

JOURNAL OF NETWORKS, VOL. 4, NO. 9, NOVEMBER 2009 819

© 2009 ACADEMY PUBLISHER
doi:10.4304/jnw.4.9.819-836

�

lies in the ineffectiveness of their fast recovery algorithm
when having to deal with multiple data losses from the
same transmission window. In order to mitigate this
deficiency, the fast recovery algorithm is modified and
the latest standard TCP known as NewReno is defined
[7].

From the research point of views, it sounds more
logical and more productive to concentrate on the latest
standard protocol, NewReno, rather than its previous
incarnations. With INET as a simulation tool, the
addition of the missing standard TCP is necessary. On
one hand, taken from the NewReno description, a new
TCP module can be coded into the INET. Although this
straightforward approach allows quick and flexible
realization, the resulting module may not contain enough
details to produce accurately the dynamics of the real-
world protocol, most likely due to high level of
abstraction, variations in the implementation or the lack
of certain features. On the other hands, an existing
protocol implementation, after some changes, can be
directly ported into the INET. Although this latter
approach introduces development complexity due to
architecture differences of the protocol and the network
simulator, the benefit is very important since it allows a
real-world protocol to be studied within any given
simulated network environments without having to rely
on costly and complex network experiment setup. In
addition, by using real-world code, researcher can get
acquainted to real-world implementation. Understanding
the importance of the real-world code, this paper follows
the porting approach.

This paper is organized as follow. Section II states
related work whereas section III overviews Linux TCP/IP
network stack and discusses TCP functionalities and
enhancements. Section IV outlines integration
methodology, followed by simulation setup in section V.
Then, verification, validation and application of the
integrated tool, i.e. INET with Linux TCP extension, are
illustrated respectively in section VI, VII and VIII.
Finally, section IX presents conclusions and the future
works.

II. RELATED WORK

Acknowledging the importance of real-world codes,
other independent developments on porting TCP/IP
network stack into a network simulation platform have
been promoted by several active research groups;
examples of such works are OppBSD [8] and A Linux
TCP Implementation [9].

A. OppBSD

OppBSD is a network simulator, developed by
Institute of Telemetics, university of Karlsruhe, Germany
[10]. It allows the actual FreeBSD kernel (v6.2) working
in the OMNeT++ platform as a simulation model. In
addition, it features dual stacks IPv4 and IPv6. However,
FreeBSD only supports one TCP implementation and
does not have necessary interface that allows simple

addition of congestion control algorithms. Moreover,
OppBSD only sports point-to-point and Ethernet-like
connections; restricting the simulated environments to
wired network only. Although OppBSD is provide a
precise emulation of FreeBSD, another integrated
network simulator with more selections regarding TCP
variants and network technologies is required.

B. A Linux TCP Implementation

A Linux TCP Implementation (NS2 TCP-Linux), a
part of NS2 [11] main distribution, is developed and
maintained by Network Laboratory, California Institute
of Technology, USA. By loosely following Linux kernel
(v2.6.22), thirteen additional Linux TCP variants can be
run in NS2 [12, 13]. However, data processing with
respect to TCP enhancement and modifications needs to
be individually implemented and handled by NS2 since
TCP-Linux only includes congestion control. Again, the
true TCP dynamics may not be produced here due to lack
of features or over simplification. Although NS2 Linux-
TCP provides more choices on TCP variants and network
technologies, another integrated network simulator is
needed since Linux-TCP only includes main algorithms,
i.e. slow start and congestion avoidance while excluding
the majorities of the real-world codes of Linux kernel that
directly controls the behaviors of real-world TCP.

III. LINUX TCP/IP NETWORK STACK

Linux TCP/IP network stack [14] is found to be one of
the most suitable sources for a real-world TCP
implementation as firstly it is a part of the Linux
Operating System (OS) or the Linux kernel; secondly it
has been widely used by many research communities;
and thirdly it already contains the standard TCP,
NewReno. In addition, Linux TCP/IP network stack has a
well-defined congestion control interface where new TCP
algorithms can be adopted easily and very well matches
the INET software architecture

Like Tahoe and Reno, NewReno employs a window-
based algorithm to govern the flow control, and thus
transmission rate. In general, TCP can send more data if
the following condition is satisfied. ��������� 	
������� ���� (1)

where ��������� is the estimated number of outstanding
packets, i.e. packets that has been transmitted but not yet
acknowledged, cwnd is the congestion window, i.e. the
amounts of packets that can be handled by a network, and
awnd is the advertised window, i.e. the amounts of
packets that can be handled by a receiver. In addition, the
operation of TCP is defined by four algorithms; slow
start, congestion avoidance, fast retransmit and fast
recovery.

A. The Standard TCP

Slow Start
Slow start is an algorithm that is used in one of the

following circumstances; at the beginning of connection,

820 JOURNAL OF NETWORKS, VOL. 4, NO. 9, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

�

after a long idle period and after a retransmission
timeout. The main goal of the slow start is to quickly
probe network of unknown conditions for available
bandwidth that can be utilized. Since TCP is a closed-
loop protocol, the growth of congestion window mainly
depends on the reception of new acknowledgement. For
each new acknowledgement, ��� � ��� � � (2)

where � is the additive increase parameter and � � � in
the cases of Tahoe, Reno and NewReno. Therefore,
congestion window is approximately doubled every
round trip time. The slow start remains active provided
that the congestion window does not exceed the slow
start threshold,���������, i.e. ��� 	 �������� (3)

After that, congestion avoidance begins.

Congestion Avoidance
Congestion avoidance is another algorithm that is used

in order to continue probing the network for more
bandwidth but at a much slower rate when compared to
the slow start. On the reception of new
acknowledgement, ��� � ��� � � ���⁄ (4)

and � � �. The congestion window is approximately
increased by one for every round trip time. In this
manner, the transmission rate can be increased steadily
without inflicting any sudden changes in network
conditions. TCP remains in the congestion avoidance
until data losses are detected due to congested network.
After which, TCP enters a transient phase in order to
recover lost data.

In addition to the flow control given in (1), TCP relies
on the error control in order to provide a reliable
connection. However, the reliability of the TCP is in the
sense that lost data will eventually be detected and
retransmitted.

Fast Retransmit
In loss events, TCP reacts in a different way depending

on the variants and this is where similarity between
Tahoe and the others ends. On one hand, Tahoe relies
only on retransmission timer to detect data losses. The
timer will timeouts if the acknowledgement of a packet is
not received after a certain time period, based on the
measured round trip time [15]. As soon as the timeout
occurs, the lost data as indicated by the left window or
the highest sequence number of data transmitted but not
yet acknowledged, i.e. �������, is retransmitted and the
congestion window is reset, ��� � � (5)

On the other hand, Reno and NewReno uses
retransmission time as a last resource. Rather, Reno and
NewReno use fast retransmit algorithm to speed up the
loss detection process by inferring certain numbers,
typically three, of duplicate acknowledgements, i.e. an

acknowledgement that does not advance �������, as an
indication of network congestion and thus data losses. On
the reception of three duplicate acknowledgements, data,
starting from snd_una, is assumed lost and retransmitted.

Fast Recovery
After the fast retransmit, fast recovery becomes active.

Then, the slow start threshold and the congestion window
are reduced as follow, �������� � � � ��� (6)��� � �������� � � (7)

where � is the multiplicative decrease factor and � � � ! in the cases of Reno and NewReno. During fast
recovery, the congestion window increases per the
reception of duplicate acknowledgement as follow, ��� � ��� � � (8)

Now, this is the place where the similarity between Reno
and NewReno ends. For Reno, congestion window
continues to increase until a new acknowledgment
arrives. After that, congestion window is reset as follow, ��� � �������� (9)

and Reno continues in congestion avoidance.
Unlike Reno, NewReno records the highest transmitted

sequence number in ��������� and classifies two types
of the new acknowledgement, i.e. full and partial. A new
acknowledgement advances �������; However, a full
one also cover ��������� but a partial one does not. If a
partial acknowledgment arrives, the congestion window
is deflated by the amounts equal to the number of data
being covered by that partial acknowledgement and fast
recovery continues since partial acknowledgement
implies more data losses. If a full acknowledgement
arrives, fast recovery ends and congestion window is
reset as in (9). After all losses are recovered, TCP
resumes in congestion avoidance. It is worth mentioning
that during fast recovery, more data are allowed to be
transmitted if and only if (1) is satisfied so that the
network does not suffer extended congestion.

 In summary, TCP is the 4th layer protocol whose main
responsibility is to establish end-to-end data connection
for a reliable in-order byte-oriented data delivery service.
Most importantly, TCP provides flow control and error
control for network by reducing its transmission rate
when the network is heavily congested and retransmitting
lost data when there are data losses. In addition, due to
the additive increase of the congestion avoidance and the
multiplicative decrease of the fast recovery, the operation
of TCP can be characterized as an Additive Increase
Multiplicative Decrease scheme or AIMD. Finally, it is
evident that TCP performs extremely well in the
traditional Internet where connection is relatively slow
and round trip time delay is in a few ten-milliseconds as
TCP strongly remains the most dominant protocol over
the Internet up until today.

JOURNAL OF NETWORKS, VOL. 4, NO. 9, NOVEMBER 2009 821

© 2009 ACADEMY PUBLISHER

�

B. The Linux TCP

In addition to the standard TCP algorithms, Linux TCP
is equipped with several options and extensions [16-21].
TCP option can be used if and only if the required
options are negotiated at the connection setup. TCP
option is indicated by the following structure; one octet
kind field followed by one octet length field, and
followed by (length - 2) octets of option fields as seen in
Fig. 1. In addition, no operation or NOP is used to align
the option to the four-octet boundary.

Timestamp Option
Timestamp option (TSopt) is indicated by kind (8) and

length (10) as seen in Fig. 2. With timestamp option,
transmitted time can be imprinted in the TCP option
field. The transmission time of a data segment is recorded
in the TSval field. On the reception of data segment, the
recorded time in TSval is copied over to the TSecr field
and the transmission time of an acknowledgement is
recorded over in the TSval field. Once the
acknowledgement arrives, a more accurate round trip
time can easily be measured by finding the difference
between TSecr and TSval. In addition, a more refined
retransmission timeout is a byproduct of a more accurate
round trip time measurement.

Window Scaling Option
Window scaling option (WSopt) is indicated by kind

(3) and length (3) as seen in Fig. 3. With window scaling
option, the window size based on the 16-bit window field
of the TCP header, can be extended to a 30-bit value by
scaling the window field. For the sending window, ������, ������ � ���" # �����$ ��� (10)

and for the receiving window, ��%���,

���" � ��%��� & �����$ ��� (11)

This option allows more data to be sent in one
transmission window. Thus, higher data rate can be
achieved, particularly in a large-bandwidth long-delay
network.

Selective Acknowledgement Option (SACK)

Selective acknowledgement option (SACK) is
indicated by kind (5) and length (var) as seen in Fig. 4.
The length of SACK is varied since it depends on the
numbers of blocks that will be set in the option field, i.e.
4' � � !. With SACK option, non-contiguous blocks of
data that have successfully been received and queued at
the receiver can be sent back to the sender. These gaps
can be filled by the retransmission or the late arrival of
the packet. On the reception of the acknowledgement
with SACK blocks, the non-contiguous blocks of data
that are queued at the receiver are reproduced. By
utilizing this extra information, lost data can be quickly
and accurately determined.

Large Initial Window
Large Initial Window (IW) is an extension that speeds

up slow start, by increasing the transmission window size
at the beginning of the connection according to �������
��() ' *++�
�,�! ' *++�)�-.�/ (12)

Depending on the given size of the Maximum Segment
Size (MSS), the initial congestion window can be four
segments at most. With large initial window, the
transmission window can be opened more quickly during
slow start.

Delayed Acknowledgement
Delayed acknowledgment (DACK) is an extension that

controls the rate at which acknowledgements are
transmitted in the return channel. Customarily, the
receiver immediately sends an acknowledgement for
every data segment that is received. With DACK, the
receiver delays the transmission of an acknowledgement
up to a certain time period, typically 200 ms. If the
receiver does not receive more data within the given time
period, the pending acknowledgement is sent. If the
receiver receives the next data within that time period,
the pending acknowledgement is discarded and the new
one corresponding to the latest data is transmitted.
However, if the receiver receives out-of-order data, it will
cancel DACK and immediately transmit a duplicate
acknowledgement. Therefore, single acknowledgment
can be used to cover two data segments that are
successfully received and bandwidth usage in the return
channel can be reduced up to two folds. However, DACK
also affects congestion window growth rate since the
growth rate, as given in (2) and (4), depends on the
numbers of the acknowledgements that are received, i.e.
an acknowledgement counting scheme.

5NOP varNOP

Left Edge of the 1st block

Right Edge of the 1st block

Left Edge of the nth block

Right Edge of the nth block

...

Fig. 4 Selective acknowledgement option

33 shift.cntNOP

Fig. 3 Window scaling option

Fig 2 Timestamp option

Fig 1 TCP option field

822 JOURNAL OF NETWORKS, VOL. 4, NO. 9, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

�

Appropriate Byte Counting
Appropriate byte counting (ABC) is an extension that

controls the amounts at which congestion window
increases. Instead of being based on the
acknowledgement-counting scheme, a byte-counting
scheme is used. The byte-counting scheme increases
congestion window relative to the number of bytes
covered by an acknowledgement. In other word, the
additive increase parameter is changed to � �
�,�012�� *++3� !� (13)

where 0,3 indicates the largest integer that is smaller than , and the increase parameter is limited to 2 to prevent
large data burst. As a result, ABC can mitigate the impact
of DACK and reduce the effect of lost
acknowledgements that reduces the growth rate of
congestion window.

Fast Retransmit with SACK
In addition to using the three-duplicate-

acknowledgement scheme, the sender can detect data
losses more quickly by utilizing the non-contiguous
blocks of data that are derived from SACK. blocks. If the
cumulative size of the gaps, stating from a sequence
number, is equivalent to at least three segments, the
segment beginning with that sequence number is
considered lost and retransmitted. With SACK, the
sender can quickly detect data losses by less than three
duplicate acknowledgements

Fast Recovery with SACK
The use of SACK to accelerate loss detection process

in fast retransmit is also extended to fast recovery. After
each retransmission, the sender marks the retransmitted
segment and virtually fills the non-contiguous blocks of
data with that segment in order to ensure that the sender
will not retransmit the same packet more than once. For
every duplicate acknowledgement received, the sender
can search the non-contiguous blocks of data, after being
updated, for possible data losses. Therefore, rather than
having to wait another round trip time for the
acknowledgement of the previous retransmission to
arrive, subsequent data losses can quickly be found and
retransmitted. With SACK, the sender can retransmit lost
data with more efficiency and complete loss recovery in
shorter time period. Nonetheless, the slow start threshold
is still reduced as in (6).

Fast Recovery with Forward Acknowledgement
Forward acknowledgement (FACK), i.e. rate halving,

is an extension that regulates the rate at which new data
are transmitted. With FACK, a new data segment can be
sent for every two duplicate acknowledgements received
during loss recovery regardless to the control parameters
given in (1). In other word, rate halving decouples the
loss recovery from the flow control. Because of this
independence, the self-clocking behavior, i.e.
acknowledgement feedback, can be better maintained and
needless retransmission timeout can be avoided. In

addition, congestion window is deflated per two duplicate
acknowledgements as follow ��� � ��� 4 � (14)

Therefore, the congestion window is reduced
approximately to half of the window prior to the
reduction. After all losses are recovered, either slow start
or congestion avoidance resumes depending on the final
congestion window and the new slow start threshold.

IV. INTEGRATION METHODOLOGY

According to the layering principle, the transport layer
only communicates to its adjacent layers, i.e. to the
Internet on the lower layer and to the application on the
upper layer. The integration methodology loosely follows
this principle. By utilizing certain data structures and
definitions, given in TABLE I, INET can access internal
parameters as well as internal functions of Linux TCP/IP
network stack. Thus, an integration of the real-world
Linux TCP and INET becomes possible, i.e. INET with
Linux TCP extension. An interface-based integration
approach is proposed and is illustrated in Fig. 5.
Hereafter, the integrated Linux TCP is to be referred to as
LinuxTCP for short.

Note that although the given methodology is specific
to INET framework, it can also be applied to other
network simulators provided that the simulators can
exploit the TCP interface in TABLE I.

At the transport layer, information signaling is initiated
by INET, based on the events triggered by the simulation.
The INET-Linux interface functions primary as an input-
output interface in which arguments; ‘data’, ‘command’
and ‘timer’, are passed into the stack. The stack processes
the given arguments and completes by either returning
data output, invoking designated commands, calling
relevant timer functions or in any combination. As the

Fig. 5 Overview of interface-based integration methodology

TABLE I
LINUX TCP INTERFACE

�������������	� Definition/Declaration
��	����	�

�������� �	��������������� �����������	����	

������������ �	����������	��� ��������	����	

����	
� �	������ �����	��	�

���	
� �	�����
���	��	�

���������� ��������	���� ���	�����	����	�

����� ������������ ����	��

������� ������������� ������	 �	��

JOURNAL OF NETWORKS, VOL. 4, NO. 9, NOVEMBER 2009 823

© 2009 ACADEMY PUBLISHER

�

stack is in fact a real-world code, it can be assumed to
have correct TCP/IP functionality. Due to this
assumption, this interface-based integration scheme
extremely relies on validity and integrity of the input
arguments, therefore making LinuxTCP highly sensitive
to any ‘inappropriate’ arguments. Thus, it is also
responsibility of the INET-Linux interface to ensure
validity and integrity of the input arguments. By using
programming traps, 5++678��"���9 ����"�� ����� ���� :;<=>?@:;�A>=BC@:>D? (15)

the interface then can check the input arguments against
any given conditions before passing them into the stack.
TCP/IP header, i.e. tcp_hdr and ip_hdr, of data packet,
i.e. sk_buff, is always checked against known INET
connection parameters (source/destination IP addresses
and source/destination TCP ports). This is to first validate
if the transmitted or received packets in fact belong to the
correct TCP flow or not and second to verify if data
packet has been compromised by invalid memory access
caused by the simulation or not. In addition, without loss
of generality, other extensive modifications that make the
integration possible will not be discussed in this paper
due to irrelevancy to TCP/IP related functionalities and
limited spaces.

V. SIMULATION SETUP

Similar to the previous work [22], the simulated
network consists of three parts; a client, a server and an
Internet domain, and it is illustrated in Fig. 6. Both client
and server are connected to Internet gateways via a 100-
Mbps Ethernet connection with 1-ms delay and no errors.

This connection represents a typical Local Area Network
(LAN). Along the client-server path, a high speed 10-
Mbps backbone link is provided. This link can be viewed
as a Wide Area Network (WAN) connection. Every
WAN interface has a simple drop tail queue and the
Maximum Transmission Units (MTU) is 1500 bytes, i.e.
Ethernet friendly. In addition, the buffer size (IFQ) of the
WAN interfaces, the round trip time (RTT) and the bit
error rate (BER) of the backbone connection are the
controlled parameters.

In addition, Fig. 7 describes INET node with Linux
TCP extension. Each INET node can be equipped with
HTTP module at the application layer for download and
upload services, with Linux Congestion Control (CC)
module at the transport layer for different Linux TCP
variants, with IPv4 module at the network layer for
simple IP addressing and forwarding, and with link
module at the data link layer for different access
technology. Accordingly, the client and the server will
have all four modules while the gateway and the router
only have two modules from the lower two layers.

A file download over the Internet scenario is
considered. Specifically, a web client requests a 700-MB
data download, i.e. a CD containing a movie file, from a
web server over the Internet. In addition, RTT and BER
are configured as follow. 788 E F.$�� .$!� G ��$.H in seconds

� I67 E F.� �.JK� �.JL� �.JM� �.JNH�
A large data file is used to investigate long-term behavior
of TCP, RTT is used to characterize network having
different bandwidth delay product (BDP) and BER is
used to describe connection having different data loss
rate. In addition, IFQ is setup such that it is
approximately equal to the bandwidth delay product of
the given network, i.e. for a fixed 10-Mbps bandwidth,
IFQ of 84 or �� O -)� packets is for the network with
100-ms RTT, 168 or (! O -)) packets for the network
with 200-ms RTT, and so on. These configurations are
used for the verification process.

VI. VERIFICATION OF LINUXTCP

According to [23] and [24], model verification is
referred to as ‘building the model right’ which generally
means if the model in question is working properly or
not. Based on the dynamic testing, the model in question
has to be executed under various conditions and results
are examined in order to ensure the accuracy of the
implementation of the model. Verification of LinuxTCP
follows this guideline.

Based on the two-tuple (RTT and BER) parameters,
there are 50 unique simulation setups. Together with ten
different random sequences numbers that are applied to
each setup, a total of 500 simulations are run and used in
the verification process. Furthermore, programming
traps, described in (15), are systematically inserted along
the INET-Linux interface to catch any possible

Fig. 7 INET Node with Linux TCP extension

100 Mbps

1 ms

client

100 Mbps

1 ms

server

gateway

router

gateway

Internet Domain
10 Mbps

10 Mbps

Fig. 6 Simulation Scenario

824 JOURNAL OF NETWORKS, VOL. 4, NO. 9, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

�

misbehaviors of LinuxTCP due to ‘improper input
arguments. If any of the assertions is not satisfied,
simulation will be terminated and verification will be
considered failed.

Study [25] shows that the long-term average
throughput of TCP is inversely proportional to the round
trip time and the square root of packet lost rate, and is
approximated by the following expression,

��"���P�� �
�� Q*++788 ∙ S 321P , WXYZ[\788] (16)

where MSS is the maximum segment size, RTT is the
round trip time, b is the number of data segments being
covered by an acknowledgement, p is the average packet
loss rate and WNDmax is the maximum congestion
window size.

Fig. 8 displays long-term average TCP throughput
from the analytical expression given in (16). The result
shows that in an ideal case where there is no bit error, the
average throughput remains unchanged regardless of the
RTT (and BDP). This is because throughput is limited by
the 10-Mbps link and the buffer size is in the same order
of magnitude as BDP. However, in a more realistic case
where BER exists, the average TCP throughput drops
considerably as RTT (and BDP) or BER increases. Even
in the case where the BER is very low, i.e. 10-9, TCP can
achieve 10-Mbps throughput only in the network with
RTT up to 0.3 s. This simulation result confirms that real-

world TCP does not perform well in the network with
large BDP and high BER.

Fig. 9 displays long-term average TCP throughput
from the simulation, i.e. downloading a 700-MB movie
file from a web site. In this case, the average throughput
is simply the ratio of the file size to the service waiting
time. The results show that the average throughput
complies with the 10-Mbps backbone link and decreases
as either RTT or BER increases. The results are not
unexpected since respectively shorter RTT and lower
BER implies faster acknowledgement responses and
fewer data losses in which they contribute to faster
congestion window growth rate.

 Of 500 simulation runs, no assertion flag is triggered.
In addition, by comparing Fig. 8 and Fig. 9, it is evident
that the simulation results agree with the analytical ones.
As a result, it can be concluded that LinuxTCP is in fact
verified.

VII. VALIDATION OF LINUXTCP

The verification process, previously discussed in
section VI, clearly indicates that LinuxTCP behaves
reasonably and consistently in the given simulated
network environments of INET. However, additional
investigations are necessary in order to validate
LinuxTCP operationally.

Model validation according to [23] and [24] is referred
to as ‘building the right model’ which generally means
that the model in question behaves consistently and
accurately with respect to its intended application. In this
paper, operational graphic is used as a main validation
technique. Thus, the 500-ms and error-free configuration
is chosen as a reference scenario. With the 500-ms round
trip time, the buffer size is set to 420 packets. This
reference scenario can be viewed as a typical
geostationary satellite network [26] with two peers. The
Internet gateways function as satellite gateways and the
Internet router assumes the role of a geostationary
satellite. Lastly, the 10-Mbps link implies that the
capacities of both forward and return channels are fixed
and pre-allocated.

A. Standard Track

To have a better understanding of LinuxTCP
mechanisms, the congestion window, i.e. ���, and the
sequence number are closely observed. In the error-free
network environment, the evolution of congestion
window can be best described as a ‘perfect’ uniformly-
spaced saw-tooth like trajectory. The ‘up ramp’ and the
‘sharp drop’ of the trajectory are products of linear
window inflation during congestion avoidance and rapid
window deflation during loss recovery. This behavior is
quite typical to any TCP that uses an AIMD algorithm.
Fig. 10 illustrates a complete congestion window
evolution that includes slow start, congestion avoidance,
loss detection and loss recovery. Clearly, the result is
consistent with the description of the saw-tooth behavior
or AIMD.

Fig. 9 Long-term average TCP throughput (simulated)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

round trip time (s)

th
ro

ug
hp

ut
 (

M
bp

s)

0 1e-9 1e-8 1e-7 1e-6

Fig. 8 Long-term average TCP throughput (analytical)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

round trip time (s)

th
ro

ug
hp

ut
 (

M
bp

s)

0 1e-9 1e-8 1e-7 1e-6

JOURNAL OF NETWORKS, VOL. 4, NO. 9, NOVEMBER 2009 825

© 2009 ACADEMY PUBLISHER

�

Fig. 11 highlights the evolution of Fig. 10 during slow
start and show that congestion window grows
exponentially which agrees with (2). In addition, the
result uncovers that congestion window does not always
increase per reception of an acknowledgement. This
‘pause’ behavior is due to the restrictions imposed by
tcp_is_cwnd_limited function that stops the congestion
window from advancing if the current window is much
‘larger’ than the numbers of outstanding data. Note that
this TCP function is usually left unimplemented in many
network simulators.

Fig. 12 highlights the window evolution of Fig. 10
during congestion avoidance and shows that congestion
window grows linearly, i.e. additive increase, which

agrees with (4). In addition, after a loss event, congestion
window decreases sharply, i.e. multiplicative decrease
which agrees with (14).

To further consolidate the results, simulation details
are discussed. In general, without window scaling option,
the maximum window size is limited to 44 (1500-byte)
MTU-sized segments. However, the results show that
congestion window well exceeds 44 segments, explicitly
implying the use of window scaling option. In addition,
the reference network, i.e. 10-Mbps link and 500-ms
round trip time, provides a rough bandwidth delay
product of 420 segments. Together with 420 packets from
the buffer, the maximum network capacity is 840
segments. Beyond that, data losses start to occur. By
comparison, Fig. 11 shows that congestion window first
exceeds 1800, i.e. more than twice the network capacity,
before congestion is detected. This is not unusual for
congestion window to overshoot the network capacity by
two folds since congestion window is doubled every
round trip time during slow start. After a few congestion
events, the network is properly probed and the slow start
threshold is set to a more accurate value. Then,
congestion avoidance begins. Fig. 12 shows that
congestion window reaches 842 before congestion is
detected. This is typical for congestion window to grow
slightly above the network capacity by a few segments
due to additive increase nature of congestion avoidance.
Therefore, it is evident that LinuxTCP behaves
consistently and accurately with respect to the slow start
and the congestion avoidance algorithms.

B. Enhancement Track

Unlike the standard TCP, LinuxTCP are augmented
with a number of options and extensions in order to
improve its performance particularly when having to deal
with multiple data losses from the same transmission
window and to cope with large-bandwidth long-delay
type of network. A number of enhanced mechanisms, i.e.
delayed acknowledgement, appropriate byte counting,
fast retransmit with SACK, fast recovery with SACK,
fast recovery with FACK, and round trip time
measurement with timestamp, are investigated in this
section.

Delayed Acknowledgement
Delayed Acknowledgement (DACK) is a technique

that reduces bandwidth usage in the return link by
allowing an acknowledgement to cover two consecutive
data segments. Fig. 13 concentrates on the sequence
numbers of received acknowledgements with respect to
those of transmitted segments and clearly shows that,
during slow start, only one acknowledgement is
transmitted in response to two in-order data segments that
are successfully received.

Appropriate Byte Counting
Appropriate Byte Counting (ABC) is a technique that
increases congestion window based on the numbers of
full-size segments, i.e. MTU, being covered by each

Fig. 12 Congestion window evolution during congestion avoidance

50 100 150 200 250 300 350 400 450 500
0

200

400

600

800

1000

1200

1400

1600

1800

2000

X: 316
Y: 211

time (seconds)

X: 314.4
Y: 842

cw
nd

 (
pa

ck
et

s) loss detection

loss recovery

linear growth

Fig. 11 Congestion window evolution during slow start

0 5 10 15 20 25
0

200

400

600

800

1000

1200

1400

1600

1800

2000

time (seconds)

cw
nd

 (
pa

ck
et

s)

tcp_cwnd_is_limited

loss recovery

loss recovery

exponential growth

Fig. 10 Congestion window evolution

0 100 200 300 400 500
0

200

400

600

800

1000

1200

1400

1600

1800

2000

time (seconds)

cw
nd

 (
pa

ck
et

s)

congestion avoidance

slow start

loss recovery

loss detection

826 JOURNAL OF NETWORKS, VOL. 4, NO. 9, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

�

acknowledgement given in (13). Fig. 14 concentrates on
congestion window during slow start and clearly shows
that congestion window increases by two segments
instead of one. Note that the same behavior occurs during
congestion avoidance and thus without loss of generality
it can be omitted. Note that Fig. 13 and Fig. 14 are
displayed over the same time but with different y-axis.

Fast Retransmit and Fast Recovery with SACK
With SACK option, extended information regarding

the reception of non-contiguous blocks data at the
receiver can be made available to the sender. By
observing these blocks, lost segments can be quickly
identified and the numbers of outstanding data can be
accurately estimated. Fig. 15 and Fig. 16 concentrate on
retransmission of the lost segments in relation to the
reception of duplicate acknowledgement. The results
clearly show that initial data losses can instantly be
detected by the one duplicate acknowledgement
(compared to a typical three) and a number of subsequent
data losses can be recovered within one round trip time
(compared to multiple round trip time). Note that Fig. 15
is a closed-up version of Fig. 16. Clearly, TCP with
SACK is found to be more robust against data losses.

Fast Recovery with FACK
With FACK, i.e. rate halving, a data segment can be

sent without having to follow the flow control given in
(1) and congestion window quickly decreases by one

segment per two duplicate acknowledgements received.
Fig. 17 and Fig. 18 concentrate on the impacts of rate
halving algorithm on the congestion window deflation as
well as transmission of new data segments and clearly
show that for every two duplicate acknowledgements
received, one data segment is transmitted and congestion
window is reduced by one. Note that both figures are
displayed over the same time period but with different
value of the y-axis.

Round Trip Time Measurement with Timestamp
In general, round trip time is measured by first recording
sequence number and transmission time of a data
segment that is being transmitted. After an
acknowledgement that covers the recorded sequence
number arrives, the difference between the current time
and the recorded time measures a coarse round trip time.
However, timestamp option allows round trip time to be
measured per segments, which in turn provides a more
accurate result. Fig. 19 displays round trip time
measurement over time. The result clearly shows that the
measurement closely resembles the saw-tooth behavior,
which is comparable to congestion window evolution
found in Fig. 10. The result is not unexpected since the
round trip is directly proportional to the queue
occupancy, which is in turn proportional to the
congestion window. Furthermore, Fig. 19 shows the
minimum and the maximum of round trip times to be
approximately 506 ms and 1013 ms respectively. Given

Fig. 16 Fast recovery with SACK

8 8.5 9 9.5 10 10.5 11 11.5 12
3.71

3.72

3.73

3.74

3.75
x 10

6

time (s)

se
qu

en
ce

 n
um

be
r

seq

ack

original tranmission

retranmission

Fig. 15 Fast retransmit with SACK

9.86 9.865 9.87 9.875 9.88 9.885 9.89 9.895 9.9
3.7

3.71

3.72

3.73

3.74

3.75

3.76

3.77

3.78
x 10

6

time (s)

se
qu

en
ce

 n
um

be
r

seq

ack

1st retranmission

Fig. 14 Appropriate byte counting

2 3 4 5 6 7 8 9 10
45

50

55

60

65

70

time (seconds)

cw
nd

 (
pa

ck
et

s)

2-segment increment

Fig. 13 Delayed acknowledgement

2 3 4 5 6 7 8 9 10
7

7.5

8

8.5

9

9.5

10
x 10

4

time (s)

se
qu

en
ce

 n
um

be
r

seq

ack

one acknowledgement
for every other data received

JOURNAL OF NETWORKS, VOL. 4, NO. 9, NOVEMBER 2009 827

© 2009 ACADEMY PUBLISHER

�

500 ms from the round trip time and an additional of 504
ms from the time required to dequeue 420 packets from
the buffer, clearly the result matches the reference
network.

According to the simulation results, the behaviors of
LinuxTCP in the simulated network environments are
found to be accurate and consistent since they coincide
with the anticipation of how real-world Linux TCP
responds to real-world network. As a result, it can finally
be concluded that LinuxTCP is valid with respect to
Linux TCP functionalities and INET simulation platform.

VIII. APPLICATION OF LINUXTCP

The ultimate achievement of LinuxTCP is the ability to
use real-world TCP within network simulator. Thus,
studies and evaluations of simulated Internet become
more accurate and more consistent with the real world
Internet. In addition, LinuxTCP acts as a bond between
simulator and real world since when researchers become
familiar with LinuxTCP, they also become familiar with
the real-world code of Linux TCP/IP network stack.

Linux TCP/IP network stack in this study is taken
from the Linux kernel (v2.6.21) which contains ten TCP
variants in addition the standard reno, namely bic, cubic,
highspeed, hamilton, hybla, low priority, scalable, vegas,
veno and westwood. The main objective of these
variants, except low priority, is to improve their
performances when facing with an emerging next
generation Internet. Details of these TCP variants should
be referred to the references [27-34]. Owing to the
common Linux congestion control interface, these TCP
variants and future TCP variants can be included into the
stack with relative ease. For an example, TCP based on
Window Vista implementation, also known as compound
[35, 36] is re-implemented in order to make it compatible
with the Linux congestion control interface so that it can
be included into the stack for research uses. The source
code of compound can be obtained at Linux TCP
implementation for NS2 website [9].

Owing to the real-world Linux TCP/IP network stack
that has been incorporated into INET framework, any
new TCP can be implemented in INET environments as
if it were in the real network stack. However, this TCP
can easily be debugged, corrected and studied in any
given simulated network environments. After
development and evaluation are completed, this TCP can
be put into real-world tests or uses, simply by
incorporating it to the network stack and accessing it via
the congestion control interface.

Here, the applications of LinuxTCP are demonstrated
by discussing algorithms and displaying dynamics of
different Linux TCP variants in a simulated environment
provided by INET. The network setup is still the same
one that is used previously in the validation section, i.e.
10-Mbps link, 500-ms round trip time and no random
errors.

TCP-bic
TCP-bic relies on binary increase algorithm; i.e.

binary search increase and additive increase. Let +Z[\
and +Z^_ be the maximum and the minimum window
increments that are used in binary search increase phase.
TCP-bic updates its congestion window as follow, ��� ← ��� � 1��_���/��� (17)

and

Fig. 19 Round trip time and retransmission timeout

0 100 200 300 400 500
0

200

400

600

800

1000

1200

1400

X: 316
Y: 506

time (seconds)

cw
nd

 (
pa

ck
et

s)

X: 315.4
Y: 1013

Fig. 18 Fast recovery with rate halving

10 10.005 10.01 10.015 10.02 10.025 10.03 10.035 10.04
1040

1045

1050

1055

1060

time (seconds)

cw
nd

 (
pa

ck
et

s)

1 increment
for every 2 acknowledgement received

Fig. 17 Fast recovery with rate halving

10 10.005 10.01 10.015 10.02 10.025 10.03 10.035 10.04
3.6

3.7

3.8

3.9

4

4.1
x 10

6

time (seconds)

se
qu

en
ce

 n
um

be
r

seq
ack

one transmission
for every other acknowledgements received

duplicate acknowledgement

828 JOURNAL OF NETWORKS, VOL. 4, NO. 9, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

�

1��_��� � d +Z[\ if ���� g +Z[\+Z^_ if ���� h +Z^_���� if otherwise (18)

where 1��_��� is the congestion window increment and ���� is the ‘distance’ between congestion window
(���) and the maximum window (WZ[\) that is used in
additive increase mode. In addition, the relation between ��� and WZ[\ divides two modes of operation; i.e. if ��� 	 WZ[\, then binary increase is used and if ��� g WZ[\, then max probing is used instead.
Moreover, ���� takes the following form,

���� � qWZ[\ 4 ���2 if 1����2 ����������� 4 WZ[\ if
�, P�"1��� (19)

Similarly, for any loss events, WZ[\ takes the following
form, WZ[\

← d�1 � �� ⋅ ���2 if 1����2 ����������� if
�, P�"1��� (20)

If data losses occur during either binary increase or max
probing case, slow start threshold and congestion window
is reduced as in (6) and (9) with � � 819/1024. Lastly,
TCP-bic is set to revert back to reno if congestion
window size is smaller than 14 packets.

TCP-bic controls the congestion window increment by 1��_��� which is also limited to the range x+Z^_, +Z[\y or x1, 16y based on Linux implementation. Thus, congestion
window can increment up to 16 packets in one round trip
time. Fig. 20 shows the dynamic of TCP-bic. It is clear
that slow start is absent in the figure which is due to the
fact that initial slow start threshold is set to 100 packets.
In steady state, i.e. at the 100th second, congestion
window begins to grow faster as it moves away from WZ[\ according to max probing, resulting in data losses.
Reacting to the loss event, WZ[\ is reset as in (20) under
max probing condition and congestion window quickly
deflates. Once all losses are recovered, congestion
window continues to grow in binary increase mode,
eventually causing another data losses. Reacting to
another loss event, WZ[\ is reset as in (20) under binary

increase condition and congestion window quickly
deflates. After all losses are recovered, congestion
window begins to grow faster at the beginning but
gradually becomes slower as it approaches WZ[\ due to
binary increase. Afterward, the whole process repeats.

TCP-cubic
TCP-cubic is designed primarily to simplify and

enhance the algorithm of TCP-bic by replacing binary
increase with cubic function. Therefore, congestion
window increases as follow, ��� ← { ∙ �� 4 |�} � WZ[\ (21)

where { is the scaling factor and { � 41/1024, t is the
elapsed time since the last window reduction in ms, WZ[\
is the window size assigned after each loss event and | is

the origin of the cubic function | � ~WZ[\ � {⁄� . For
any loss events, WZ[\ is reset as follow,

WZ[\ ← q�1 � �� ⋅ ���2 if ��� 	 WZ[\��� if otherwise (22)

whereas both slow start threshold and congestion window
are reduced as in (6) and (9) with � � 717/1024. Lastly,
unlike TCP-bic, TCP-cubic does not revert back to reno
in any cases.

TCP-cubic control the congestion window increment
by means of cubic function that uses the elapsed time �
(in ms) and the origin |. Fig. 21 shows the dynamic of
TCP-cubic. It is clear that slow start is absent since initial
slow start threshold is set to 100 packets. In the steady
state, i.e. at the 100th second, according to cubic function
as described in (21), congestion window begins to grow
faster initially but slower as it moves closer toward the
origin | and grows faster as it moves further away from
the origin |. Once data losses occur, the origin is reset
based on WZ[\ as described in (22) and congestion
window quickly deflates. Once all losses are recovered,
congestion window grows according to cubic function
until another data losses occurs in which the origin is
reset again but with different WZ[\, and congestion
window quickly deflates. After all data losses are
recovered, the whole process repeats.

Fig. 21 Congestion window evolution of TCP-cubic

0 100 200 300 400 500
0

200

400

600

800

1000

1200

1400

1600

1800

2000

time (seconds)

cw
nd

 (
pa

ck
et

s)

Fig. 20 Congestion window evolution of TCP-bic

0 100 200 300 400 500
0

200

400

600

800

1000

1200

1400

1600

1800

2000

time (seconds)

cw
nd

 (
pa

ck
et

s)

JOURNAL OF NETWORKS, VOL. 4, NO. 9, NOVEMBER 2009 829

© 2009 ACADEMY PUBLISHER

�

TCP-hamilton
TCP-hamilton is a variation to the standard congestion

control described in (4) and (6). In particular, the additive
increase parameter and the multiplicative decreases
factor, � and �, are no longer of fixed values but are
designed to be adaptive according to network conditions,
i.e. low-speed or high-speed regime. For every new
acknowledgement that is received, the additive increase
parameter changes as follow, �

← � 1 Δ^ h Δ�
1 � 10 ⋅ �Δ 4 Δ�� � �Δ 4 Δ�2 �� Δ^ � Δ� (23)

where � is the elapsed time in ms since the last data loss
event and �� is the elapsed time threshold distinguishing
low-speed regime from high speed one, and Δ� � 100
ms. Then, � is scaled by the minimum round trip time so
that it becomes less sensitive to round trip time as follow, � ← �/788Z^_ (24)

but is restricted to � ∈ x0.5,10y, and then � ← 2 ⋅ �1 4 �� ⋅ � (25)

The updates in both (24) and (25) follow the fairness and
the friendliness requirements coming from the protocol
design. Obviously, TCP-hamilton behaves exactly like
reno in the low speed region. In any data loss events, the
multiplicative decrease factor is reset as follow,

� ←
���
�� 0.5 �I���J 4 I�JI�J � � 0.2788Z^_788Z[\ if otherwise (26)

where I�J is the instantaneous throughput just before the ��� loss event, 788Z[\ and 788Z^_ are the maximum
and the minimum round trip time seen since the last
congestion event. In other words, if the change in the
instantaneous throughput between two consecutive loss
events is larger than 20 percents, the standard � � 1/2 is
used. Otherwise, a more adaptive choice of � is used and � ∈ x0.5, 0.8y since the ratio 788Z^_/788Z[\ can

approach unity if network buffer is small. After � is
updated, � is also updated as described in (24) and (25)
to reflect the recent �. Then, slow start threshold and
congestion window is reduced as given in (6) and (9)
with the value of � that is derived from (26)

TCP-hamilton controls the congestion window
increment by using the elapsed time since the last loss
event. Fig. 22 shows the dynamic of TCP-hamilton. It is
clear that slow start is still effective due to window
overshoot at the beginning of connection. In the steady
state, i.e. at the 100th second, after each loss event,
congestion window grows faster and faster as elapsed
time becomes longer and longer until data losses occur at
which point congestion window begins to deflate quickly.
After all data losses are recovered, the whole process
repeats.

TCP-highspeed
TCP-highspeed is a TCP variant that is derived

directly from reno algorithms; slow start and congestion
avoidance as described in (2) and (4), and fast recovery
as described in (6). However, the main difference is that
TCP-highspeed utilizes a more progressive window
increment scheme. For each new acknowledgement
received, the additive parameter and the multiplicative
factor are updated, � ← ������� (27)� ← ������� (28)

where ���⋅� and ���⋅� are two increasing functions that
map congestion window to an integer, i.e. as congestion
window increases, these values also increase. However,
if congestion window is smaller than 38, � and � take the
same default values as reno does, i.e. � � 1 and � � 0.5.

TCP-highspeed controls the congestion window
growth rate by allowing the increment to increase with
congestion window. Fig. 23 shows the dynamic of TCP-
highspeed. The result shows that slow start increases
congestion window very quickly; however, it does not
cause window overshoot. This is due to the fact that
congestion window increases so quickly that connection
pipe is fully filled and data losses become gradual rather
than abrupt. In the steady state, i.e. at the 100th second,

Fig. 23 Congestion window evolution of TCP-highspeed

0 100 200 300 400 500
0

200

400

600

800

1000

1200

1400

1600

1800

2000

time (seconds)

cw
nd

 (
pa

ck
et

s)

Fig. 22 Congestion window evolution of TCP-hamilton

0 100 200 300 400 500
0

200

400

600

800

1000

1200

1400

1600

1800

2000

time (seconds)

cw
nd

 (
pa

ck
et

s)

830 JOURNAL OF NETWORKS, VOL. 4, NO. 9, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

�

congestion window continues to steadily grow during
congestion avoidance until data losses occur at which
point congestion window begins to deflate quickly. After
all data losses are recovered, slow start (or congestion
avoidance) resumes if congestion window is smaller than
(or larger or equal to) slower start threshold. Afterward,
the entire process repeats.

TCP-hybla
TCP-hybla is another variation to the standard

congestion control in (4) and (6). In particular, the
additive increase parameter and the multiplicative
decrease factor, � and � become dependent on
normalized round trip time � which is defined as follow, � �
�,�788Z^_ /788� ,1� (29)

where 788Z^_ is the minimum round trip time seen
during the connection lifetime and 788� is the reference
round trip time which is typically set to 25 ms. In the case
of new 788Z^_ is found, � changes according to the
mode at which TCP-hybla operates; i.e. slow start, � � 2� 4 1 (30)

and congestion avoidance � � �� (31)

Cleary, exponential growth in (30) is much faster than
geometric growth in (31). In the event of data losses,
slow start threshold and congestion window are set based
on the standard algorithms described in (6) and (9) with � � 1/2. Lastly, the minimum value of � derived in (29)
is 1 in order to ensure that TCP-hybla falls back to reno if
the round trip time is less than 25 ms, i.e. the reference
round trip time.

TCP-hybla controls the congestion window increment
by allowing the increment to grow with the ration of
elapsed time to the reference time. Fig. 23 shows the
dynamic of TCP-hybla. It is clear that slow start increases
congestion window considerably quickly. In this setup, � � 8, and thus � � 127 in slow start and � � 64 in
congestion avoidance as described by (30) and (31)
respectively. Even with very high window increment,
window overshoot does not occur. This is due to the fact
that congestion window increments so fast that
connection pipe is fully filled and data losses become

gradual instead of sudden. In the steady, the evolution of
congestion window is very short due to the very high
value of window increment and therefore congestion
window appears to be very dense. Nonetheless, the entire
process runs the following routine; after each loss events,
congestion window increases very quickly until another
data losses occur; at which congestion window begins to
deflate very quickly; after all data losses are recovered,
TCP-hybla continues in either slow start or congestion
avoidance, based on the condition in (3). Then, the entire
process repeats.

TCP-scalable
TCP-scalable is to some extent a modified version of

the standard congestion control algorithm. Specifically,
instead of relying on the standard congestion avoidance
as given in (4), congestion window increases according to ��� ← ��� �
�,�1/���, Δ� (32)

where ∆� 0.01 if DACK is inactive and ∆� 0.02 if the
DACK is active. Therefore, congestion window
increments at constant rate provided that window size is
large enough.. In other words, TCP-scalable increases its
congestion window by 1 for every either 100 or 50
acknowledgements received, depending on the state of
DACK. For each loss event, slow start threshold and
congestion window is reset according to the standard
algorithm as described in (6) and (9) with � � 0.875.

TCP-scalable control the congestion window
increment by assigning the minimum value of window
increment to ∆ instead of 1/���, causing congestion
window to grow at constant rate when congestion
window size is large enough. Fig. 24 shows the dynamic
of TCP-scalable. It is clear that window overshoot at the
beginning of connection is caused by slow start. In the
steady state, i.e. at the 100th second, congestion window
grows at a linear rate until data losses occurs at which
point congestion window begins to quickly deflate. Once
all losses are recovered, congestion window continues to
grow at an exponential rate, i.e. slow start, if congestion
window is less than slow start threshold and then a linear
rate, i.e. congestion avoidance, if otherwise. Then, the
entire process repeats.

Fig. 25 Congestion window evolution of TCP-scalable

0 100 200 300 400 500
0

200

400

600

800

1000

1200

1400

1600

1800

2000

time (seconds)

cw
nd

 (
pa

ck
et

s)

Fig. 24 Congestion window evolution of TCP-hybla

0 100 200 300 400 500
0

200

400

600

800

1000

1200

1400

1600

1800

2000

time (seconds)

cw
nd

 (
pa

ck
et

s)

JOURNAL OF NETWORKS, VOL. 4, NO. 9, NOVEMBER 2009 831

© 2009 ACADEMY PUBLISHER

�

TCP-vegas
TCP-vegas is a completely new and different

congestion control protocol. Unlike the standard reno, i.e.
a loss-based algorithm that uses data losses as an
indication of network congestion, TCP-vegas is a delay-
based algorithm that uses an increase in delay as an
indication of network congestion. In particular, TCP-
vegas aims at sending the right amounts of packets into
network without causing congestion. Let ���� be the
difference between the congestion window that is opened
in the last round trip time and the target window, i.e. ���� � �� 4 ���[���� (33)

where ���[���� is the window size that does not cause
any increases in round trip time and is defined as ���[���� � �� ⋅ 1���788/
��788 (34)

where 1���788 is the minimum round trip time seen
during the connection lifetime and
��788 is the
minimum round trip time during the last transmission
round. Now, TCP-vegas operates as follow. During slow
start, if ���� is larger than a threshold, � typically set to
2, it indicates that the current congestion window is
larger than network capacity and network congestion
begins to accumulate. Thus, slow start stops and linear
increase/decrease phase begins. At this point, congestion
window either increases or decreases based on network
condition as follow,

��� ← d��� � 1 ���� 	 ���� � 	 ���� 	 ���� 4 1 ���� 	 X (35)

where � and � are two thresholds that indicate the
minimum and the maximum numbers of backlogged data
inside the network. ���� 	 � means the current
congestion window is just the right size, and finally ���� 	 � means the current congestion window is too
big. Typically, � and � are set to 1 and 3 respectively. In
other words, TCP-vegas constantly adapts its congestion
window increment according to network conditions.

TCP-vegas controls the dynamic congestion window
by observing an increase in end-to-end delay. In
particular, it aims at preventing network congestion from

happening by tuning congestion window to evolve
around the state at which bandwidth is fully utilized and
buffer is minimally occupied. Fig. 25 show the dynamic
of TCP-vegas. It is clear that window overshoot at the
beginning of connection is caused by slow start.
Nonetheless, the result does not show any indication of
the steady state. However, after the initial slow start, i.e.
at the 100th second, congestion window continues to grow
according to linear increase/decrease rule as described in
(35). It is clear that once congestion window reaches the
right size, it neither increases nor decreases and it
remains unchanged until network conditions change.

TCP-veno
TCP-veno is considered a mixture of the standard reno

and vegas. In particular, TCP-veno relies on numbers of
backlogged packet as another criterion to update
congestion window. Unlike vegas, TCP-veno does not
mainly aim at preventing network congestion from
happening and still uses the standard congestion control
algorithm for updating congestion window as in (4) with � � 1, i.e. ��� ← ��� � 1/��� (36)

However, instead of updating congestion window
regularly, ���� that is derived from (33) and (34) is used
to dictate how frequently congestion window is updated.
Let � be the number of new acknowledgements required
for congestion window to be updated, i.e. � � �1 if ���� 	 �,2 if ���� g �, (37)

where � is the threshold and � � 3. The relation between ���� and � is used to indicate network congestion; i.e. if ���� 	 �, network is in non-congestive state but if ���� g �, network is in congestive state. In the event of
data losses, slow start threshold and congestion window
is reduced according to the standard rules as described in
(6) and (9) but with two choices of �, i.e. � � �4/5 if ���� 	 �,1/2 if ���� g �, (38)

In other words, congestion window is reduced by 1/2 if
network is in congestive state and congestion losses
occur and by 4/5 if in non-congestive state and

Fig. 27 Congestion window evolution of TCP-veno

0 100 200 300 400 500
0

200

400

600

800

1000

1200

1400

1600

1800

2000

time (seconds)

cw
nd

 (
pa

ck
et

s)

Fig. 26 Congestion window evolution of TCP-vegas

0 100 200 300 400 500
0

200

400

600

800

1000

1200

1400

1600

1800

2000

time (seconds)

cw
nd

 (
pa

ck
et

s)

832 JOURNAL OF NETWORKS, VOL. 4, NO. 9, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

�

corruption losses occur. Lastly, TCP-veno behaves
exactly like reno when network is in non-congestive
state.

TCP-veno controls the congestion window increment
by allowing the frequency of window update to be
dependent on the state of network congestion, i.e. the
relation between ���� and �. Fig. 26 show the dynamic
of TCP-veno. The result clearly shows the presence of
slow start resulting in window overshoot during initial
connection but it does not seem to show the steady state.
After the initial slow start, congestion window continues
to grow linearly and slowly. However, it can be deduced
that congestion window will continue to grow linearly as
described in (36) with the rate corresponding to network
conditions as given in (37) until data losses occur at
which point congestion window begins to deflate quickly.
After all losses are recovered, TCP-veno resumes in
either slow start or congestion avoidance based on the
condition in (3). Then, the entire process repeats.

TCP-westwood
TCP-westwood is another extension to the standard

reno. The main algorithm is still the same as the standard
slow start and congestion avoidance as described in (2)
and (4) with � � 1; but rather than halving slow start
threshold as suggested in (6) with � � 1/2, a new
mechanism, called bandwidth estimation (BWE), is used
to estimate the available bandwidth based on the inter-
arrival time of data acknowledgements and the amounts
of transmitted bytes. For each loss events, slow start
threshold is reset according to �������� ← �IW6 ⋅ 788Z^_�/*++ (39)

where 788Z^_ is the minimum round trip time seen
during the entire connection lifetime and *++ is the
maximum segment size. Therefore, slow start threshold is
assigned to a more accurate estimation of available
network capacity; particularly in the event of corruption
induced losses, i.e. no congestion, bandwidth estimation
algorithm better reflects network condition than the
simple window halving scheme.

TCP-westwood is not designed to control the
congestion window increment but rather to mitigate the
impacts of random data losses. Fig. 27 shows the

dynamic of TCP-westwood. The result shows that
window overshoot during initial connection is caused by
slow start. However, after initial slow start, congestion
window unfortunately drops below bandwidth delay
product and resumes in congestion avoidance. This is due
to the fact that BWE can estimate only bandwidth with
respect to the amount of outstanding data and after slow
start, the number of outstanding bytes can be small and so
does the estimation. Thus, in certain case, BWE can lead
to an underestimation of bandwidth. In the steady,
congestion window continues to grow linearly until data
losses occur at which point congestion window begins to
deflate quickly. After all losses are recovered, TCP-
westwood resumes in either slow start or congestion
avoidance depending on the condition given in (3). Then,
the whole process repeats.

TCP-compound
TCP-compound is a hybrid TCP variant that combines

the loss-based scheme of reno and the delay-based
scheme of vegas into single scheme. The effective
window size is simply the sum of the loss-based and the
delay-based components, i.e. �� � ��� � ��� (40)

and in the case of no network congestion and no data
losses, it is incremented as follow, �� ← �� � � ⋅ ��� (41)

where � and � are the two tunable parameters, and � � 1/8 and � � 3/4. TCP-compound is designed to
have binomial behavior in the absence of congestion and
data losses. In order to achieve this binomial behavior,
first the standard congestion avoidance algorithm in (4)
has to be modified to compensate for an increase in the
effective window due to the delay-based component, i.e. ��� ← ��� � 1/�� (42)

Second, the delay-based component is mainly designed to
complement the loss-based component. Similar to vegas,
the relation between ���� that is derived in (33) and (34),
and � is used to approximate network utilization; i.e.
underutilized if ���� 	 � and highly utilized if ���� g�. Therefore, the delay-based component is updated per
new acknowledgment as follow,

Fig. 29 Congestion window evolution of TCP-compound

0 100 200 300 400 500
0

200

400

600

800

1000

1200

1400

1600

1800

2000

time (seconds)

cw
nd

 (
pa

ck
et

s)

Fig. 28 Congestion window evolution of westwood

0 100 200 300 400 500
0

200

400

600

800

1000

1200

1400

1600

1800

2000

time (seconds)

cw
nd

 (
pa

ck
et

s)

JOURNAL OF NETWORKS, VOL. 4, NO. 9, NOVEMBER 2009 833

© 2009 ACADEMY PUBLISHER

�

���← ���� � � ⋅ ��� 4 1¡� if ���� 	 ���� 4 ¢ ⋅ ���� if ���� g � (43)

where ⋅¡� is the maximum between the argument and
zero and ¢ is the parameter that indicates how rapidly the
delay-based component is reduced when needed. In
addition, ¢ � 1 and � � 30. Moreover, the delay-based
component will eventually disappear in the case of full
utilization but it will grow much larger in the case of
underutilization. In the case of no congestion; neither
increase in queue nor data losses, slow start threshold is
halved while the effective window is reduced as follow, �� ← � ⋅ �� (44)

corresponding to the modification of the loss-based and
delay-based components as follow, ��� ← � ⋅ ��� (45)��� ← � ⋅ �� 4 ���/2 (46)

where � is the multiplicative decrease factor and � � 1/2. Lastly, TCP-compound behaves exactly like
reno when network is fully utilized, i.e. ���� g �.

TCP-compound controls the congestion window
growth rate by allowing the delay-based component to
grow much faster when it senses neither network
congestion nor data losses. Fig. 28 shows the dynamic of
TCP-compound. The result shows that at the beginning of
connection, window overshoot is caused by slow start. In
the steady state, i.e. at the 100th second, congestion
window grows linearly until data losses occur at which
point congestion window begins to deflate very quickly.
After all data losses are recovered, congestion window
continues to grow. Nevertheless, since TCP-compound
senses that network is not fully utilized, the delay-based
component is therefore active. The impacts of the delay-
based is seen by the ups and downs of congestion
window. After network is fully utilized, the delay-based
component becomes inactive and congestion window
grows as normal. Afterward, the whole process repeats.

Clearly, LinuxTCP is capable of re-producing
congestion window dynamics of different Linux TCP
variants in which it is believed to be much closer to
reality due to the use of real-world code. Thus, different
TCP variants can be studied and compared to each other
to evaluate the performance of interest, i.e. link
utilization, robustness, friendliness and fairness. In
addition, new TCP variants can effortlessly be included
into INET as long as they are complied with Linux
congestion control interface, like compound.

IX. CONCLUSIONS AND FUTURE WORKS

This work presents how real-world TCP can be
evaluated via a network simulator. By combining real-
world Linux TCP and INET simulation framework, true
dynamics of real-world TCP can be accurately captured
in varieties of simulated network environments without
having to rely on costly and complicated network

experiment. Moreover, this works present one
verification and validation technique, i.e. dynamic testing
and operational graphic, and eventually concludes that
LinuxTCP is valid within the simulated network
environments provided by INET. In addition, the
applications of LinuxTCP are demonstrated by reviewing
congestion control algorithms and displaying congestion
window dynamics for each of TCP variants, i.e. bic,
cubic, hamilton, highspeed, hybla, scalable, vegas, veno,
westwood and compound. Note that compound is a
special case since it is not actually a native Linux
congestion control but was developed based on the
Window Vista based TCP. These many selections of TCP
variants strengthen the decision on choosing Linux
TCP/IP network stack as the source for the integration.

The novelties of this work are as follow. First, this
work introduces the interface-based methodology for
integrating the transport layer of Linux TCP/IP network
stack from into INET in which it can be served as a
guideline for integrating future network stack with INET
or with other simulators. Second, this work presents
independent development on integrating real-world Linux
TCP with a simulator in which it can be used for cross
validation among different network simulators. Third,
this work realizes an evaluation of the real-world Linux
TCP in simulated network environment in which it is
believed to be the most practical and flexible means in
studying real-world protocols for a varieties of networks
and technologies. Lastly, the choice of Linux TCP/IP
network stack permits new TCP variants to be developed
and tested in simulated network environments and later
these new TCP variant can be tested and used in real-
world network with no additional efforts required. The
use of INET with Linux TCP extension greatly reduces
the development time.

The future works will mainly aim at exploiting
LinuxTCP in the performance study and evaluation of
different Linux TCP variants in the next generation
network and the next generation Internet, i.e. large
bandwidth, long delay, high bit error rate and different
service quality. The secondary aim will be to develop a
new TCP variant that performs well in the next
generation network. The final aim will be to design a
much cleaner INET-Linux interface that will speed up the
integration processes in the future for new INET and
Linux kernel.

APPENDIX

The detailed implementations of all TCP variants,
except compound, can be found in the Linux kernel
source code available at the Linux archive website [14]
under /net/ipv4/ directory.

ACKNOWLEDGMENT

S. Kittiperachol thanks the Royal Thai Navy for the
generous financial support.

834 JOURNAL OF NETWORKS, VOL. 4, NO. 9, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

�

REFERENCES

[1] A. Varga, "OMNeT++ discrete event simulation system,"
http://www.omnetpp.org.

[2] "Castalia - a simulator for WSNs,"
http://castalia.npc.nicta.com.au.

[3] "Chsim," http://www.cs.uni-paderborn.de/en/research-
group/research-group-computer-
networks/projects/chsim.html.

[4] "OverSim: the overlay simulation framework,"
http://www.oversim.org.

[5] K. Fall and S. Floyd, "Simulation-based comparisons of
Tahoe, Reno and SACK TCP," ACM Computer
Communication Review, vol. 26, no. 3, pp. 5-21, July
1996.

[6] V. Jacobson and M. Karels, "Congestion avoidance and
control," in Proceeding of ACM SIGCOMM '88, Stanford,
California, USA, August 1988, pp. 314-329.

[7] S. Floyd, T. Henderson, and A. Gurtov, "The NewReno
modification to TCP's fast recovery algorithm," RFC
3782, April 2004.

[8] "OppBSD - a FreeBSD network stack integrated into
OMNeT++," https://projekte.tm.uka.de/trac/OppBSD.

[9] D. X. Wei and P. Cao, "A Linux TCP implementation for
NS2,"
http://www.cs.caltech.edu/~weixl/technical/ns2linux.

[10] R. Bless and M. Doll, "Integration of the FreeBSD
TCP/IP-stack into the discrete event simulation
OMNeT++," in Proceeding of Winter Simulation
Conference, Washington DC, USA2004, pp. 1556-1560.

[11] S. Jansen and A. McGregor, "Simulation with real world
network stacks," in Proceeding of Winter Simulation
Conference, Orlando, Florida, USA, 4-7 December 2005.

[12] "The network simulator - ns2,"
http://www.isi.edu/nsnam/ns.

[13] D. X. Wei and P. Cao, "NS-2 TCP-Linux: an NS-2 TCP
implementation with congestion control algorithms from
Linux," in Proceeding of 2006 workshop of ns-2: the IP
network simulator, Pisa, Italy, 10 October 2006.

[14] "The Linux kernel archive," http://www.kernel.org.
[15] V. Paxon and M. Allman, "Computing TCP's

retransmission timer," RFC 2988, November 2000.
[16] V. Jacobson, R. Braden, and D. Borman, "TCP

extensions for high performance," RFC 1323, May 1992.
[17] E. Blanton, M. Allman, K. Fall, and L. Wang, "A

conservative selective acknowledgement (SACK)-based
loss recovery algorithm for TCP," RFC 3517, April 2003.

[18] M. Allman, "Ongoing TCP research related to satellites,"
RFC 2760, February 2000.

[19] M. Allman, H. Balakrishnan, and S. Floyd, "Enhancing
TCP's loss recovery using limited transmit," RFC 3042,
January 2001.

[20] A. Allman, "TCP byte counting refinements," ACM
Computer Communication Review, vol. 3, no. 28,July
1999.

[21] M. Mathis and J. Mahdavi, "Forward acknowledgement:
refining TCP congestion control," in Proceeding of ACM
SIGCOMM '96, Stanford, California, USA1996, pp. 281-
291.

[22] S. Kittiperachol, Z. Sun, and H. Cruickshank, "Integration
of Linux TCP implementation: verification and
validation," in Proceeding of SPECTS '08, Edinburgh,
UK, 16-18 June 2008.

[23] O. Balci, "Verification, validation and accreditation," in
Proceeding of Winter Simulation Conference,
Washington DC, USA, 13-16 December 1998, pp. 41-48.

[24] R. G. Sargent, "Verification and validation of simulation
models," in Proceeding of Winter Simulation Conference,

Washington DC, USA, 13-16 December 1998, pp. 121-
130.

[25] M. Mathis, J. Semke, and J. Mahdavi, "The macroscopic
behavior of the TCP congestion avoidance algorithm,"
ACM Computer Communication Review, vol. 27, no. 3,
pp. 67-82, July 1997.

[26] Z. Sun, Satellite networking principles and protocols:
Wiley, 2005.

[27] L. Xu, K. Harfoush, and I. Rhee, "Binary increase
congestion control (BIC) for fast long-distance
networks," in Proceeding of IEEE INFOCOM '04, Hong
Kong, 7-11 March 2004, pp. 2514-2524.

[28] I. Rhee and L. Xu, "CUBIC: A New TCP-friendly high-
speed TCP variant," in Proceeding of PFLDnet 2005,
Lyon, France, 3-4 February 2005.

[29] S. Floyd, "Highspeed TCP for large congestion
windows," RFC 3649, December 2003.

[30] D. Leith and R. Shorten, "H-TCP: TCP for high-speed
and long-distance networks," in Proceeding of PFLDnet
2004, IL, USA, 16-17 February 2004.

[31] C. Caini and R. Firrincieli, "TCP Hybla: a TCP
enhancement for heterogeneous networks," International
Journel of Satellite Communciations and Networking,
vol. 22, no. 5, pp. 547-566, September 2004.

[32] T. Kelly, "Scalable TCP: improving performance in
highspeed wide area networks," ACM SIGCOMM
Computer Communication Reviews, vol. 33, no. 2, pp. 83-
91, April 2003.

[33] L. Brakmo and L. Peterson, "TCP Vegas: end to end
congestion avoidance on a global internet," IEEE Journal
on Selected Areas in Communications, vol. 13, no. 8, pp.
1465-1480, October 1995.

[34] C. P. Fu and S. C. Liew, "TCP Veno: TCP enhancement
for transmission over wireless access," IEEE
Communication Magazine, vol. 21, no. 2, pp. 216-228,
February 2003.

[35] K. Tan, J. Song, Q. Zhang, and M. Sridharan,
"Compound TCP: a scalable and TCP-friendly congestion
control for high-speed networks," in Proceeding of
PFLDnet 2006, Nara, Japan, 2-3 February 2006.

[36] K. Tan, J. Song, Q. Zhang, and M. Sridharan, "A
compound TCP approach for high-speed and long
distance network," in Proceeding of IEEE INFOCOM
'06, Barcelona, Spain, 23-29 April 2006, pp. 1-12.

Songrith Kittiperachol was born in Bangkok, Thailand. The author
received both the B.Sc (Cum Laude) and M.Sc degrees in Electrical and
Computer Engineering in 1998 and 2000 from University of Maryland
at College Park, Maryland, USA.

He was a part-time lecturer at Mahidol University, Thailand. He also
was a network and system engineer at the Royal Thai Navy, Thailand.
Currently, he is studying PhD at the Centre for Communication Systems
Research (CCSR), Faculty of Electronics and Physical Science,
University of Surrey, United Kingdom. His main research interests are
the performance evaluation and optimization of Internet over satellite
network.

Zhili Sun received the BSc degree in mathematics from Nanjing
University, China, and the PhD degree in computing science from
Lancaster University, United Kingdom. He is the chair of
Communication Networking in the Centre for Communication Systems
Research (CCSR), Department of Electronic Engineering, Faculty of
Electronics and Physical Sciences, University of Surrey, United
Kingdom.

He is a professor in data and Internet networking, as well as satellite
communication courses, at the University of Surrey. He has also been a

JOURNAL OF NETWORKS, VOL. 4, NO. 9, NOVEMBER 2009 835

© 2009 ACADEMY PUBLISHER

�

principal investigator for the UK Engineering and Physical Sciences
Research Council (EPSRC), European Space Agency (ESA), and
industrial projects on IP multicast security. His main research interests
include network security, satellite network architectures, Voice over IP
(VoIP), and IP conferencing over satellites. He has published a book
titled Satellite Networking (Wiley) and more than 120 papers in
international journals and conferences. He is a member of the Satellite
and Space Communications Committee of the IEEE Computer Society
and a chartered engineer and corporate member of the IET in the United
Kingdom.

Haitham Cruickshank is a lecturer in data and Internet networking and
satellite communication courses at the Centre for Communication
Systems Research (CCSR), Department of Electronic Engineering,
Faculty of Electronics and Physical Sciences, the University of Surrey,
United Kingdom.

Since January 1996, he has been working on several European
research projects in the Advanced CompuTational Software (ACTS),
Esprit, Trans-European Telecommunications Network (TEN-
TELECOM), and Information Society Technologies (IST) programs.
His main research interests include network security, satellite network
architectures, Voice over IP (VoIP), and IP conferencing over satellites.
He is a member of the Satellite and Space Communications Committee
of the IEEE Computer Society and a chartered engineer and corporate
member of the IET in the United Kingdom.

836 JOURNAL OF NETWORKS, VOL. 4, NO. 9, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

