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Abstract—Network simulator has been acknowledged as 
one of the most flexible means in studying and developing 
protocol as it allows virtually endless numbers of simulated 
network environments to be setup and protocol of interest 
to be fine-tuned without requiring any real-world 
complicated and costly network experiment. However, 
depending on researchers, the same protocol of interest can 
be developed in different ways and different 
implementations may yield the outcomes that do not 
accurately capture the dynamics of the real protocol. In the 
last decade, TCP, the protocol on which the Internet is 
based, has been extensively studied in order to study and re-
evaluate its performance particularly when TCP based 
applications and services are deployed in an emerging Next 
Generation Network (NGN) and Next Generation Internet 
(NGI). As a result, to understand the realistic interaction of 
TCP with new types of networks and technologies, a 
combination of a real-world TCP and a network simulator 
seems very essential. This work presents an integration of 
real-world TCP implementation of Linux TCP/IP network 
stack into a network simulator, called INET. Moreover, 
verification and validation of the integrated Linux TCP are 
performed within INET framework to ensure the validity of 
the integration. The results clearly confirm that the 
integrated Linux TCP displays reasonable and consistent 
dynamics with respect to the behaviors of the real-world 
Linux TCP. Finally, to demonstrate the application of the 
INET with Linux TCP extension, algorithms of other Linux 
TCP variants and their dynamic over a large-bandwidth 
long-delay network are briefly presented.  
�
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I. INTRODUCTION

A combination of a Transmission Control Protocol 
(TCP) implementation and a simulation framework 
allows realistic evaluation of TCP with less complication 
and lower cost than a network experiment. This paper 
presents an integration of an existing TCP based on 
Linux implementation and OMNeT++ (v3.3) simulation 
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framework [1]. OMNeT++ is a well-known open-source 
Discrete Event Simulation (DES) environment. It utilizes 
a modular component design architecture where small 
and simple components, programmed in C++, can be 
assembled into larger and more complex modules by 
using OMNeT++ built-in NEtwork Description (NED) 
language. In addition, OMNeT++ features Graphical 
User Interface (GUI) that enables the design and the 
execution to be visualized and animated. Most 
importantly, OMNeT++ presents simulation kernel 
support that allows other kernels to be embedded into the 
framework. Although OMNeT++ itself is not a network 
simulator, it is gaining widespread acceptance in 
scientific communities as a network simulation platform 
due to its generic and flexible framework. Many open-
source network simulator models have been developed
with OMNeT++, for examples, INET Framework [1] in 
the field of the Internet, Mobility Framework [1] in 
mobility and ad-hoc networks, Castalia [2] wireless 
sensor network, Chsim [3] in wireless channel modeling 
and OverSim [4] in Peer-to-Peer network. 

INET Framework (v20062010) was developed mainly 
for the simulation of the Internet. Although INET 
maintains a number of protocol implementations, only 
the 4th layer protocols or the transport layer protocols are 
of interest. In general, the responsibility of the transport 
layer protocols is to establish end-to-end data connections 
between peers in an either reliable or unreliable manner. 
For a reliable service, TCP is primarily used. TCP offers 
byte-oriented in-order-delivery data transport services. 
As documented by INET, two TCP variants, i.e. Tahoe
and Reno, already exist in the framework. However, 
study [5] shows that both variants do not perform well 
when they are deployed in the network with high data 
loss rate. Thus, the use of Tahoe and Reno is no longer 
practical in the modern Internet where data loss rate can 
be high. As opposed to the original Internet, i.e. slow 
networks and best-effort services, Next Generation 
Internet (NGI) aims at offering high speed broadband 
wired or wireless Internet access and multiservice 
applications of different qualities. Undoubtedly, NGI is 
growing beyond the original design of both Tahoe and 
Reno [6] where network reliability and best effort service 
are often assumed. The main weakness of both variants 
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lies in the ineffectiveness of their fast recovery algorithm 
when having to deal with multiple data losses from the 
same transmission window. In order to mitigate this 
deficiency, the fast recovery algorithm is modified and 
the latest standard TCP known as NewReno is defined 
[7].  

From the research point of views, it sounds more 
logical and more productive to concentrate on the latest 
standard protocol, NewReno, rather than its previous 
incarnations. With INET as a simulation tool, the 
addition of the missing standard TCP is necessary. On 
one hand, taken from the NewReno description, a new 
TCP module can be coded into the INET. Although this 
straightforward approach allows quick and flexible 
realization, the resulting module may not contain enough 
details to produce accurately the dynamics of the real-
world protocol, most likely due to high level of 
abstraction, variations in the implementation or the lack 
of certain features. On the other hands, an existing 
protocol implementation, after some changes, can be 
directly ported into the INET. Although this latter
approach introduces development complexity due to 
architecture differences of the protocol and the network 
simulator, the benefit is very important since it allows a 
real-world protocol to be studied within any given 
simulated network environments without having to rely 
on costly and complex network experiment setup. In 
addition, by using real-world code, researcher can get 
acquainted to real-world implementation. Understanding 
the importance of the real-world code, this paper follows 
the porting approach.  

This paper is organized as follow. Section II states 
related work whereas section III overviews Linux TCP/IP 
network stack and discusses TCP functionalities and 
enhancements. Section IV outlines integration 
methodology, followed by simulation setup in section V. 
Then, verification, validation and application of the 
integrated tool, i.e. INET with Linux TCP extension, are 
illustrated respectively in section VI, VII and VIII. 
Finally, section IX presents conclusions and the future 
works. 

II. RELATED WORK

Acknowledging the importance of real-world codes, 
other independent developments on porting TCP/IP 
network stack into a network simulation platform have 
been promoted by several active research groups; 
examples of such works are OppBSD [8] and A Linux 
TCP Implementation [9].  

A. OppBSD    

OppBSD is a network simulator, developed by 
Institute of Telemetics, university of Karlsruhe, Germany 
[10]. It allows the actual FreeBSD kernel (v6.2) working 
in the OMNeT++ platform as a simulation model. In 
addition, it features dual stacks IPv4 and IPv6. However, 
FreeBSD only supports one TCP implementation and 
does not have necessary interface that allows simple 

addition of congestion control algorithms. Moreover, 
OppBSD only sports point-to-point and Ethernet-like 
connections; restricting the simulated environments to 
wired network only. Although OppBSD is provide a 
precise emulation of FreeBSD, another integrated 
network simulator with more selections regarding TCP 
variants and network technologies is required. 

B. A Linux TCP Implementation  

A Linux TCP Implementation (NS2 TCP-Linux), a 
part of NS2 [11] main distribution, is developed and 
maintained by Network Laboratory, California Institute 
of Technology, USA. By loosely following Linux kernel 
(v2.6.22), thirteen additional Linux TCP variants can be 
run in NS2 [12, 13]. However, data processing with 
respect to TCP enhancement and modifications needs to 
be individually implemented and handled by NS2 since 
TCP-Linux only includes congestion control. Again, the 
true TCP dynamics may not be produced here due to lack 
of features or over simplification. Although NS2 Linux-
TCP provides more choices on TCP variants and network 
technologies, another integrated network simulator is 
needed since Linux-TCP only includes main algorithms, 
i.e. slow start and congestion avoidance while excluding 
the majorities of the real-world codes of Linux kernel that 
directly controls the behaviors of real-world TCP. 

III. LINUX TCP/IP NETWORK STACK

Linux TCP/IP network stack [14] is found to be one of 
the most suitable sources for a real-world TCP 
implementation as firstly it is a part of the Linux 
Operating System (OS) or the Linux kernel; secondly it 
has been widely used by many research communities; 
and thirdly it already contains the standard TCP, 
NewReno. In addition, Linux TCP/IP network stack has a 
well-defined congestion control interface where new TCP 
algorithms can be adopted easily and very well matches 
the INET software architecture 

Like Tahoe and Reno, NewReno employs a window-
based algorithm to govern the flow control, and thus 
transmission rate. In general, TCP can send more data if 
the following condition is satisfied. ��������� 	 
������� ���� (1)

where ��������� is the estimated number of outstanding 
packets, i.e. packets that has been transmitted but not yet 
acknowledged, cwnd is the congestion window, i.e. the 
amounts of packets that can be handled by a network, and 
awnd is the advertised window, i.e. the amounts of 
packets that can be handled by a receiver. In addition, the 
operation of TCP is defined by four algorithms; slow 
start, congestion avoidance, fast retransmit and fast 
recovery. 

A. The Standard TCP 

Slow Start
Slow start is an algorithm that is used in one of the 

following circumstances; at the beginning of connection, 
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after a long idle period and after a retransmission 
timeout. The main goal of the slow start is to quickly 
probe network of unknown conditions for available 
bandwidth that can be utilized. Since TCP is a closed-
loop protocol, the growth of congestion window mainly 
depends on the reception of new acknowledgement. For 
each new acknowledgement,  ��� � ��� � � (2)

where � is the additive increase parameter and � � � in 
the cases of Tahoe, Reno and NewReno. Therefore, 
congestion window is approximately doubled every 
round trip time. The slow start remains active provided 
that the congestion window does not exceed the slow 
start threshold,���������, i.e. ��� 	 �������� (3)

After that, congestion avoidance begins. 

Congestion Avoidance 
Congestion avoidance is another algorithm that is used 

in order to continue probing the network for more 
bandwidth but at a much slower rate when compared to 
the slow start. On the reception of new 
acknowledgement, ��� � ��� � � ���⁄ (4)

and � � �. The congestion window is approximately 
increased by one for every round trip time. In this 
manner, the transmission rate can be increased steadily 
without inflicting any sudden changes in network 
conditions. TCP remains in the congestion avoidance 
until data losses are detected due to congested network. 
After which, TCP enters a transient phase in order to 
recover lost data. 

In addition to the flow control given in (1), TCP relies 
on the error control in order to provide a reliable 
connection. However, the reliability of the TCP is in the 
sense that lost data will eventually be detected and 
retransmitted.  

Fast Retransmit 
In loss events, TCP reacts in a different way depending 

on the variants and this is where similarity between 
Tahoe and the others ends. On one hand, Tahoe relies 
only on retransmission timer to detect data losses. The 
timer will timeouts if the acknowledgement of a packet is 
not received after a certain time period, based on the 
measured round trip time [15]. As soon as the timeout 
occurs, the lost data as indicated by the left window or
the highest sequence number of data transmitted but not 
yet acknowledged, i.e. �������, is retransmitted and the 
congestion window is reset, ��� � � (5)

On the other hand, Reno and NewReno uses 
retransmission time as a last resource. Rather, Reno and 
NewReno use fast retransmit algorithm to speed up the 
loss detection process by inferring certain numbers, 
typically three, of duplicate acknowledgements, i.e. an 

acknowledgement that does not advance �������, as an 
indication of network congestion and thus data losses. On 
the reception of three duplicate acknowledgements, data, 
starting from snd_una, is assumed lost and retransmitted.  

Fast Recovery 
After the fast retransmit, fast recovery becomes active. 

Then, the slow start threshold and the congestion window 
are reduced as follow, �������� � � � ��� (6)��� � �������� � � (7)

where � is the multiplicative decrease factor and � � � ! in the cases of Reno and NewReno. During fast 
recovery, the congestion window increases per the 
reception of duplicate acknowledgement as follow, ��� � ��� � � (8)

Now, this is the place where the similarity between Reno 
and NewReno ends. For Reno, congestion window 
continues to increase until a new acknowledgment 
arrives. After that, congestion window is reset as follow, ��� � �������� (9)

and Reno continues in congestion avoidance.  
Unlike Reno, NewReno records the highest transmitted 

sequence number in ��������� and classifies two types 
of the new acknowledgement, i.e. full and partial. A new 
acknowledgement advances �������; However, a full 
one also cover ��������� but a partial one does not. If a 
partial acknowledgment arrives, the congestion window 
is deflated by the amounts equal to the number of data 
being covered by that partial acknowledgement and fast 
recovery continues since partial acknowledgement 
implies more data losses. If a full acknowledgement 
arrives, fast recovery ends and congestion window is 
reset as in (9). After all losses are recovered, TCP 
resumes in congestion avoidance. It is worth mentioning 
that during fast recovery, more data are allowed to be 
transmitted if and only if (1) is satisfied so that the 
network does not suffer extended congestion.  

 In summary, TCP is the 4th layer protocol whose main 
responsibility is to establish end-to-end data connection 
for a reliable in-order byte-oriented data delivery service. 
Most importantly, TCP provides flow control and error 
control for network by reducing its transmission rate 
when the network is heavily congested and retransmitting 
lost data when there are data losses. In addition, due to 
the additive increase of the congestion avoidance and the 
multiplicative decrease of the fast recovery, the operation 
of TCP can be characterized as an Additive Increase 
Multiplicative Decrease scheme or AIMD. Finally, it is 
evident that TCP performs extremely well in the 
traditional Internet where connection is relatively slow 
and round trip time delay is in a few ten-milliseconds as 
TCP strongly remains the most dominant protocol over 
the Internet up until today. 
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B. The Linux TCP 

In addition to the standard TCP algorithms, Linux TCP 
is equipped with several options and extensions [16-21]. 
TCP option can be used if and only if the required 
options are negotiated at the connection setup. TCP 
option is indicated by the following structure; one octet 
kind field followed by one octet length field, and 
followed by (length - 2) octets of option fields as seen in 
Fig. 1. In addition, no operation or NOP is used to align 
the option to the four-octet boundary. 

Timestamp Option
Timestamp option (TSopt) is indicated by kind (8) and 

length (10) as seen in Fig. 2. With timestamp option, 
transmitted time can be imprinted in the TCP option 
field. The transmission time of a data segment is recorded 
in the TSval field. On the reception of data segment, the 
recorded time in TSval is copied over to the TSecr field 
and the transmission time of an acknowledgement is 
recorded over in the TSval field. Once the 
acknowledgement arrives, a more accurate round trip 
time can easily be measured by finding the difference 
between TSecr and TSval. In addition, a more refined 
retransmission timeout is a byproduct of a more accurate 
round trip time measurement. 

Window Scaling Option
Window scaling option (WSopt) is indicated by kind 

(3) and length (3) as seen in Fig. 3. With window scaling 
option, the window size based on the 16-bit window field 
of the TCP header, can be extended to a 30-bit value by 
scaling the window field. For the sending window, ������, ������ � ���" # �����$ ��� (10)

and for the receiving window, ��%���,  

���" � ��%��� & �����$ ��� (11)

This option allows more data to be sent in one 
transmission window. Thus, higher data rate can be 
achieved, particularly in a large-bandwidth long-delay 
network. 

Selective Acknowledgement Option (SACK)

Selective acknowledgement option (SACK) is 
indicated by kind (5) and length (var) as seen in Fig. 4. 
The length of SACK is varied since it depends on the 
numbers of blocks that will be set in the option field, i.e. 
4' � � !. With SACK option, non-contiguous blocks of 
data that have successfully been received and queued at 
the receiver can be sent back to the sender. These gaps 
can be filled by the retransmission or the late arrival of 
the packet. On the reception of the acknowledgement 
with SACK blocks, the non-contiguous blocks of data 
that are queued at the receiver are reproduced. By 
utilizing this extra information, lost data can be quickly 
and accurately determined. 

Large Initial Window 
Large Initial Window (IW) is an extension that speeds 

up slow start, by increasing the transmission window size 
at the beginning of the connection according to  ������� 
��() ' *++� 
�,�! ' *++� )�-.�/ (12)

Depending on the given size of the Maximum Segment 
Size (MSS), the initial congestion window can be four 
segments at most. With large initial window, the 
transmission window can be opened more quickly during 
slow start. 

Delayed Acknowledgement
Delayed acknowledgment (DACK) is an extension that 

controls the rate at which acknowledgements are 
transmitted in the return channel. Customarily, the 
receiver immediately sends an acknowledgement for 
every data segment that is received. With DACK, the 
receiver delays the transmission of an acknowledgement 
up to a certain time period, typically 200 ms. If the 
receiver does not receive more data within the given time 
period, the pending acknowledgement is sent. If the 
receiver receives the next data within that time period, 
the pending acknowledgement is discarded and the new 
one corresponding to the latest data is transmitted. 
However, if the receiver receives out-of-order data, it will 
cancel DACK and immediately transmit a duplicate 
acknowledgement. Therefore, single acknowledgment 
can be used to cover two data segments that are 
successfully received and bandwidth usage in the return 
channel can be reduced up to two folds. However, DACK 
also affects congestion window growth rate since the 
growth rate, as given in (2) and (4), depends on the 
numbers of the acknowledgements that are received, i.e. 
an acknowledgement counting scheme. 

5NOP varNOP

Left Edge of the 1st block

Right Edge of the 1st block

Left Edge of the nth block

Right Edge of the nth block

...

Fig. 4 Selective acknowledgement option

33 shift.cntNOP

Fig. 3 Window scaling option

Fig 2 Timestamp option

Fig 1 TCP option field
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Appropriate Byte Counting
Appropriate byte counting (ABC) is an extension that 

controls the amounts at which congestion window 
increases. Instead of being based on the 
acknowledgement-counting scheme, a byte-counting 
scheme is used. The byte-counting scheme increases 
congestion window relative to the number of bytes 
covered by an acknowledgement. In other word, the 
additive increase parameter is changed to � � 
�,�012�� *++3� !� (13)

where 0,3 indicates the largest integer that is smaller than , and the increase parameter is limited to 2 to prevent 
large data burst. As a result, ABC can mitigate the impact 
of DACK and reduce the effect of lost 
acknowledgements that reduces the growth rate of 
congestion window.  

Fast Retransmit with SACK
In addition to using the three-duplicate-

acknowledgement scheme, the sender can detect data 
losses more quickly by utilizing the non-contiguous 
blocks of data that are derived from SACK. blocks. If the 
cumulative size of the gaps, stating from a sequence 
number, is equivalent to at least three segments, the 
segment beginning with that sequence number is 
considered lost and retransmitted. With SACK, the 
sender can quickly detect data losses by less than three 
duplicate acknowledgements  

Fast Recovery with SACK
The use of SACK to accelerate loss detection process 

in fast retransmit is also extended to fast recovery. After 
each retransmission, the sender marks the retransmitted 
segment and virtually fills the non-contiguous blocks of 
data with that segment in order to ensure that the sender 
will not retransmit the same packet more than once. For 
every duplicate acknowledgement received, the sender 
can search the non-contiguous blocks of data, after being 
updated, for possible data losses. Therefore, rather than 
having to wait another round trip time for the 
acknowledgement of the previous retransmission to 
arrive, subsequent data losses can quickly be found and 
retransmitted. With SACK, the sender can retransmit lost 
data with more efficiency and complete loss recovery in 
shorter time period. Nonetheless, the slow start threshold 
is still reduced as in (6).

Fast Recovery with Forward Acknowledgement  
Forward acknowledgement (FACK), i.e. rate halving, 

is an extension that regulates the rate at which new data 
are transmitted. With FACK, a new data segment can be 
sent for every two duplicate acknowledgements received 
during loss recovery regardless to the control parameters 
given in (1). In other word, rate halving decouples the 
loss recovery from the flow control. Because of this 
independence, the self-clocking behavior, i.e. 
acknowledgement feedback, can be better maintained and 
needless retransmission timeout can be avoided. In 

addition, congestion window is deflated per two duplicate 
acknowledgements as follow ��� � ��� 4 � (14)

Therefore, the congestion window is reduced 
approximately to half of the window prior to the 
reduction. After all losses are recovered, either slow start 
or congestion avoidance resumes depending on the final 
congestion window and the new slow start threshold.  

IV. INTEGRATION METHODOLOGY

According to the layering principle, the transport layer 
only communicates to its adjacent layers, i.e. to the 
Internet on the lower layer and to the application on the 
upper layer. The integration methodology loosely follows 
this principle. By utilizing certain data structures and 
definitions, given in TABLE I, INET can access internal 
parameters as well as internal functions of Linux TCP/IP 
network stack. Thus, an integration of the real-world 
Linux TCP and INET becomes possible, i.e. INET with 
Linux TCP extension. An interface-based integration 
approach is proposed and is illustrated in Fig. 5. 
Hereafter, the integrated Linux TCP is to be referred to as 
LinuxTCP for short. 

Note that although the given methodology is specific 
to INET framework, it can also be applied to other 
network simulators provided that the simulators can 
exploit the TCP interface in TABLE I. 

At the transport layer, information signaling is initiated 
by INET, based on the events triggered by the simulation. 
The INET-Linux interface functions primary as an input-
output interface in which arguments; ‘data’, ‘command’
and ‘timer’, are passed into the stack. The stack processes 
the given arguments and completes by either returning 
data output, invoking designated commands, calling 
relevant timer functions or in any combination. As the 

Fig. 5  Overview of interface-based integration methodology 

TABLE I 
LINUX TCP INTERFACE

�������������	� Definition/Declaration 
��	����	�

�������� �	��������������� �����������	����	

������������ �	����������	��� ��������	����	

����	
� �	������ �����	��	�

���	
� �	����� 
���	��	�

���������� ��������	���� ���	�����	����	�

����� ������������ ����	��

������� ������������� ������	 �	��
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stack is in fact a real-world code, it can be assumed to 
have correct TCP/IP functionality. Due to this 
assumption, this interface-based integration scheme 
extremely relies on validity and integrity of the input 
arguments, therefore making LinuxTCP highly sensitive 
to any ‘inappropriate’ arguments. Thus, it is also 
responsibility of the INET-Linux interface to ensure 
validity and integrity of the input arguments. By using 
programming traps,  5++678��"���9 ����"�� ����� ���� :;<=>?@:;�A>=BC@:>D? (15)

the interface then can check the input arguments against 
any given conditions before passing them into the stack. 
TCP/IP header, i.e. tcp_hdr and ip_hdr, of data packet, 
i.e. sk_buff, is always checked against known INET 
connection parameters (source/destination IP addresses 
and source/destination TCP ports). This is to first validate 
if the transmitted or received packets in fact belong to the 
correct TCP flow or not and second to verify if data 
packet has been compromised by invalid memory access 
caused by the simulation or not. In addition, without loss 
of generality, other extensive modifications that make the 
integration possible will not be discussed in this paper 
due to irrelevancy to TCP/IP related functionalities and 
limited spaces. 

V. SIMULATION SETUP

Similar to the previous work [22], the simulated 
network consists of three parts; a client, a server and an 
Internet domain, and it is illustrated in Fig. 6. Both client 
and server are connected to Internet gateways via a 100-
Mbps Ethernet connection with 1-ms delay and no errors. 

This connection represents a typical Local Area Network 
(LAN). Along the client-server path, a high speed 10-
Mbps backbone link is provided. This link can be viewed 
as a Wide Area Network (WAN) connection. Every 
WAN interface has a simple drop tail queue and the 
Maximum Transmission Units (MTU) is 1500 bytes, i.e. 
Ethernet friendly. In addition, the buffer size (IFQ) of the 
WAN interfaces, the round trip time (RTT) and the bit 
error rate (BER) of the backbone connection are the 
controlled parameters. 

In addition, Fig. 7 describes INET node with Linux 
TCP extension. Each INET node can be equipped with 
HTTP module at the application layer for download and 
upload services, with Linux Congestion Control (CC) 
module at the transport layer for different Linux TCP 
variants, with IPv4 module at the network layer for 
simple IP addressing and forwarding, and with link 
module at the data link layer for different access 
technology. Accordingly, the client and the server will 
have all four modules while the gateway and the router 
only have two modules from the lower two layers. 

A file download over the Internet scenario is 
considered. Specifically, a web client requests a 700-MB 
data download, i.e. a CD containing a movie file, from a 
web server over the Internet. In addition, RTT and BER
are configured as follow. 788 E F.$�� .$!� G ��$.H in seconds 

� I67 E F.� �.JK� �.JL� �.JM� �.JNH�
A large data file is used to investigate long-term behavior 
of TCP, RTT is used to characterize network having 
different bandwidth delay product (BDP) and BER is 
used to describe connection having different data loss 
rate. In addition, IFQ is setup such that it is 
approximately equal to the bandwidth delay product of 
the given network, i.e. for a fixed 10-Mbps bandwidth, 
IFQ of 84 or �� O -)� packets is for the network with 
100-ms RTT, 168 or (! O -)) packets for the network 
with 200-ms RTT, and so on. These configurations are 
used for the verification process. 

VI. VERIFICATION OF LINUXTCP

According to [23] and [24], model verification is 
referred to as ‘building the model right’ which generally 
means if the model in question is working properly or 
not. Based on the dynamic testing, the model in question 
has to be executed under various conditions and results 
are examined in order to ensure the accuracy of the 
implementation of the model. Verification of LinuxTCP
follows this guideline.  

Based on the two-tuple (RTT and BER) parameters, 
there are 50 unique simulation setups. Together with ten 
different random sequences numbers that are applied to 
each setup, a total of 500 simulations are run and used in 
the verification process. Furthermore, programming 
traps, described in (15), are systematically inserted along 
the INET-Linux interface to catch any possible 

Fig. 7  INET Node with Linux TCP extension 
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Fig. 6  Simulation Scenario 
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misbehaviors of LinuxTCP due to ‘improper input 
arguments. If any of the assertions is not satisfied, 
simulation will be terminated and verification will be 
considered failed. 

Study [25] shows that the long-term average 
throughput of TCP is inversely proportional to the round 
trip time and the square root of packet lost rate, and is 
approximated by the following expression,  

��"���P�� � 
�� Q*++788 ∙ S 321P , WXYZ[\788 ] (16)

where MSS is the maximum segment size, RTT is the 
round trip time, b is the number of data segments being 
covered by an acknowledgement, p is the average packet 
loss rate and WNDmax is the maximum congestion 
window size. 

Fig. 8 displays long-term average TCP throughput 
from the analytical expression given in (16). The result 
shows that in an ideal case where there is no bit error, the 
average throughput remains unchanged regardless of the 
RTT (and BDP). This is because throughput is limited by 
the 10-Mbps link and the buffer size is in the same order 
of magnitude as BDP. However, in a more realistic case 
where BER exists, the average TCP throughput drops 
considerably as RTT (and BDP) or BER increases. Even 
in the case where the BER is very low, i.e. 10-9, TCP can 
achieve 10-Mbps throughput only in the network with 
RTT up to 0.3 s. This simulation result confirms that real-

world TCP does not perform well in the network with 
large BDP and high BER.   

Fig. 9 displays long-term average TCP throughput 
from the simulation, i.e. downloading a 700-MB movie 
file from a web site. In this case, the average throughput 
is simply the ratio of the file size to the service waiting 
time. The results show that the average throughput 
complies with the 10-Mbps backbone link and decreases 
as either RTT or BER increases. The results are not 
unexpected since respectively shorter RTT and lower 
BER implies faster acknowledgement responses and 
fewer data losses in which they contribute to faster 
congestion window growth rate.  

 Of 500 simulation runs, no assertion flag is triggered. 
In addition, by comparing Fig. 8 and Fig. 9, it is evident 
that the simulation results agree with the analytical ones. 
As a result, it can be concluded that LinuxTCP is in fact 
verified. 

VII. VALIDATION OF LINUXTCP

The verification process, previously discussed in 
section VI, clearly indicates that LinuxTCP behaves 
reasonably and consistently in the given simulated 
network environments of INET. However, additional 
investigations are necessary in order to validate 
LinuxTCP operationally.  

Model validation according to [23] and [24] is referred 
to as ‘building the right model’ which generally means 
that the model in question behaves consistently and 
accurately with respect to its intended application. In this 
paper, operational graphic is used as a main validation 
technique. Thus, the 500-ms and error-free configuration 
is chosen as a reference scenario. With the 500-ms round 
trip time, the buffer size is set to 420 packets. This 
reference scenario can be viewed as a typical 
geostationary satellite network [26] with two peers. The 
Internet gateways function as satellite gateways and the 
Internet router assumes the role of a geostationary 
satellite. Lastly, the 10-Mbps link implies that the 
capacities of both forward and return channels are fixed 
and pre-allocated. 

A. Standard Track 

To have a better understanding of LinuxTCP
mechanisms, the congestion window, i.e. ���, and the 
sequence number are closely observed. In the error-free 
network environment, the evolution of congestion 
window can be best described as a ‘perfect’ uniformly-
spaced saw-tooth like trajectory. The ‘up ramp’ and the 
‘sharp drop’ of the trajectory are products of linear 
window inflation during congestion avoidance and rapid 
window deflation during loss recovery. This behavior is 
quite typical to any TCP that uses an AIMD algorithm. 
Fig. 10 illustrates a complete congestion window 
evolution that includes slow start, congestion avoidance, 
loss detection and loss recovery. Clearly, the result is 
consistent with the description of the saw-tooth behavior 
or AIMD. 

Fig. 9  Long-term average TCP throughput (simulated) 
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Fig. 8  Long-term average TCP throughput (analytical) 
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Fig. 11 highlights the evolution of Fig. 10 during slow 
start and show that congestion window grows 
exponentially which agrees with (2). In addition, the 
result uncovers that congestion window does not always 
increase per reception of an acknowledgement. This 
‘pause’ behavior is due to the restrictions imposed by 
tcp_is_cwnd_limited function that stops the congestion 
window from advancing if the current window is much 
‘larger’ than the numbers of outstanding data. Note that 
this TCP function is usually left unimplemented in many 
network simulators. 

Fig. 12 highlights the window evolution of Fig. 10 
during congestion avoidance and shows that congestion 
window grows linearly, i.e. additive increase, which 

agrees with (4). In addition, after a loss event, congestion 
window decreases sharply, i.e. multiplicative decrease 
which agrees with (14).  

To further consolidate the results, simulation details 
are discussed. In general, without window scaling option, 
the maximum window size is limited to 44 (1500-byte) 
MTU-sized segments. However, the results show that 
congestion window well exceeds 44 segments, explicitly 
implying the use of window scaling option. In addition, 
the reference network, i.e. 10-Mbps link and 500-ms 
round trip time, provides a rough bandwidth delay 
product of 420 segments. Together with 420 packets from 
the buffer, the maximum network capacity is 840 
segments. Beyond that, data losses start to occur. By 
comparison, Fig. 11 shows that congestion window first 
exceeds 1800, i.e. more than twice the network capacity, 
before congestion is detected. This is not unusual for 
congestion window to overshoot the network capacity by 
two folds since congestion window is doubled every 
round trip time during slow start. After a few congestion 
events, the network is properly probed and the slow start 
threshold is set to a more accurate value. Then, 
congestion avoidance begins. Fig. 12 shows that 
congestion window reaches 842 before congestion is 
detected. This is typical for congestion window to grow 
slightly above the network capacity by a few segments 
due to additive increase nature of congestion avoidance. 
Therefore, it is evident that LinuxTCP behaves 
consistently and accurately with respect to the slow start 
and the congestion avoidance algorithms.  

B. Enhancement Track 

Unlike the standard TCP, LinuxTCP are augmented 
with a number of options and extensions in order to 
improve its performance particularly when having to deal 
with multiple data losses from the same transmission 
window and to cope with large-bandwidth long-delay 
type of network. A number of enhanced mechanisms, i.e. 
delayed acknowledgement, appropriate byte counting, 
fast retransmit with SACK, fast recovery with SACK, 
fast recovery with FACK, and round trip time 
measurement with timestamp, are investigated in this 
section. 

Delayed Acknowledgement 
Delayed Acknowledgement (DACK) is a technique 

that reduces bandwidth usage in the return link by 
allowing an acknowledgement to cover two consecutive 
data segments. Fig. 13 concentrates on the sequence 
numbers of received acknowledgements with respect to 
those of transmitted segments and clearly shows that, 
during slow start, only one acknowledgement is 
transmitted in response to two in-order data segments that 
are successfully received. 

Appropriate Byte Counting
Appropriate Byte Counting (ABC) is a technique that 
increases congestion window based on the numbers of
full-size segments, i.e. MTU, being covered by each 

Fig. 12  Congestion window evolution during congestion avoidance 
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Fig. 11  Congestion window evolution during slow start 
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Fig. 10  Congestion window evolution 
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acknowledgement given in (13). Fig. 14 concentrates on 
congestion window during slow start and clearly shows 
that congestion window increases by two segments 
instead of one. Note that the same behavior occurs during 
congestion avoidance and thus without loss of generality 
it can be omitted. Note that Fig. 13 and Fig. 14 are 
displayed over the same time but with different y-axis. 

Fast Retransmit and Fast Recovery with SACK
With SACK option, extended information regarding 

the reception of non-contiguous blocks data at the 
receiver can be made available to the sender. By 
observing these blocks, lost segments can be quickly 
identified and the numbers of outstanding data can be 
accurately estimated. Fig. 15 and Fig. 16 concentrate on 
retransmission of the lost segments in relation to the 
reception of duplicate acknowledgement. The results
clearly show that initial data losses can instantly be 
detected by the one duplicate acknowledgement 
(compared to a typical three) and a number of subsequent 
data losses can be recovered within one round trip time 
(compared to multiple round trip time). Note that Fig. 15 
is a closed-up version of Fig. 16. Clearly, TCP with 
SACK is found to be more robust against data losses.  

Fast Recovery with FACK
With FACK, i.e. rate halving, a data segment can be 

sent without having to follow the flow control given in 
(1) and congestion window quickly decreases by one 

segment per two duplicate acknowledgements received. 
Fig. 17 and Fig. 18 concentrate on the impacts of rate 
halving algorithm on the congestion window deflation as 
well as transmission of new data segments and clearly 
show that for every two duplicate acknowledgements 
received, one data segment is transmitted and congestion 
window is reduced by one. Note that both figures are 
displayed over the same time period but with different 
value of the y-axis. 

Round Trip Time Measurement with Timestamp
In general, round trip time is measured by first recording 
sequence number and transmission time of a data 
segment that is being transmitted. After an 
acknowledgement that covers the recorded sequence 
number arrives, the difference between the current time 
and the recorded time measures a coarse round trip time. 
However, timestamp option allows round trip time to be 
measured per segments, which in turn provides a more 
accurate result. Fig. 19 displays round trip time 
measurement over time. The result clearly shows that the 
measurement closely resembles the saw-tooth behavior, 
which is comparable to congestion window evolution 
found in Fig. 10. The result is not unexpected since the 
round trip is directly proportional to the queue 
occupancy, which is in turn proportional to the 
congestion window. Furthermore, Fig. 19 shows the 
minimum and the maximum of round trip times to be 
approximately 506 ms and 1013 ms respectively. Given 

Fig. 16  Fast recovery with SACK 
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Fig. 15  Fast retransmit with SACK 
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Fig. 14  Appropriate byte counting 
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Fig. 13  Delayed acknowledgement 
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500 ms from the round trip time and an additional of 504 
ms from the time required to dequeue 420 packets from 
the buffer, clearly the result matches the reference 
network.  

According to the simulation results, the behaviors of 
LinuxTCP in the simulated network environments are 
found to be accurate and consistent since they coincide 
with the anticipation of how real-world Linux TCP 
responds to real-world network. As a result, it can finally 
be concluded that LinuxTCP is valid with respect to 
Linux TCP functionalities and INET simulation platform. 

VIII. APPLICATION OF LINUXTCP

The ultimate achievement of LinuxTCP is the ability to 
use real-world TCP within network simulator. Thus, 
studies and evaluations of simulated Internet become 
more accurate and more consistent with the real world 
Internet. In addition, LinuxTCP acts as a bond between 
simulator and real world since when researchers become 
familiar with LinuxTCP, they also become familiar with 
the real-world code of Linux TCP/IP network stack. 

Linux TCP/IP network stack in this study is taken 
from the Linux kernel (v2.6.21) which contains ten TCP 
variants in addition the standard reno, namely bic, cubic, 
highspeed, hamilton, hybla, low priority, scalable, vegas, 
veno  and westwood. The main objective of these 
variants, except low priority, is to improve their 
performances when facing with an emerging next 
generation Internet. Details of these TCP variants should 
be referred to the references [27-34]. Owing to the 
common Linux congestion control interface, these TCP 
variants and future TCP variants can be included into the 
stack with relative ease. For an example, TCP based on 
Window Vista implementation, also known as compound
[35, 36] is re-implemented in order to make it compatible 
with the Linux congestion control interface so that it can 
be included into the stack for research uses. The source 
code of compound can be obtained at Linux TCP 
implementation for NS2 website [9].  

Owing to the real-world Linux TCP/IP network stack 
that has been incorporated into INET framework, any 
new TCP can be implemented in INET environments as 
if it were in the real network stack. However, this TCP 
can easily be debugged, corrected and studied in any 
given simulated network environments. After 
development and evaluation are completed, this TCP can 
be put into real-world tests or uses, simply by 
incorporating it to the network stack and accessing it via 
the congestion control interface. 

Here, the applications of LinuxTCP are demonstrated 
by discussing algorithms and displaying dynamics of 
different Linux TCP variants in a simulated environment 
provided by INET. The network setup is still the same 
one that is used previously in the validation section, i.e. 
10-Mbps link, 500-ms round trip time and no random 
errors. 

TCP-bic
TCP-bic relies on binary increase algorithm; i.e. 

binary search increase and additive increase. Let +Z[\
and +Z^_ be the maximum and the minimum window 
increments that are used in binary search increase phase. 
TCP-bic updates its congestion window as follow, ��� ← ��� � 1��_���/��� (17)

and 

Fig. 19  Round trip time and retransmission timeout
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Fig. 18  Fast recovery with rate halving 
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Fig. 17  Fast recovery with rate halving 
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1��_��� � d +Z[\ if ���� g +Z[\+Z^_ if ���� h +Z^_���� if otherwise (18)

where 1��_��� is the congestion window increment and ���� is the ‘distance’ between congestion window 
(���) and the maximum window (WZ[\) that is used in 
additive increase mode. In addition, the relation between ��� and WZ[\  divides two modes of operation; i.e. if ��� 	 WZ[\, then binary increase is used and if ��� g WZ[\, then max probing is used instead. 
Moreover, ���� takes the following form, 

���� � qWZ[\ 4 ���2 if 1����2 ����������� 4 WZ[\ if 
�, P�"1��� (19)

Similarly, for any loss events, WZ[\ takes the following 
form, WZ[\

← d�1 � �� ⋅ ���2 if 1����2 ����������� if 
�, P�"1��� (20)

If data losses occur during either binary increase or max 
probing case, slow start threshold and congestion window 
is reduced as in (6) and (9) with � � 819/1024. Lastly, 
TCP-bic is set to revert back to reno if congestion 
window size is smaller than 14 packets. 

TCP-bic controls the congestion window increment by 1��_��� which is also limited to the range x+Z^_, +Z[\y or x1, 16y based on Linux implementation. Thus, congestion 
window can increment up to 16 packets in one round trip 
time. Fig. 20 shows the dynamic of TCP-bic. It is clear 
that slow start is absent in the figure which is due to the 
fact that initial slow start threshold is set to 100 packets. 
In steady state, i.e. at the 100th second, congestion 
window begins to grow faster as it moves away from WZ[\ according to max probing, resulting in data losses. 
Reacting to the loss event, WZ[\ is reset as in (20) under 
max probing condition and congestion window quickly 
deflates. Once all losses are recovered, congestion 
window continues to grow in binary increase mode, 
eventually causing another data losses. Reacting to 
another loss event, WZ[\ is reset as in (20) under binary 

increase condition and congestion window quickly 
deflates. After all losses are recovered, congestion 
window begins to grow faster at the beginning but 
gradually becomes slower as it approaches WZ[\ due to 
binary increase. Afterward, the whole process repeats. 

TCP-cubic 
TCP-cubic is designed primarily to simplify and 

enhance the algorithm of TCP-bic by replacing binary 
increase with cubic function. Therefore, congestion 
window increases as follow, ��� ← { ∙ �� 4 |�} � WZ[\ (21)

where { is the scaling factor and { � 41/1024, t is the 
elapsed time since the last window reduction in ms, WZ[\
is the window size assigned after each loss event and | is 

the origin of the cubic function | � ~WZ[\ � {⁄� . For 
any loss events, WZ[\ is reset as follow, 

WZ[\ ← q�1 � �� ⋅ ���2 if ��� 	 WZ[\��� if otherwise (22)

whereas both slow start threshold and congestion window 
are reduced as in (6) and (9) with � � 717/1024. Lastly, 
unlike TCP-bic, TCP-cubic does not revert back to reno
in any cases. 

TCP-cubic control the congestion window increment 
by means of cubic function that uses the elapsed time �
(in ms) and the origin |. Fig. 21 shows the dynamic of 
TCP-cubic. It is clear that slow start is absent since initial 
slow start threshold is set to 100 packets. In the steady 
state, i.e. at the 100th second, according to cubic function
as described in (21), congestion window begins to grow 
faster initially but slower as it moves closer toward the 
origin | and grows faster as it moves further away from 
the origin |. Once data losses occur, the origin is reset 
based on WZ[\  as described in (22) and congestion 
window quickly deflates. Once all losses are recovered, 
congestion window grows according to cubic function
until another data losses occurs in which the origin is 
reset again but with different WZ[\, and congestion 
window quickly deflates. After all data losses are 
recovered, the whole process repeats. 

Fig. 21  Congestion window evolution of TCP-cubic 
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Fig. 20  Congestion window evolution of TCP-bic
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TCP-hamilton 
TCP-hamilton is a variation to the standard congestion 

control described in (4) and (6). In particular, the additive 
increase parameter and the multiplicative decreases 
factor, � and �, are no longer of fixed values but are 
designed to be adaptive according to network conditions, 
i.e. low-speed or high-speed regime. For every new 
acknowledgement that is received, the additive increase 
parameter changes as follow, �

← � 1 Δ^ h Δ�
1 � 10 ⋅ �Δ 4 Δ�� � �Δ 4 Δ�2 �� Δ^ � Δ� (23)

where � is the elapsed time in ms since the last data loss 
event and �� is the elapsed time threshold distinguishing 
low-speed regime from high speed one, and Δ� � 100
ms. Then, � is scaled by the minimum round trip time so 
that it becomes less sensitive to round trip time as follow, � ← �/788Z^_ (24)

but is restricted to � ∈ x0.5,10y, and then � ← 2 ⋅ �1 4 �� ⋅ � (25)

The updates in both (24) and (25) follow the fairness and 
the friendliness requirements coming from the protocol 
design. Obviously, TCP-hamilton behaves exactly like 
reno in the low speed region. In any data loss events, the 
multiplicative decrease factor is reset as follow, 

� ←
���
�� 0.5 �I���J 4 I�JI�J � � 0.2788Z^_788Z[\ if otherwise (26)

where I�J is the instantaneous throughput just before the ��� loss event, 788Z[\ and 788Z^_ are the maximum 
and the minimum round trip time seen since the last 
congestion event. In other words, if the change in the 
instantaneous throughput between two consecutive loss 
events is larger than 20 percents, the standard � � 1/2 is 
used. Otherwise, a more adaptive choice of � is used and � ∈ x0.5, 0.8y since the ratio 788Z^_/788Z[\ can 

approach unity if network buffer is small. After � is 
updated, � is also updated as described in (24) and (25) 
to reflect the recent �. Then, slow start threshold and 
congestion window is reduced as given in (6) and (9) 
with the value of � that is derived from (26) 

TCP-hamilton controls the congestion window 
increment by using the elapsed time since the last loss 
event. Fig. 22 shows the dynamic of TCP-hamilton. It is 
clear that slow start is still effective due to window 
overshoot at the beginning of connection. In the steady 
state, i.e. at the 100th second, after each loss event, 
congestion window grows faster and faster as elapsed 
time becomes longer and longer until data losses occur at 
which point congestion window begins to deflate quickly. 
After all data losses are recovered, the whole process 
repeats. 

TCP-highspeed
TCP-highspeed is a TCP variant that is derived 

directly from reno algorithms; slow start and congestion 
avoidance as described in (2) and (4), and fast recovery 
as described in (6). However, the main difference is that 
TCP-highspeed utilizes a more progressive window 
increment scheme. For each new acknowledgement 
received, the additive parameter and the multiplicative 
factor are updated, � ← ������� (27)� ← ������� (28)

where ���⋅� and ���⋅� are two increasing functions that 
map congestion window to an integer, i.e. as congestion 
window increases, these values also increase. However, 
if congestion window is smaller than 38, � and � take the 
same default values as reno does, i.e. � � 1 and � � 0.5.  

TCP-highspeed controls the congestion window 
growth rate by allowing the increment to increase with 
congestion window. Fig. 23 shows the dynamic of TCP-
highspeed. The result shows that slow start increases 
congestion window very quickly; however, it does not 
cause window overshoot. This is due to the fact that 
congestion window increases so quickly that connection 
pipe is fully filled and data losses become gradual rather 
than abrupt. In the steady state, i.e. at the 100th second, 

Fig. 23  Congestion window evolution of TCP-highspeed 
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Fig. 22  Congestion window evolution of TCP-hamilton 
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congestion window continues to steadily grow during
congestion avoidance until data losses occur at which 
point congestion window begins to deflate quickly. After 
all data losses are recovered, slow start (or congestion 
avoidance) resumes if congestion window is smaller than 
(or larger or equal to) slower start threshold. Afterward, 
the entire process repeats. 

TCP-hybla 
TCP-hybla is another variation to the standard 

congestion control in (4) and (6). In particular, the 
additive increase parameter and the multiplicative 
decrease factor, � and � become dependent on 
normalized round trip time � which is defined as follow, � � 
�,�788Z^_ /788� ,1� (29)

where 788Z^_ is the minimum round trip time seen 
during the connection lifetime and 788� is the reference 
round trip time which is typically set to 25 ms. In the case 
of new 788Z^_  is found, � changes according to the 
mode at which TCP-hybla operates; i.e. slow start, � � 2� 4 1 (30)

and congestion avoidance  � � �� (31)

Cleary, exponential growth in (30) is much faster than 
geometric growth in (31). In the event of data losses, 
slow start threshold and congestion window are set based 
on the standard algorithms described in (6) and (9) with � � 1/2. Lastly, the minimum value of � derived in (29) 
is 1 in order to ensure that TCP-hybla falls back to reno if 
the round trip time is less than 25 ms, i.e. the reference 
round trip time. 

TCP-hybla controls the congestion window increment 
by allowing the increment to grow with the ration of 
elapsed time to the reference time. Fig. 23 shows the 
dynamic of TCP-hybla. It is clear that slow start increases 
congestion window considerably quickly. In this setup, � � 8, and thus � � 127 in slow start and � � 64 in 
congestion avoidance as described by (30) and (31) 
respectively. Even with very high window increment, 
window overshoot does not occur. This is due to the fact 
that congestion window increments so fast that 
connection pipe is fully filled and data losses become 

gradual instead of sudden. In the steady, the evolution of 
congestion window is very short due to the very high 
value of window increment and therefore congestion 
window appears to be very dense. Nonetheless, the entire 
process runs the following routine; after each loss events, 
congestion window increases very quickly until another 
data losses occur; at which congestion window begins to 
deflate very quickly; after all data losses are recovered, 
TCP-hybla continues in either slow start or congestion 
avoidance, based on the condition in (3). Then, the entire 
process repeats. 

TCP-scalable
TCP-scalable is to some extent a modified version of 

the standard congestion control algorithm. Specifically, 
instead of relying on the standard congestion avoidance 
as given in (4), congestion window increases according to ��� ← ��� � 
�,�1/���, Δ� (32)

where ∆� 0.01 if DACK is inactive and ∆� 0.02 if the 
DACK is active. Therefore, congestion window 
increments at constant rate provided that window size is 
large enough.. In other words, TCP-scalable increases its 
congestion window by 1 for every either 100 or 50 
acknowledgements received, depending on the state of 
DACK. For each loss event, slow start threshold and 
congestion window is reset according to the standard 
algorithm as described in (6) and (9) with � � 0.875.  

TCP-scalable control the congestion window 
increment by assigning the minimum value of window 
increment to ∆ instead of 1/���, causing congestion 
window to grow at constant rate when congestion 
window size is large enough. Fig. 24 shows the dynamic 
of TCP-scalable. It is clear that window overshoot at the 
beginning of connection is caused by slow start. In the 
steady state, i.e. at the 100th second, congestion window 
grows at a linear rate until data losses occurs at which 
point congestion window begins to quickly deflate. Once 
all losses are recovered, congestion window continues to 
grow at an exponential rate, i.e. slow start, if congestion 
window is less than slow start threshold and then a linear 
rate, i.e. congestion avoidance, if otherwise. Then, the 
entire process repeats. 

Fig. 25  Congestion window evolution of TCP-scalable
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Fig. 24  Congestion window evolution of TCP-hybla 
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TCP-vegas
TCP-vegas is a completely new and different 

congestion control protocol. Unlike the standard reno, i.e.
a loss-based algorithm that uses data losses as an 
indication of network congestion, TCP-vegas is a delay-
based algorithm that uses an increase in delay as an 
indication of network congestion. In particular, TCP-
vegas aims at sending the right amounts of packets into 
network without causing congestion. Let ���� be the 
difference between the congestion window that is opened 
in the last round trip time and the target window, i.e.  ���� � �� 4 ���[���� (33)

where ���[���� is the window size that does not cause 
any increases in round trip time and is defined as ���[���� � �� ⋅ 1���788/
��788 (34)

where 1���788 is the minimum round trip time seen 
during the connection lifetime and 
��788 is the 
minimum round trip time during the last transmission 
round. Now, TCP-vegas operates as follow. During slow 
start, if ���� is larger than a threshold, � typically set to 
2, it indicates that the current congestion window is 
larger than network capacity and network congestion 
begins to accumulate. Thus, slow start stops and linear 
increase/decrease phase begins. At this point, congestion 
window either increases or decreases based on network 
condition as follow, 

��� ← d��� � 1 ���� 	 ���� � 	 ���� 	 ���� 4 1 ���� 	 X (35)

where � and � are two thresholds that indicate the 
minimum and the maximum numbers of backlogged data 
inside the network. ���� 	 � means the current 
congestion window is just the right size, and finally ���� 	 � means the current congestion window is too 
big. Typically, � and � are set to 1 and 3 respectively. In 
other words, TCP-vegas constantly adapts its congestion 
window increment according to network conditions. 

TCP-vegas controls the dynamic congestion window 
by observing an increase in end-to-end delay. In 
particular, it aims at preventing network congestion from 

happening by tuning congestion window to evolve 
around the state at which bandwidth is fully utilized and 
buffer is minimally occupied. Fig. 25 show the dynamic 
of TCP-vegas. It is clear that window overshoot at the 
beginning of connection is caused by slow start. 
Nonetheless, the result does not show any indication of 
the steady state. However, after the initial slow start, i.e. 
at the 100th second, congestion window continues to grow 
according to linear increase/decrease rule as described in 
(35). It is clear that once congestion window reaches the 
right size, it neither increases nor decreases and it 
remains unchanged until network conditions change. 

TCP-veno
TCP-veno is considered a mixture of the standard reno 

and vegas. In particular, TCP-veno relies on numbers of 
backlogged packet as another criterion to update 
congestion window. Unlike vegas, TCP-veno does not 
mainly aim at preventing network congestion from 
happening and still uses the standard congestion control 
algorithm for updating congestion window as in (4) with � � 1, i.e. ��� ← ��� � 1/��� (36)

However, instead of updating congestion window 
regularly, ���� that is derived from (33) and (34) is used 
to dictate how frequently congestion window is updated. 
Let � be the number of new acknowledgements required 
for congestion window to be updated, i.e. � � �1 if ���� 	 �,2 if ���� g �, (37)

where � is the threshold and � � 3. The relation between ���� and � is used to indicate network congestion; i.e. if ���� 	 �, network is in non-congestive state but if ���� g �, network is in congestive state. In the event of 
data losses, slow start threshold and congestion window 
is reduced according to the standard rules as described in 
(6) and (9) but with two choices of �, i.e.  � � �4/5 if ���� 	 �,1/2 if ���� g �, (38)

In other words, congestion window is reduced by 1/2 if 
network is in congestive state and congestion losses 
occur and by 4/5 if in non-congestive state and 

Fig. 27  Congestion window evolution of TCP-veno 
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Fig. 26  Congestion window evolution of TCP-vegas 
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corruption losses occur. Lastly, TCP-veno behaves 
exactly like reno when network is in non-congestive 
state. 

TCP-veno controls the congestion window increment 
by allowing the frequency of window update to be 
dependent on the state of network congestion, i.e. the 
relation between ���� and �. Fig. 26 show the dynamic 
of TCP-veno. The result clearly shows the presence of 
slow start resulting in window overshoot during initial 
connection but it does not seem to show the steady state. 
After the initial slow start, congestion window continues 
to grow linearly and slowly. However, it can be deduced 
that congestion window will continue to grow linearly as 
described in (36) with the rate corresponding to network 
conditions as given in (37) until data losses occur at 
which point congestion window begins to deflate quickly. 
After all losses are recovered, TCP-veno resumes in 
either slow start or congestion avoidance based on the 
condition in (3). Then, the entire process repeats.

TCP-westwood
TCP-westwood is another extension to the standard 

reno. The main algorithm is still the same as the standard 
slow start and congestion avoidance as described in (2) 
and (4) with � � 1; but rather than halving slow start 
threshold as suggested in (6) with � � 1/2, a new 
mechanism, called bandwidth estimation (BWE), is used 
to estimate the available bandwidth based on the inter-
arrival time of data acknowledgements and the amounts 
of transmitted bytes. For each loss events, slow start 
threshold is reset according to �������� ← �IW6 ⋅ 788Z^_�/*++ (39)

where 788Z^_ is the minimum round trip time seen 
during the entire connection lifetime and *++ is the 
maximum segment size. Therefore, slow start threshold is 
assigned to a more accurate estimation of available 
network capacity; particularly in the event of corruption 
induced losses, i.e. no congestion, bandwidth estimation 
algorithm better reflects network condition than the 
simple window halving scheme. 

TCP-westwood is not designed to control the 
congestion window increment but rather to mitigate the 
impacts of random data losses. Fig. 27 shows the 

dynamic of TCP-westwood. The result shows that 
window overshoot during initial connection is caused by 
slow start. However, after initial slow start, congestion 
window unfortunately drops below bandwidth delay 
product and resumes in congestion avoidance. This is due 
to the fact that BWE can estimate only bandwidth with 
respect to the amount of outstanding data and after slow 
start, the number of outstanding bytes can be small and so 
does the estimation. Thus, in certain case, BWE can lead 
to an underestimation of bandwidth. In the steady, 
congestion window continues to grow linearly until data 
losses occur at which point congestion window begins to 
deflate quickly. After all losses are recovered, TCP-
westwood resumes in either slow start or congestion 
avoidance depending on the condition given in (3). Then, 
the whole process repeats. 

TCP-compound
TCP-compound is a hybrid TCP variant that combines 

the loss-based scheme of reno and the delay-based 
scheme of vegas into single scheme. The effective 
window size is simply the sum of the loss-based and the 
delay-based components, i.e. �� � ��� � ��� (40)

and in the case of no network congestion and no data 
losses, it is incremented as follow,  �� ← �� � � ⋅ ��� (41)

where � and � are the two tunable parameters, and � � 1/8 and � � 3/4. TCP-compound is designed to 
have binomial behavior in the absence of congestion and 
data losses. In order to achieve this binomial behavior, 
first the standard congestion avoidance algorithm in (4) 
has to be modified to compensate for an increase in the 
effective window due to the delay-based component, i.e. ��� ← ��� � 1/�� (42)

Second, the delay-based component is mainly designed to 
complement the loss-based component. Similar to vegas, 
the relation between ���� that is derived in (33) and (34), 
and � is used to approximate network utilization; i.e. 
underutilized if ���� 	 � and highly utilized if ���� g�. Therefore, the delay-based component is updated per 
new acknowledgment as follow, 

Fig. 29  Congestion window evolution of TCP-compound 
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Fig. 28  Congestion window evolution of westwood 
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���← ���� �  � ⋅ ��� 4 1¡� if ���� 	 ���� 4 ¢ ⋅ ���� if ���� g � (43)

where  ⋅¡� is the maximum between the argument and 
zero and ¢ is the parameter that indicates how rapidly the 
delay-based component is reduced when needed. In 
addition, ¢ � 1 and � � 30. Moreover, the delay-based 
component will eventually disappear in the case of full 
utilization but it will grow much larger in the case of 
underutilization. In the case of no congestion; neither 
increase in queue nor data losses, slow start threshold is 
halved while the effective window is reduced as follow, �� ← � ⋅ �� (44)

corresponding to the modification of the loss-based and 
delay-based components as follow, ��� ← � ⋅ ��� (45)��� ← � ⋅ �� 4 ���/2 (46)

where � is the multiplicative decrease factor and � � 1/2. Lastly, TCP-compound behaves exactly like 
reno when network is fully utilized, i.e. ���� g �. 

TCP-compound controls the congestion window 
growth rate by allowing the delay-based component to 
grow much faster when it senses neither network 
congestion nor data losses. Fig. 28 shows the dynamic of 
TCP-compound. The result shows that at the beginning of 
connection, window overshoot is caused by slow start. In 
the steady state, i.e. at the 100th second, congestion 
window grows linearly until data losses occur at which 
point congestion window begins to deflate very quickly. 
After all data losses are recovered, congestion window 
continues to grow. Nevertheless, since TCP-compound 
senses that network is not fully utilized, the delay-based 
component is therefore active. The impacts of the delay-
based is seen by the ups and downs of congestion 
window. After network is fully utilized, the delay-based 
component becomes inactive and congestion window 
grows as normal. Afterward, the whole process repeats. 

Clearly, LinuxTCP is capable of re-producing 
congestion window dynamics of different Linux TCP 
variants in which it is believed to be much closer to 
reality due to the use of real-world code. Thus, different 
TCP variants can be studied and compared to each other 
to evaluate the performance of interest, i.e. link 
utilization, robustness, friendliness and fairness. In 
addition, new TCP variants can effortlessly be included 
into INET as long as they are complied with Linux 
congestion control interface, like compound.  

IX. CONCLUSIONS AND FUTURE WORKS

This work presents how real-world TCP can be 
evaluated via a network simulator. By combining real-
world Linux TCP and INET simulation framework, true 
dynamics of real-world TCP can be accurately captured 
in varieties of simulated network environments without 
having to rely on costly and complicated network 

experiment. Moreover, this works present one 
verification and validation technique, i.e. dynamic testing 
and operational graphic, and eventually concludes that 
LinuxTCP is valid within the simulated network 
environments provided by INET. In addition, the 
applications of LinuxTCP are demonstrated by reviewing 
congestion control algorithms and displaying congestion 
window dynamics for each of TCP variants, i.e. bic, 
cubic, hamilton, highspeed, hybla, scalable, vegas, veno, 
westwood and compound. Note that compound is a 
special case since it is not actually a native Linux 
congestion control but was developed based on the 
Window Vista based TCP. These many selections of TCP 
variants strengthen the decision on choosing Linux 
TCP/IP network stack as the source for the integration. 

The novelties of this work are as follow. First, this 
work introduces the interface-based methodology for 
integrating the transport layer of Linux TCP/IP network 
stack from into INET in which it can be served as a 
guideline for integrating future network stack with INET 
or with other simulators. Second, this work presents 
independent development on integrating real-world Linux 
TCP with a simulator in which it can be used for cross 
validation among different network simulators. Third, 
this work realizes an evaluation of the real-world Linux 
TCP in simulated network environment in which it is 
believed to be the most practical and flexible means in 
studying real-world protocols for a varieties of networks 
and technologies. Lastly, the choice of Linux TCP/IP 
network stack permits new TCP variants to be developed 
and tested in simulated network environments and later 
these new TCP variant can be tested and used in real-
world network with no additional efforts required. The 
use of INET with Linux TCP extension greatly reduces 
the development time.  

The future works will mainly aim at exploiting 
LinuxTCP in the performance study and evaluation of 
different Linux TCP variants in the next generation 
network and the next generation Internet, i.e. large 
bandwidth, long delay, high bit error rate and different 
service quality. The secondary aim will be to develop a 
new TCP variant that performs well in the next 
generation network. The final aim will be to design a 
much cleaner INET-Linux interface that will speed up the 
integration processes in the future for new INET and 
Linux kernel. 

APPENDIX

The detailed implementations of all TCP variants, 
except compound, can be found in the Linux kernel 
source code available at the Linux archive website [14] 
under /net/ipv4/ directory. 
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