13 research outputs found

    Variational techniques for medical and image processing applications using generalized Gaussian distribution

    Get PDF
    In this thesis, we propose a novel approach that can be used in modeling non-Gaussian data using the generalized Gaussian distribution (GGD). The motivation behind this work is the shape flexibility of the GGD because of which it can be applied to model different types of data having well-known marked deviation from the Gaussian shape. We present the variational expectation-maximization algorithm to evaluate the posterior distribution and Bayes estimators of GGD mixture models. With well defined prior distributions, the lower bound of the variational objective function is constructed. We also present a variational learning framework for the infinite generalized Gaussian mixture (IGGM) to address the model selection problem; i.e., determination of the number of clusters without recourse to the classical selection criteria such that the number of mixture components increases automatically to best model available data accordingly. We incorporate feature selection to consider the features that are most appropriate in constructing an approximate model in terms of clustering accuracy. We finally integrate the Pitman-Yor process into our proposed model for an infinite extension that leads to better performance in the task of background subtraction. Experimental results show the effectiveness of the proposed algorithms

    Robust object detection under partial occlusion

    Full text link
    This thesis focuses on the problem of object detection under partial occlusion in complex scenes through exploring new bottom-up and top-down detection models to cope with object discontinuities and ambiguity caused by partial occlusion and allow for a more robust and adaptive detection of varied objects from different scenes

    High-Dimensional Non-Gaussian Data Clustering using Variational Learning of Mixture Models

    Get PDF
    Clustering has been the topic of extensive research in the past. The main concern is to automatically divide a given data set into different clusters such that vectors of the same cluster are as similar as possible and vectors of different clusters are as different as possible. Finite mixture models have been widely used for clustering since they have the advantages of being able to integrate prior knowledge about the data and to address the problem of unsupervised learning in a formal way. A crucial starting point when adopting mixture models is the choice of the components densities. In this context, the well-known Gaussian distribution has been widely used. However, the deployment of the Gaussian mixture implies implicitly clustering based on the minimization of Euclidean distortions which may yield to poor results in several real applications where the per-components densities are not Gaussian. Recent works have shown that other models such as the Dirichlet, generalized Dirichlet and Beta-Liouville mixtures may provide better clustering results in applications containing non-Gaussian data, especially those involving proportional data (or normalized histograms) which are naturally generated by many applications. Two other challenging aspects that should also be addressed when considering mixture models are: how to determine the model's complexity (i.e. the number of mixture components) and how to estimate the model's parameters. Fortunately, both problems can be tackled simultaneously within a principled elegant learning framework namely variational inference. The main idea of variational inference is to approximate the model posterior distribution by minimizing the Kullback-Leibler divergence between the exact (or true) posterior and an approximating distribution. Recently, variational inference has provided good generalization performance and computational tractability in many applications including learning mixture models. In this thesis, we propose several approaches for high-dimensional non-Gaussian data clustering based on various mixture models such as Dirichlet, generalized Dirichlet and Beta-Liouville. These mixture models are learned using variational inference which main advantages are computational efficiency and guaranteed convergence. More specifically, our contributions are four-fold. Firstly, we develop a variational inference algorithm for learning the finite Dirichlet mixture model, where model parameters and the model complexity can be determined automatically and simultaneously as part of the Bayesian inference procedure; Secondly, an unsupervised feature selection scheme is integrated with finite generalized Dirichlet mixture model for clustering high-dimensional non-Gaussian data; Thirdly, we extend the proposed finite generalized mixture model to the infinite case using a nonparametric Bayesian framework known as Dirichlet process, so that the difficulty of choosing the appropriate number of clusters is sidestepped by assuming that there are an infinite number of mixture components; Finally, we propose an online learning framework to learn a Dirichlet process mixture of Beta-Liouville distributions (i.e. an infinite Beta-Liouville mixture model), which is more suitable when dealing with sequential or large scale data in contrast to batch learning algorithm. The effectiveness of our approaches is evaluated using both synthetic and real-life challenging applications such as image databases categorization, anomaly intrusion detection, human action videos categorization, image annotation, facial expression recognition, behavior recognition, and dynamic textures clustering

    Modeling Semi-Bounded Support Data using Non-Gaussian Hidden Markov Models with Applications

    Get PDF
    With the exponential growth of data in all formats, and data categorization rapidly becoming one of the most essential components of data analysis, it is crucial to research and identify hidden patterns in order to extract valuable information that promotes accurate and solid decision making. Because data modeling is the first stage in accomplishing any of these tasks, its accuracy and consistency are critical for later development of a complete data processing framework. Furthermore, an appropriate distribution selection that corresponds to the nature of the data is a particularly interesting subject of research. Hidden Markov Models (HMMs) are some of the most impressively powerful probabilistic models, which have recently made a big resurgence in the machine learning industry, despite having been recognized for decades. Their ever-increasing application in a variety of critical practical settings to model varied and heterogeneous data (image, video, audio, time series, etc.) is the subject of countless extensions. Equally prevalent, finite mixture models are a potent tool for modeling heterogeneous data of various natures. The over-use of Gaussian mixture models for data modeling in the literature is one of the main driving forces for this thesis. This work focuses on modeling positive vectors, which naturally occur in a variety of real-life applications, by proposing novel HMMs extensions using the Inverted Dirichlet, the Generalized Inverted Dirichlet and the BetaLiouville mixture models as emission probabilities. These extensions are motivated by the proven capacity of these mixtures to deal with positive vectors and overcome mixture models’ impotence to account for any ordering or temporal limitations relative to the information. We utilize the aforementioned distributions to derive several theoretical approaches for learning and deploying Hidden Markov Modelsinreal-world settings. Further, we study online learning of parameters and explore the integration of a feature selection methodology. Extensive experimentation on highly challenging applications ranging from image categorization, video categorization, indoor occupancy estimation and Natural Language Processing, reveals scenarios in which such models are appropriate to apply, and proves their effectiveness compared to the extensively used Gaussian-based models

    Extensions to the Latent Dirichlet Allocation Topic Model Using Flexible Priors

    Get PDF
    Intrinsically, topic models have always their likelihood functions fixed to multinomial distributions as they operate on count data instead of Gaussian data. As a result, their performances ultimately depend on the flexibility of the chosen prior distributions when following the Bayesian paradigm compared to classical approaches such as PLSA (probabilistic latent semantic analysis), unigrams and mixture of unigrams that do not use prior information. The standard LDA (latent Dirichlet allocation) topic model operates with symmetric Dirichlet distribution (as a conjugate prior) which has been found to carry some limitations due to its independent structure that tends to hinder performance for instance in topic correlation including positively correlated data processing. Compared to classical ML estimators, the use of priors ultimately presents another unique advantage of smoothing out the multinomials while enhancing predictive topic models. In this thesis, we propose a series of flexible priors such as generalized Dirichlet (GD) and Beta-Liouville (BL) for our topic models within the collapsed representation, leading to much improved CVB (collapsed variational Bayes) update equations compared to ones from the standard LDA. This is because the flexibility of these priors improves significantly the lower bounds in the corresponding CVB algorithms. We also show the robustness of our proposed CVB inferences when using simultaneously the BL and GD in hybrid generative-discriminative models where the generative stage produces good and heterogeneous topic features that are used in the discriminative stage by powerful classifiers such as SVMs (support vector machines) as we propose efficient probabilistic kernels to facilitate processing (classification) of documents based on topic signatures. Doing so, we implicitly cast topic modeling which is an unsupervised learning method into a supervised learning technique. Furthermore, due to the complexity of the CVB algorithm (as it requires second order Taylor expansions) in general, despite its flexibility, we propose a much simpler and tractable update equation using a MAP (maximum a posteriori) framework with the standard EM (expectation-maximization) algorithm. As most Bayesian posteriors are not tractable for complex models, we ultimately propose the MAP-LBLA (latent BL allocation) where we characterize the contributions of asymmetric BL priors over the symmetric Dirichlet (Dir). The proposed MAP technique importantly offers a point estimate (mode) with a much tractable solution. In the MAP, we show that point estimate could be easy to implement than full Bayesian analysis that integrates over the entire parameter space. The MAP implicitly exhibits some equivalent relationship with the CVB especially the zero order approximations CVB0 and its stochastic version SCVB0. The proposed method enhances performances in information retrieval in text document analysis. We show that parametric topic models (as they are finite dimensional methods) have a much smaller hypothesis space and they generally suffer from model selection. We therefore propose a Bayesian nonparametric (BNP) technique that uses the Hierarchical Dirichlet process (HDP) as conjugate prior to the document multinomial distributions where the asymmetric BL serves as a diffuse (probability) base measure that provides the global atoms (topics) that are shared among documents. The heterogeneity in the topic structure helps in providing an alternative to model selection because the nonparametric topic model (which is infinite dimensional with a much bigger hypothesis space) could now prune out irrelevant topics based on the associated probability masses to only retain the most relevant ones. We also show that for large scale applications, stochastic optimizations using natural gradients of the objective functions have demonstrated significant performances when we learn rapidly both data and parameters in online fashion (streaming). We use both predictive likelihood and perplexity as evaluation methods to assess the robustness of our proposed topic models as we ultimately refer to probability as a way to quantify uncertainty in our Bayesian framework. We improve object categorization in terms of inferences through the flexibility of our prior distributions in the collapsed space. We also improve information retrieval technique with the MAP and the HDP-LBLA topic models while extending the standard LDA. These two applications present the ultimate capability of enhancing a search engine based on topic models

    Action recognition in depth videos using nonparametric probabilistic graphical models

    Get PDF
    Action recognition involves automatically labelling videos that contain human motion with action classes. It has applications in diverse areas such as smart surveillance, human computer interaction and content retrieval. The recent advent of depth sensing technology that produces depth image sequences has offered opportunities to solve the challenging action recognition problem. The depth images facilitate robust estimation of a human skeleton’s 3D joint positions and a high level action can be inferred from a sequence of these joint positions. A natural way to model a sequence of joint positions is to use a graphical model that describes probabilistic dependencies between the observed joint positions and some hidden state variables. A problem with these models is that the number of hidden states must be fixed a priori even though for many applications this number is not known in advance. This thesis proposes nonparametric variants of graphical models with the number of hidden states automatically inferred from data. The inference is performed in a full Bayesian setting by using the Dirichlet Process as a prior over the model’s infinite dimensional parameter space. This thesis describes three original constructions of nonparametric graphical models that are applied in the classification of actions in depth videos. Firstly, the action classes are represented by a Hidden Markov Model (HMM) with an unbounded number of hidden states. The formulation enables information sharing and discriminative learning of parameters. Secondly, a hierarchical HMM with an unbounded number of actions and poses is used to represent activities. The construction produces a simplified model for activity classification by using logistic regression to capture the relationship between action states and activity labels. Finally, the action classes are modelled by a Hidden Conditional Random Field (HCRF) with the number of intermediate hidden states learned from data. Tractable inference procedures based on Markov Chain Monte Carlo (MCMC) techniques are derived for all these constructions. Experiments with multiple benchmark datasets confirm the efficacy of the proposed approaches for action recognition

    Action recognition in depth videos using nonparametric probabilistic graphical models

    Get PDF
    Action recognition involves automatically labelling videos that contain human motion with action classes. It has applications in diverse areas such as smart surveillance, human computer interaction and content retrieval. The recent advent of depth sensing technology that produces depth image sequences has offered opportunities to solve the challenging action recognition problem. The depth images facilitate robust estimation of a human skeleton’s 3D joint positions and a high level action can be inferred from a sequence of these joint positions. A natural way to model a sequence of joint positions is to use a graphical model that describes probabilistic dependencies between the observed joint positions and some hidden state variables. A problem with these models is that the number of hidden states must be fixed a priori even though for many applications this number is not known in advance. This thesis proposes nonparametric variants of graphical models with the number of hidden states automatically inferred from data. The inference is performed in a full Bayesian setting by using the Dirichlet Process as a prior over the model’s infinite dimensional parameter space. This thesis describes three original constructions of nonparametric graphical models that are applied in the classification of actions in depth videos. Firstly, the action classes are represented by a Hidden Markov Model (HMM) with an unbounded number of hidden states. The formulation enables information sharing and discriminative learning of parameters. Secondly, a hierarchical HMM with an unbounded number of actions and poses is used to represent activities. The construction produces a simplified model for activity classification by using logistic regression to capture the relationship between action states and activity labels. Finally, the action classes are modelled by a Hidden Conditional Random Field (HCRF) with the number of intermediate hidden states learned from data. Tractable inference procedures based on Markov Chain Monte Carlo (MCMC) techniques are derived for all these constructions. Experiments with multiple benchmark datasets confirm the efficacy of the proposed approaches for action recognition

    Graphical models for visual object recognition and tracking

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 277-301).We develop statistical methods which allow effective visual detection, categorization, and tracking of objects in complex scenes. Such computer vision systems must be robust to wide variations in object appearance, the often small size of training databases, and ambiguities induced by articulated or partially occluded objects. Graphical models provide a powerful framework for encoding the statistical structure of visual scenes, and developing corresponding learning and inference algorithms. In this thesis, we describe several models which integrate graphical representations with nonparametric statistical methods. This approach leads to inference algorithms which tractably recover high-dimensional, continuous object pose variations, and learning procedures which transfer knowledge among related recognition tasks. Motivated by visual tracking problems, we first develop a nonparametric extension of the belief propagation (BP) algorithm. Using Monte Carlo methods, we provide general procedures for recursively updating particle-based approximations of continuous sufficient statistics. Efficient multiscale sampling methods then allow this nonparametric BP algorithm to be flexibly adapted to many different applications.(cont.) As a particular example, we consider a graphical model describing the hand's three-dimensional (3D) structure, kinematics, and dynamics. This graph encodes global hand pose via the 3D position and orientation of several rigid components, and thus exposes local structure in a high-dimensional articulated model. Applying nonparametric BP, we recover a hand tracking algorithm which is robust to outliers and local visual ambiguities. Via a set of latent occupancy masks, we also extend our approach to consistently infer occlusion events in a distributed fashion. In the second half of this thesis, we develop methods for learning hierarchical models of objects, the parts composing them, and the scenes surrounding them. Our approach couples topic models originally developed for text analysis with spatial transformations, and thus consistently accounts for geometric constraints. By building integrated scene models, we may discover contextual relationships, and better exploit partially labeled training images. We first consider images of isolated objects, and show that sharing parts among object categories improves accuracy when learning from few examples.(cont.) Turning to multiple object scenes, we propose nonparametric models which use Dirichlet processes to automatically learn the number of parts underlying each object category, and objects composing each scene. Adapting these transformed Dirichlet processes to images taken with a binocular stereo camera, we learn integrated, 3D models of object geometry and appearance. This leads to a Monte Carlo algorithm which automatically infers 3D scene structure from the predictable geometry of known object categories.by Erik B. Sudderth.Ph.D

    A comparison of the CAR and DAGAR spatial random effects models with an application to diabetics rate estimation in Belgium

    Get PDF
    When hierarchically modelling an epidemiological phenomenon on a finite collection of sites in space, one must always take a latent spatial effect into account in order to capture the correlation structure that links the phenomenon to the territory. In this work, we compare two autoregressive spatial models that can be used for this purpose: the classical CAR model and the more recent DAGAR model. Differently from the former, the latter has a desirable property: its ρ parameter can be naturally interpreted as the average neighbor pair correlation and, in addition, this parameter can be directly estimated when the effect is modelled using a DAGAR rather than a CAR structure. As an application, we model the diabetics rate in Belgium in 2014 and show the adequacy of these models in predicting the response variable when no covariates are available
    corecore