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Abstract

Extensions to the Latent Dirichlet Allocation Topic Model Using Flexible
Priors

Koffi Eddy Ihou, Ph.D.
Concordia University, 2021

Intrinsically, topic models have always their likelihood functions fixed to multinomial
distributions as they operate on count data instead of Gaussian data. As a result,
their performances ultimately depend on the flexibility of the chosen prior distributions
when following the Bayesian paradigm compared to classical approaches such as PLSA
(probabilistic latent semantic analysis), unigrams and mixture of unigrams that do not use
prior information. The standard LDA (latent Dirichlet allocation) topic model operates
with symmetric Dirichlet distribution (as a conjugate prior) which has been found to carry
some limitations due to its independent structure that tends to hinder performance for
instance in topic correlation including positively correlated data processing. Compared to
classical ML estimators, the use of priors ultimately presents another unique advantage of
smoothing out the multinomials while enhancing predictive topic models.

In this thesis, we propose a series of flexible priors such as generalized Dirichlet (GD)
and Beta-Liouville (BL) for our topic models within the collapsed representation, leading
to much improved CVB (collapsed variational Bayes) update equations compared to ones
from the standard LDA. This is because the flexibility of these priors improves significantly
the lower bounds in the corresponding CVB algorithms. We also show the robustness of our
proposed CVB inferences when using simultaneously the BL and GD in hybrid generative-
discriminative models where the generative stage produces good and heterogeneous topic
features that are used in the discriminative stage by powerful classifiers such as SVMs
(support vector machines) as we propose efficient probabilistic kernels to facilitate processing
(classification) of documents based on topic signatures. Doing so, we implicitly cast topic
modeling which is an unsupervised learning method into a supervised learning technique.

Furthermore, due to the complexity of the CVB algorithm (as it requires second order
Taylor expansions) in general, despite its flexibility, we propose a much simpler and tractable
update equation using a MAP (maximum a posteriori) framework with the standard EM
(expectation-maximization) algorithm. As most Bayesian posteriors are not tractable for
complex models, we ultimately propose the MAP-LBLA (latent BL allocation) where we
characterize the contributions of asymmetric BL priors over the symmetric Dirichlet (Dir).
The proposed MAP technique importantly offers a point estimate (mode) with a much
tractable solution. In the MAP, we show that point estimate could be easy to implement
than full Bayesian analysis that integrates over the entire parameter space. The MAP
implicitly exhibits some equivalent relationship with the CVB especially the zero order
approximations CVB0 and its stochastic version SCVB0. The proposed method enhances
performances in information retrieval in text document analysis.

We show that parametric topic models (as they are finite dimensional methods) have a
much smaller hypothesis space and they generally suffer from model selection. We therefore
propose a Bayesian nonparametric (BNP) technique that uses the Hierarchical Dirichlet

iii



process (HDP) as conjugate prior to the document multinomial distributions where the
asymmetric BL serves as a diffuse (probability) base measure that provides the global
atoms (topics) that are shared among documents. The heterogeneity in the topic structure
helps in providing an alternative to model selection because the nonparametric topic model
(which is infinite dimensional with a much bigger hypothesis space) could now prune out
irrelevant topics based on the associated probability masses to only retain the most relevant
ones.

We also show that for large scale applications, stochastic optimizations using natural
gradients of the objective functions have demonstrated significant performances when we
learn rapidly both data and parameters in online fashion (streaming). We use both
predictive likelihood and perplexity as evaluation methods to assess the robustness of our
proposed topic models as we ultimately refer to probability as a way to quantify uncertainty
in our Bayesian framework. We improve object categorization in terms of inferences through
the flexibility of our prior distributions in the collapsed space. We also improve information
retrieval technique with the MAP and the HDP-LBLA topic models while extending the
standard LDA. These two applications present the ultimate capability of enhancing a search
engine based on topic models.
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Chapter 1

Introduction

With advancement in internet technology, proliferation of hardware (printers and scanners,
mobile phones and cameras), and the development of social media platforms, our 21st
century society continues to collect unprecended amount of information for large scale
applications. Processing such unstructured records requires efficient machine learning
techniques due to the complexity and variability in these massive collections (images, text
documents, 3D objects, videos, and their combinations ). In topic modeling, such collections
are summarized as documents that operate with count data following the BoW (bag of
words) method. The goal is to build good topics in order to make efficient prediction on
unseen documents in tasks such as retrieval and classification. The topics represent the
intermediate low dimensional (subspace) representation of documents [2], [3]. The widely
known topic model is the standard LDA with its Dirichlet distribution as conjugate prior
to the multinomial. In LDA, documents arise as mixture over topics while the topics
are distributions over the vocabulary words. The LDA has been implemented as a direct
alternative to the frequentist method (classical maximum likelihood estimate approaches)
because of its ability to smooth out multinomials using Dirichlet. Classical frequentist
methods do not use prior informations, and this complicates their performances when
it comes to predicting previously unseen documents or events. Compared to LDA, the
unigram model draws words in a document from a single multinomial distribution called
word simplex. The mixture of unigrams is an augmented version of the unigram model
with a discrete topic (latent) variable. The mixture of unigrams, generates a document
from only a single topic [3]. The PLSA is almost identical to LDA topic model, however, it
has no prior information [4]. It relaxes the mixture of unigrams assumption as it allows a
document to exhibit multiple topics. As presented earlier, the lack of priors in PLSA makes
the model unfit for prediction and often suffers from overfitting problems. The LDA topic
model provides a solution to the PLSA, unigram, and mixture of unigrams by including
prior information as it treats topic proportions as random variables [5].

Topic models therefore depend extensively on prior information because their likelihood
functions are fixed to multinomial distributions, so their robustness ultimately depends
on the use of flexible priors. In fact multinomial has some limitations in topic modeling:
for instance, using only frequencies as ways to represent probabilities often leads to poor
estimates. In a highly sparse collection, without any smoothing method, frequencies are
more likely to assign zero probabilities for unseen or rare events. Moreover, and very often,
multinomials do not capture very well the words burstiness because of the lack of priors
[6, 7]. The integration of prior information has become fundamental for the flexibility
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of topic models such as LDA over classical frequentist approaches. In other words, the
limitations of classic frequentist models led to the emergence of LDA and its variants.

Due to the limitations of the Dirichlet prior, we are able to reformulate the generative
process with flexible priors such as GD and BL as alternatives. It is noteworthy that
under the Dirichlet, topic components are independent which prohibit topic correlation
framework. Because of this handicap, the LDA could not provide a natural way of organizing
documents as it does not allow any dependency between topics [8]: in a collection, in a
real life scenario, it is natural to observe that the existence of one topic is correlated to
another one within a document or another document. This structure facilitates grouping
and compression methods. While conjugate priors have been used for their simplicity in
providing closed form posteriors (for exponential family distributions), some topic modeling
techniques have encouraged the use of non conjugate priors as alternatives when dealing
with topic correlation for instance. Asymmetric and symmetric properties have been also
added to prior information for enhancing estimation of the parameters [9, 10]. As a ultimate
goal, a robust and efficient topic model could be embedded into a search engine for object
categorization and information retrieval.

For classification, for instance, topics learnt in the generative stage could be used in the
discriminative stage with powerful classifiers such as SVM (support vector machines)[11].
This setting requires the use of machine learning techniques or inferences such as
VB (variational Bayes), CVB (collapsed variational Bayes), and CGS (collapsed Gibss
Sampling), and EP (expectation propagation). The CVB is a hybrid inference between the
VB (deterministic) and CGS (stochastic approach) using MCMC (Markov Chain Monte
Carlo)[12]. The CVB has been considered one of the state-of-the-art methods in topic
modeling; nevertheless, the CVB is very complex, and computational expensive. It led to
its zero order approximations CVB0 instead which is a much simpler model, but it is not
efficient in large scale applications within parametric topic modeling because of the reduced
hypthesis space. The stochastic CVB0 (SCVB0) is the online version of the CVB0 [13]. Still
in parametric model, since most Bayesian posteriors, for complex models, are intractable in
general, a point estimate (the mode) offers a much tractable solution. The MAP hypotheses
using point estimates are much easier than full Bayesian analysis that integrates over the
entire parameter space. The MAP could reduce the three-level hierarchical LDA to two level
topic mixture as it marginalizes out the latent variables leaving the parameters. The MAP
in contrast to CVB integrates out the parameters leaving the latent variables. In addition
to the limitation of parametric models in model selection due to their reduced hypothesis
space, the Bayesian nonparametric framework has been implemented in LDA (HDP-LDA)
[14, 15, 16]. Using the BL and GD priors we are able to derive a variety of parametric topic
models before implementing a nonparametric method which solves three main problems in
topic modeling: extending the LDA capabilities, re-assuring the sharing ability of clusters
within or across groups (documents), and the model selection ability. Ultimately, under the
nonparametric setting, the data choose the number of topics by themeselves.

We can summarize our intentions by confirming that we formulate this thesis based
on the observation that most of the traditional inferences in topic models, parametric and
nonparametric along with their stochastic approximations only deal with the LDA which
extensively uses its Dirichlet prior. Now with the limitation of Dirichlet and the emergence
of flexible (conjugate) priors that generalize the LDA, it became natural and straightforward
for us to extend the capabilities of the LDA. Furthermore, most of these LDA-based models
became very restrictive in performance in large scale applications [17]. In this thesis, we
reformulate the collapsed representation (in chapter 2) using the generalized Dirichlet (GD)

2



priors as alternatives to the Dirichlet distributions followed by another inference in the
collapsed space (in chapter 3) with the Beta-Liouville (BL) priors. We also presented
a hybrid generative-discriminative model (in chapter 4) that uses topic features in the
generative stage for a classification framework in the discriminative stage with SVMs. The
proposed generative stage generates topics by utilizing the GD and BL simultaneously.
We characterize efficient probabilistic kernels to accommodate the classification process.
Though, to simplify the complexity of the CVB algorithms, we therefore propose (in chapter
5) the MAP method where we implement the BL prior leading to an EM lower bound (very
simple EM lower bound) with the the MAP-LBLA as alternative to the MAP-LDA. Finally,
to improve performances in standard nonparametric topic models with LDA that widely use
symmetric prior (Dirichlet), we propose (in chapter 6) an efficient Bayesian nonparametric
technique that enhances the HDP (hierarchical Dirichlet process)’s ability to model selection
framework with the HDP-LBLA topic model as we utilize the BL as a diffuse base measure.
The proposed method highly increases even further the possibility of sharing more topics
(clusters) between documents. These contributions ultimately summarize this thesis work
which is going to be more elaborated in the following section 1.1

1.1 Thesis Overview
This thesis is structured as follows:

□ Chapter 1 presents the intrinsic properties of topic models including the standard LDA
and the classical approaches such as PLSI also called PLSA, unigrams and mixture of
unigrams. Topic models have their likelihood set to multinomial distribution so their
robustness depends on their ability to carry conjugate flexible priors following the Bayesian
paradigm for accuracy in the estimates. In the next we have carried out new inferences
using flexible priors such as GD abd BL.

□ Chapter 2 focuses on the collapsed representation. It is an important method in topic
modeling as it provides a much robust lower bound for the variational framework. We extend
the collapsed variational update equation using asymmetric GD prior as an alternative to the
standard symmetric Dirichlet prior widely used in LDA. We therefore developed a collapsed
variational inference for the latent generalized allocation topic model which extends the LDA
architecture in a collapsed variational Bayes setting. The predictive models were recorded
to be more accurate. Due to the ability to characterize dependency between latent variables
and model paramters (hidden variables), the predictive models are much accurate with an
easy access to model selection: within parametric setting, we choose the number of clusters
(topics) and vocabulary size based on the probability mass functions.

□ Chapter 3 also presents another extension to the collapsed variational update equation
using asymmetric BL prior where we characterize dependency in the hidden variables while
also discussing about model selection similar to chapter 2 (we realized that the BL and GD
gerenalize the Dir prior. However, the GD has twice the number of parameters of Dirichlet
while the BL has just two more parameters than the Dir). This makes the BL the more
versatile prior with less number of parameters.

□ Chapter 4 introduces a hybrid model (still in the collapsed space) where the generative
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stage produces good topic features that are fed to discriminative classifiers (SVM). We
presented very specialized probability kernels that accommodate classification framework
using our generative discriminative model. To enhance the heterogeneity in the topic
features, we combine the flexibility of both the GD abd BL priors as they are simultaneously
used during the generative stage which implements a CVB algorithm (that also uses both
distinct priors). With these two priors we obtain the GD-BL and BL-GD-based topic models
whose topics are used during the discriminative stage.

□ Chapter 5 shows that the CVB inference is a very complex approach that requires
second order Taylor expansion that includes mean and variance correction factor. Due to its
complexity it could be intractable. The zero order approximation CVB0 has been proposed
for fast batch processing along with its stochastic version (SCVB0). Due to this complexity
of the CVB update equation we propose an alternative within the MAP framework for
LBLA topic model using standard EM algorithm. We ultimately show that MAP-LBLA
has some equivalence relationship with the CVB with LDA. The work ultimately shows
that the MAP-LBLA simplifies the original CVB-LBLA update equation which facilitates
the proposed stochastic optimizations using minibatches in large scale applications that
require data and parameter streaming. Using the stochastic method, the time and memory
complexities are much improved compared to the standard batch methods.

□ Chapter 6 covers the efficiency of variational inference using HDP prior for the document
parameter in topic modeling. We propose the BL prior as the diffuse base measure which
provides the global topics that are shared among documents. The BL also as a conjugate
prior to the document multinomial distribution facilitates inference. We implement the
HDP-LBLA in a stochastic variational inference as a direct alternative to the HDP-LDA
topic model (based on symmetric Dirichlet prior). In this framework our datasets efficiently
select their underlined number of topics (as alternative to models selection). Due to reduced
number of topics and vocabulary size the online methods with HDP-LBLA have a much
refined time and memory complexities which allows them to operate efficiently in large scale
applications.

□ Chapter 7 provides a conclusion of the thesis by rearticulating the main contributions
while presenting exciting research opportunities as future work.

1.2 Contributions
The main contributions of this thesis could also be summarized as follows:

□ We ultimately improved the collapsed variational Bayesian inference for LDA. This
includes the batch-based CVB and the stochastic SCVB along with their zero order
approximations CVB0 and SCVB0. These update equations extend the LDA topic model
in the collpased space.

□ We improve the parameter estimation in exact fashion with the BL and GD priors within
the collapsed representation as we relax the independent assumption in the mean-field
variational inference.
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□ We show that hybrid generative discriminative models could enhance performance in
classification. They also cast the topic modeling method into a supervised setting when
coupled with SVM. This was the case with our hybrid models using both GD and BL priors
at the generative stage and the SVM at the discriminative stage with powerful and carefully
selected probabilistic kernels.

□ We simplify the CVB update equation using the MAP estimation as alternative to the
very complex CVB algorithm.

□ Within the Bayesian paradigm, we also showed that because the BL has few parameters
compared to GD, empirical Bayes framework (hyperparameter estimation) could be faster
with BL-based topic models than GD-based topic models.

□ Due to the very reduced hypothesis space of parametric topic models such as LDA,
LBLA and LGDA, we propose the HDP prior for Bayesian nonparameteric topic model using
asymmetric BL prior as a diffuse base measure. Using asymmetric BL, the heterogeneity
in the topic stucture provides alternative to model selection as we associate each topic to
its corresponding probability mass. We can therefore prune out irrelevant topics based on
their weigths.

□ We show the effectiveness of the proposed stochastic optimizations as we improve time
and memory complexities by reducing size in the vocabulary and number of topics in a
minibatch framework.

1.3 Contributions from Authors
This PhD thesis ultimately consists of five manuscripts that represent five journal papers.
Each journal (manuscript) summarizes a thesis chapter. Three journal papers have been
accepted and published while the two remaining are recently submitted for publications as
seen below:
First Manuscript (Chapter 2) K. E. Ihou and N. Bouguila, Variational-based
latent generalized Dirichlet allocation model in the collapsed space and applications,
Neurocomputing 332 (2019) 372-395.

Second Manuscript (Chapter 3) K. E. Ihou and N. Bouguila, Stochastic topic models
for large scale and nonstationary data, Engineering Applications of Artificial Intelligence,
volume 88, Elsevier, 2020

Third Manuscript (Chapter 4) K. E. Ihou, N. Bouguila, and W. Bouachir, Efficient
integration of generative topic models into discriminative classifiers using robust probabilistic
kernels, Pattern Analysis and Applications (2020) 1-25

Fourth Manuscript (Chapter 5) K. E. Ihou, N. Bouguila, and M. Amayri. A Two-
Level Hierarchical Latent Beta-Liouville Allocation for Large Scale Data and Parameters
Streaming. IEEE Transactions on Neural Networks and Learning Systems, (submitted for
publication in 2020)
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Fifth Manuscript (Chapter 6) K. E. Ihou, N. Bouguila, and M. Amayri Stochastic
Variational Optimization of A Hierarchical Dirichlet Process Latent Beta-Liouville Topic
Model. ACM Transactions on Knowledge Discovery from Data, (submitted for publication
in 2020)
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Chapter 2

Variational-based Latent
Generalized Dirichlet Allocation
Model in the Collapsed Space and
Applications

In topic modeling framework, many Dirichlet-based models performances have been
hindered by the limitations of the conjugate prior. It led to models with more flexible priors,
such as the generalized Dirichlet distribution, that tend to capture semantic relationships
between topics (topic correlation). Now these extensions also suffer from incomplete
generative processes that complicate performances in traditional inferences such as VB
(Variational Bayes) and CGS (Collaspsed Gibbs Sampling). As a result, the new approach,
the CVB-LGDA (Collapsed Variational Bayesian inference for the Latent Generalized
Dirichlet Allocation) presents a scheme that integrates a complete generative process to
a robust inference technique for topic correlation and codebook analysis. Its performance
in image classification, facial expression recognition, 3D objects categorization, and action
recognition in videos shows its merits.

2.1 Introduction
The importance of topic modeling has drawn the attention of many researchers with
exponential emergence of data from different sources. In the past, many applications have
seen an extensive use of Gaussian distributions within a variety of statistical and learning
frameworks. However, the inability of the Gaussian to perform effectively with count data
led to the consideration of topic models such as LDA. The introduction of the LDA [3]
and especially its major success in the field of topic modeling have demonstrated the early
capabilities of the model. Its traditional inference schemes ranged from variational Bayes
(VB) to MCMC (Markov chain Monte Carlo) approaches such as the Gibbs sampler (GS)
and the collapsed Gibbs sampler (CGS) [3, 2, 18]. Topic modeling techniques have been
used in a variety of applications, and ultimately led to several extensions of the LDA
model. Facing storage issues and computational speed, LDA has quickly shown its ability
to summarize database contents into their most relevant topics while still maintaining
the intrinsic statistical structure in the database [5]. The scheme helped uncovering
and maximizing the amount of information hidden behind these large collections of data.
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Though, rapidly, the inability of the Dirichlet distribution to capture correlation between
topics has hindered the performance of the model in several applications related to intra-
class variation problems. This situation automatically forced the introduction of better,
more flexible priors and models that can also guaranty the conjugacy assumption for easy
Bayesian inferences. That was the case of models such as CTM (Correlated Topic Models),
PAM (Pachinko Allocation Model) [8, 19, 20], IFTM (Independant Factor Topic Models)
[21, 22], GD-LDA (Generalized Dirichlet-based LDA)[18], and LGDA (Latent Generalized
Dirichlet Allocation) [23]. The GD-LDA for instance is an extension of the original LDA
[3] that implements a generalized Dirichlet (GD) as a prior conjugate to the document
multinomial distribution. It therefore replaces the Dirichlet prior in the LDA’s documents
modeling. Similarly, the LGDA samples the documents parameters from GD distributions.
Different from the other models, the CTM utilizes the logistic normal distribution which in
fact is not a conjugate prior to the multinomial distribution [8, 21]. Despite its success in
topic correlation analysis, it leads to a model that is very complex and difficult to implement
[8]. Consequently, in the other schemes, the introduction of the GD [24] has not only
provided a very useful tool to capture correlation between topics, but also emphasized on
the possibility of an easy access of the optimal number of topics (model selection). The
GD mainly came as a result of the limitations of the Dirichlet distribution. Prior to the
emergence of the GD, many topic modeling approaches have often used a predefined number
of topics.

The ultimate goal is to prevent the model from overfitting as the database grows in size.
However, with their ability to capture topic correlation, PAM and CTM are still prone to
overfitting, therefore crippling these models from performing efficiently in a case where both
the topic and codebook (dictionary or vocabulary) grow in size simultaneously. In addition,
these two models are computationally expensive compared to the GD-LDA, CVB-LDA,
LGDA, and LDA models.

Dealing with large collections of data of different types requires robust machine learning
techniques that could take advantage of efficient computational methods to increase
processing speed and manage data storage. One way is to construct models using efficient
inference techniques as the traditional schemes are being obsolete facing the tremendous
challenges and complexities of large scale datasets processing. As a result, for inferences,
variational Bayes (VB) and MCMC methods, individually, are no longer the state-of-the-
art inference techniques as the collapsed Gibbs sampler (CGS) is not efficient (convergence
problem), and VB alone is inaccurate since it suffers from a large bias due to the strong
independency assumption between latent variables and the parameters. Moreover, the
relevance feedback mechanism [25, 26, 27, 28, 29] (introduced to provide an answer to the
problem of optimal number of topics) using MCMC methods in IR (Information Retrieval)
is computationally expensive for extremely large datasets.

The GD-LDA is designed to improve the generative process in the original (smoothed)
LDA model; however, it still uses a Dirichlet prior for the vocabulary (corpus) parameter.
Then, the LGDA implements the GD on document parameters while its corpus parameter
was not generated to reduce computational complexities in the parameters estimation.
Managing the vocabulary size is extremely important in topic modeling to avoid serious
sparsity problems [3, 5]. As the vocabulary codewords influence topics estimation, a
more flexible prior such as the GD for the corpus parameter could improve and effectively
capture the vocabulary codewords structure (after the clustering algorithm) as it could help
reducing the dictionary contents into its most relevant codewords. Due to these limitations
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observed in the previous models, our new approach, the CVB-LGDA improves the state-
of-the-art in topic correlation framework. The CVB-LGDA model is a direct extension
to the CVB-LDA. In our propposed approach, the GD not only replaces the Dirichlet
prior for the document parameter similar to the GD-LDA, but also does it for the corpus
parameter. The new model in this chapter is a pure GD-based CVB model. With the
shortcomings linked to the Dirichlet prior in topic correlation, the new scheme is more
robust to large scale applications than the other extensions presented in this section. Its
GD-based CVB algorithm also combines the advantages of its VB and CGS inferences
methods for an efficient topic modeling in a scheme that favors mean field approximations,
topics and vocabulary codewords analysis. Experimental results in image, 3D object
categorization, and video action recognition show the generalization capabilities of the
model and the LDA hierarchical architecture. One main objective of this chapter is to
compare our proposed approach to the LDA and its previous extensions (variants) such as
GD-LDA, LGDA, and the CVB-LDA. This, because their priors are also conjugate to the
multinomials as we are maintaining this concept in our new topic model as well for easy
Bayesian inference purposes. In addition, being a classification model, we are evaluating
our proposed scheme and its inference technique through a comparison of its performance
to other classification approaches such as BPNN (Backpropagation Neural network), SVM
(Support Vector Machine), and KNN (K-Nearest Neighbor). In overall, the contribution in
this new generative probabilistic model can be summarized as follows:

• The new approach provides an improvement to the generative process of the LDA
[3], CVB-LDA [30], GD-LDA [18], and LGDA [23]: as large collection of data
creates a large vocabulary size which often leads to a serious sparsity problem, this
chapter proposes a better prior (GD) that ultimately replaces the traditional Dirichlet
ditribution. It then emphasizes on smoothing the GD on the multinomial parameters
(both the documents and corpus parameters). Previous models such as GD-LDA,
LGDA only drew the document multinomial parameters from a GD distribution while
the corpus parameters are either from Dirichlet or are not generated at all [23]. This
is not efficient when dealing with datasets with a large vocabulary size.

• It directly improves the CVB-LDA. In our model, the inference is now reformulated
with the GD prior, and it implements a new, robust, and complete generative process
in contrast to the Dirichlet-based CVB model and other extensions using the Dirichlet
prior.

• Our proposed model includes a class label to the CVB algorithm to extend the
capabilities of the inference in categorization framework. It therefore represents an
improvement of the CVB-LDA, LDA, LGDA, and the GD-LDA for its ability to learn
its topics automatically (without human intervention) while still assigning a class label
to unseen documents based on topic distribution in each class.

• The new scheme reconciles an unsupervised learning (topic modeling) to a supervised
learning (classification).

The proposed approach in this chapter is structured as follows: section 4.2 illustrates
the background and relative work. Section 3.3 presents the new approach while section
4.4 covers the experiments and results in several applications. Finally, section 4.5 explores
some future work and provides a conclusion.
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2.2 Related Work And Background
LDA [3] is a generative probabilistic model that has been introduced to solve problems
in the original pLSI (probablistic Latent Semantic Indexing) [31, 32, 33]: overfitting and
the difficulty in predicting documents probability outside the training set [5]. Known as
a multinomial PCA (Principal Component Analysis), the LDA has especially found today
its applications in text modeling and computer vision [30]. As a result, understanding all
the different extensions of the LDA first necessitates a summary of the generative process
in the original LDA graphical model. In this generative process of the (smoothed) LDA,
documents are represented as random mixtures over the latent variables where each topic
is a distribution over the vocabulary words or visual words (codewords). In this scheme,
for instance, for a corpus consisting of D documents of length Ni, we usually follow these
three main generative steps in the original LDA as illustrated below :
1-Choose the document parameter θi ∼ Dir(ε) where i ∈ {1, ..., D}
2-Choose the corpus parameter φk ∼ Dir(β) where k ∈ {1, ...,K}.
3-For each word position i, j with j ∈ {1, ..., Ni} and i ∈ {1, ..., D}

a-choose a topic zij ∼Mult(θi)
b-choose a word w ∼Mult(φzij )

such that Mult(θi) and Mult(φzij ) are multinomial distributions with parameters θi
and φzij , respectively, while Dir(ε) and Dir(β) are Dirichlet distributions with hyper-
parameters ε and β, respectively.
As observed in the LDA architecture, documents multinomial parameters θ are drawn from
a Dirichlet prior with hyperparameters ε; consequently, the K-dimensional random variable
θ following a Dirichlet distribution could be expressed as:

p(θ|ε) = Γ(
∑K
k=1 εk)∏K

k=1 Γ(εk)

K∏
k=1

θεk−1
k (1)

such that
∑K
k=1 θk = 1

In the following subsections, we will discuss the major differences in the previous
extensions which aim to implicitly exhibit the main contributions in our new model.
Meanwhile, for the remaining of this chapter and for modeling purpose, the variables w
and x could be used interchangeably to denote a codeword in an image, 3D object, and
videos while the variable X defines a collection of x codewords within the BoW framework.

2.2.1 Differences in the generative process

Despite our approach being compared to the CVB-LDA [30], GD-LDA [18], and the
LGDA [23], all these topic models follow the same generative and Bayesian hierarchical
architecture of the original LDA [3, 30]. Nevertheless, each has a different generative
process. Following the generative step defined above for the LDA, we can observe that
in GD-LDA model [18], the document parameter is drawn from a GD distribution while
the corpus parameter is still sampled from an asymmetric Dirichlet distribution. Such
approach is only suitable for text modeling where the dictionary is easy to implement with
the Dirichlet. Though, the performance of the model is limited when using datasets such
as images and videos that require extensive topic correlation and codewords analysis. In
LGDA [23], the documents parameters were also drawn from a GD distribution. However,
the corpus parameter was not generated; in other words, the second step (choosing the
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corpus parameter) in the generative process has been avoided or neglected in the LGDA.
This technique, computationally, reduces the model in the parameters estimation especially
with EM (expectation-maximization) within the VB framework. However, it makes the
generative process incomplete or inefficient (with the Gibbs sampler which often requires
both the corpus and the document parameters to be generated) when dealing with a large
vocabulary size. We might for instance want to reduce the codewords size into most relevant
features or generating relevant codewords that define the documents. The CVB-LDA has
the same generative model of the original and smoothed LDA with the use of the Dirichlet
prior on both the document and corpus parameters. Unfortunately, this generative process
is not efficient due to the limitation of the Dirichlet prior in topic correlation, and other
large scale applications. In other words, the critics to the Dirichlet distribution revolve
around its very restricted covariance structure that ultimately hinders its performance in
topic correlation analysis since it could not be used for positively correlated data. The
situation forced many of these models to operate with text datasets only as shown in [3, 18].
Moreover, all these difficulties and challenges have promoted the introduction of our new
technique, the CVB-LGDA as it reformulates the generative process of the LDA where now
both the corpus and documents parameters are sampled from the GD priors in the collapsed
space of latent variables. The goal is to allow an effective topic and codebook analysis, and
doing so makes the generative process complete, robust, efficient, and flexible for correlated
topic modeling framework where both the topic and the vocabulary size could be reduced
through pruning methods. This automatically improves processing (computational speed
and storage) in a case of large data collections. The new extension in this proposed approach
and its generative model are described in Algorithm 1 while the full comparison between
the previous techniques and our model is provided by Table.2.1. Finally, the difference
between these extensions can also be explained through their inference methods as shown
in the next subsection.

Concerning the GD distribution, in a (K + 1)-dimensional space, this prior with K
dimensional hyperparameters ε = (α1, β1, ..., αK , βK) is defined as:

p(θ/ε) =
K∏
d=1

Γ (αd + βd) θαd−1
d

Γ (αd) Γ (βd)

(
1−

d∑
l=1

θl

)γd
(2)

where the vector θ = (θ1, ..., θK) is the K-dimensional multinomial parameter drawn from
the GD distribution.

2.2.2 Differences in inference techniques

Before going into details in section 3.3 that is mainly dedicated to models inferences, we can
briefly mention here another aspect that makes each extension different: the inferences. The
lack of efficiency coupled with some other major limitations in these methods ultimately
led to the implementation of our new approach. For inferences, the original LDA often uses
the VB or the Gibbs sampling (MCMC) methods for the latent and parameters estimation.
The Dirichlet-based CVB-LDA combines both VB and the collapsed Gibbs sampler in the
collapsed space [30]. The LGDA is based on variational Bayes inference. Though, the GD-
LDA favors the collapsed Gibbs sampler. The problem with the VB is that the technique
suffers from a large bias as it always assumes that parameters and latent variables are
independent leading to the factorization of the joint posterior distribution. This strong
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Description Topic correlation capability
LGDA It uses a GD prior in a VB

inference, but VB alone is
not always accurate. In ad-
dition, the corpus parameter
is still not generated in order
to simplify computations in
MLE (maximum likelihood
estimation).

Possible topic correlation
analysis (reducing number
of topics), but cannot
manage the vocabulary size
as the corpus (vocabulary
parameter) is not generated.

GD-LDA It implements a GD-based
CGS. Though, CGS alone is
also not efficient (slow and no
easy access to convergence).

Possible topic correlation
analysis as the documents
parameters are drawn from
the GD while the corpus
parameter is still from a
Dirichlet distribution. The
model is very limited to text
modeling only

LDA It utilizes a VB or a CGS
inferences. Nevertheless, it is
based on the Dirichlet prior
which is found to be very
limited.

No topic correlation capabil-
ity for positively correlated
datasets due to the limitations
of the Dirichlet prior.

CVB-LDA Its CVB scheme is the current
state-of-the-art, and a robust
inference that combines the
advantages of VB and CGS.
However, it is a Dirichlet-
based model (as a result, it is
very limited).

Good inference technique, but
no topic correlation ability for
positively correlated datasets
because of the Dirichlet prior.

CVB-LGDA It is our proposed model to fix
the CVB-LDA. It automati-
cally combines the advantages
of both GD based-CGS and
GD based-VB inferences.

Very flexible model for corre-
lation between topics with the
GD prior. Both the topics and
vocabulary codewords could
be analyzed. The model
is also flexible to data of
different types.

Table 2.1: Comparison between the new CVB-LGDA model and the other schemes within
the BoW framework
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Algorithm 1 GD-based Generative Model
procedure

for topic k← 1 to K do
draw φk ∼ GD(ζ)

end for
for document j← 1 to D do

draw θj ∼ GD(ε)
for word w← 1 to Nj do

draw zwj ∼Mult(θj)
draw w|zwj ∼Mult(φk)

end for
end for

end procedure

assumption could have a negative effect on the lower bound, the likelihood distribution,
and the overall performance of the model when there is for instance any dependence
between the parameters and latent variables. As the VB alone could be inaccurate, the
Gibbs sampler (MCMC) often suffers from convergence problems [30]. Finally, the use
of the Dirichlet prior in CVB-LDA approach limited its performance and hindered its
ability to capture correlation between topics. First presented as a solution to VB and
CGS individual drawbacks, the CVB-LDA is now inefficient and also needs a replacement
due to the Dirichlet. We could observe from these inference approaches that each of the
previous extensions has some limitations; therefore, there is a need for an improvement in
these models. Our new method, combining both the advantages of VB and CGS with the
GD as a prior solves the problem related to the Dirichlet distribution in the CVB-LDA,
the original LDA, and other extensions. Furthermore, as the new approach is used in a
classification problem, a category level (label) is automatically added to the hierarchical
structure, as illustrated in Fig. 2.1 similar to [2]. Consequently, it improves the current
CVB algorithm for classification. Overall, the new technique with its flexible priors and a
robust inference technique is an extension to the LDA [30].

2.2.3 Previous Fei-Fei Li et al. ’s work in image classification using topic
model

The LDA model has witnessed so many extensions ultimately due to some major limitations
in the model’s prior (Dirichlet distribution). One of these weaknesses is the inability of the
Dirichlet prior to perform in a topic correlation analysis. This, because the Dirichlet has a
very limited covariance structure. In [2], despite their model providing a better way to label
topics (intermediate representations) when using unsupervised learning with the LDA, the
authors quickly suggested that the topic-based classification model they implemented was
far from complete. In other words, the model, even though suitable for classification, was
very limited: it was only successful for inter class variation problem. The scheme was not
able to perform well in intra class variation problem as it could not make any difference
between classes that carry almost similar features (topics) while for categories that have
very distinct features there was no problem. Consequently, facing this handicap, as future
work, they suggested to focus on ways that could generate richer features in order to be
successful in their proposed image categorization scheme using topics. Authors Fei-Fei Li
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et al. in [2] did not doubt about the stability of the Dirichlet prior as they thought they
could solve the classifiction problem (using images) through a preprocessing technique that
could generate robust features.

Once the limitations of the Dirichlet prior have been discovered later on, scientists then
decided to find a new prior (or alternative) for the LDA topic model [34, 35]. This has led
to so many extensions in the quest of providing the model with the best prior. Another
aspect to consider in the LDA model for classification proposed by Fei-Fei Li et al. in [2] was
the inference as the variational Bayes EM (Expectation Maximization) was seen to be their
favorite. Indeed, the variational Bayesian inference is one of the widely used techniques
in parameters estimations. It is a deterministic approach that guarantees convergence.
So, the method is efficient, but it is not very accurate due to the strong independency
assumption (between latent variables and parameters) often observed in the variational
Bayes methods. It usually leads to the traditional factorization or the decoupling of the
joint variational distribution into a product of individual variational distributions. So, when
there is dependency between latent variables and parameters, the variational Bayes becomes
inaccurate as it could severely affect the lower bound and jeopardize estimation when this
lower bound become instable, affecting the log likelihood computation. A solution proposed
by Teh et al. and Caballero et al. in [12, 18] was to marginalize out the parameters leaving
only the latent variables that could be now assumed independent given these parameters.
So these authors provided a weak assumption which is more robust for exact inference. It
leads to the collapsed variational inference where the parameters are marginalized out. The
only drawback with the inference was still the Dirichlet distribution.

The CVB-LGDA we finally proposed in this chapter has a graphical architecture that
seems to be similar to the bayesian hierarchical model proposed by Fei-Fei Li et al. in 2005
in [2]. However, there is a major difference between these two classification models. In fact,
the model proposed in [2] draws its document parameters from the Dirichlet distribution
while our new model samples its corpus and documents parameters from the GD.

As a result, with the GD, we automatically improve the previous state-of-the-art
inference which was a Dirichlet-based inference. The new collapsed variational Bayesian
inference in this chapter is now a generalized Dirichlet-based one. It is more robust and
versatile for a better topic correlation and codeword’s analysis as this will help in the intra
class variation problem. The experimental results have shown the new model performs
better than the one proposed by [2]. Though, credits could be highly given to these
authors in [2, 3] for their tremendous effort to provide an early exploration of the LDA
model that ultimately led to these several LDA extensions observed today. Their model
and algorithm could be summarized through these following concepts: For instance, given
observed variables u and unobserved or latent variables x and the model parameters θ we
are maximizing the loglikelihood with respect to θ such that:

L (θ) = log p(u|θ) = log
∫
p(x, u|θ)dx (3)
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Often, the difference between the loglikelihood and the bound can be expressed as:

L (θ)−F(Q̃(x), θ) = log p(u|θ)−
∫
Q̃(x) log p(x, u|θ)

Q̃(x)
dx (4)

= log p(u|θ)−
∫
Q̃(x) log p(x|u, θ)p(u|θ)

Q̃(x)
dx (5)

= −
∫

log p(x|u, θ)
Q̃(x)

dx (6)

= KL(Q̃(x), p(x|u, θ)) (7)

This difference is actually the Kullback-Leibler divergence. It is non negative and zero if
and only if Q̃(x) = p(x|y, θ) (this is the E-step). Based on the bound on the log-likelihood;
this likelihood is non decreasing in every iteration such that:

L (θ(k−1)) =
E−step

F(Q(k), θ(k−1)) ≤
M−step

F(Q̃(k), θ(k)) ≤
Jensen inequality

L (θ(k)) (8)

where EM converges to a local optimum of L . The variational Bayes EM implemented in
Algorithm.2 while ours (MCMC) is illustrated by Algorithm.4 mainly shows the difference
in the two models.

Algorithm 2 Variational Bayes Expectation-Maximization (EM)
Goal: lower bound p(u|m)
V B −E step: compute the variational parameters such that
Q̃

(t+1)
x (x) = p(x|u, θ(t))

V B −M step: compute the parameters using the variational estimates from E-step as:
Q̃

(t+1)
(θ) (θ) ∝ exp(

∫
Q̃

(t+1)
(x) (x) log p(x, u, θ)dx

Therefore, although using similar graphical topic model for classification where the
vocabulary is shared among all classes, the priors and the inferences are different using
Fei-Fei Li et al.([2]) and our method. In other words, the models are different.

Algorithm 3 summary of the CVB-LGDA Inference
1: procedure
2: Input: X , ε = (αc, βc), iterMax, ζ = (λ, η), K, V , N
3: Initialize Z, Njk., N.kvij

4: for iter = 1 to iterMax do
5: for i = 1 to N in document j in class c do
6: zij ∼ Q̂(zij = k|z−ij ,X , c, ε, ζ) using Eq.54
7: Update N t

kv, N t
k, N t

dk

8: end for
9: end for

10: Output: Parameters θ̃jks and φ̃kws using Eq.55 and 56
11: end procedure
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Figure 2.1: Topic Graphical Model for Classification. The shaded circle denotes observed
variables x and the class c.

2.3 The New Approach

2.3.1 Overview

In this chapter, due to the limitations of the Dirichlet prior, we propose the generalized
Dirichlet (GD) distribution on both the document and corpus parameters for its flexibility
[23, 36] in a collapsed space: the GD has a more general and versatile covariance structure
than the Dirichlet prior. In addition, the Dirichlet is a special case of the GD. A variational
inference scheme with this conjugate prior in the collapsed space represents an improvement
to the state-of-the-art in images, 3D objects, and videos analysis to deal with challenges
related to extensive vocabulary size, and increasing number of topics. The new approach
integrates two models: a topic model (unsupervised learning) and a classification model
(supervised learning). The topic graphical model (Fig. 2.1) in this classification problem
is described by a list of variables as shown below. It shows the conditional dependence
structure between these variables. Moreover, as we are planning to implement inferences in
these two following spaces, details about the collapsed and the joint spaces will be provided
in this section. Meanwhile, back to our graphical model that is a directed acyclic graph,
the variables are indeed described as follows:
D-Number of documents
N -Number of words in each document
K-Number of topics
x = {xij}-Observed words (where a word is positioned as ith in the jth document)
z = {zij}-latent variables (topic indices) associated to the observed words {xij}
θj = {θjk}-Mixing proportions (each parameter θj is a mixture of K topics)
φk = {φkw}- Corpus parameters
θjk/ε ∼ GenDir(ε)-Generalized Dirichlet distribution with hyperparameter ε for the
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document parameter θjk
φkw/ζ ∼ GenDir(ζ)-Generalized Dirichlet distribution with hyperparameter ζ for the
corpus parameter φkw
zjk/θjk ∼Mult(θjk)-Multinomial distribution with parameter (θjk)
xjk/zjk, φjk ∼Mult(φkw)-Multinomial distribution with parameter φkw
c = {1, 2, ..., C} is the set of all classes summarizing the database, similar to [2].
(ε, c) = (αc1, βc1, ..., αcK , βcK) = (αc, βc)
ζ = (λ1, η1, ..., λV , ηV ) = (λ, η)

In this chapter, the documents are drawn from a class set c. The variables ε and ζ are
the documents and corpus hyperparameters of the graphical model, respectively, using the
generalized Dirichlet as priors. In implementation, the variable ε holds two C×K matrices
α and β such that εc is K-dimensional GD hyperparameter (αc, βc) for the document.
Similarly, for a every topic k, the variable ζ contains two vectors of size V ×1, (λ and η) such
that ζ is a V -dimensional GD hyperparameter (λ, η) for the corpus using the vocabulary
of size V . In addition, the CVB-LGDA algorithm uses notions of variational distributions
and variational lower bound. In our new scheme and similar to [30], the variable Q̃ is
the variational distribution in the standard space (the joint space of parameters and latent
variables). However, the distribution Q̂ is the variational in the collapsed space of latent
variables where the parameters are marginalized out. In the exponential family distribution,
typical to many LDA related graphical model distributions, the marginal likelihood function
(the normalization factor in the posterior distribution) is often approximated by a lower
bound defined as exp(F(Q(x))), where F(Q(x)) is the variational lower bound in the log
space [37]. This element of the integration functional is also called the variational free energy
[30, 12]. Our model is an improved variational Bayes approach in the collapsed space of
latent variables. The traditional VB inference is performed in the joint space of latent
variables and model parameters. Though, it is slow compared to the VB in the collapsed
space. We therefore define these bounds to clarify all the steps taken for the implementation
of the new approach in the collapsed space (in comparison to the joint space). As a result,
similar to Q̃ and Q̂, the variable F̃ is the variational bound in the joint space while F̂ is
the variational bound in the collapsed space using our CVB-LGDA graphical model (Fig.
2.1). This concept is similar to [30].

2.3.1.1 Notations and definitions

In this classification problem, it is important to define some basic concepts related to the
BoW framework as we deal with different data types such as images, 3D objects, and
videos. A video sequence can be seen as a collection of frames (images). Since an image
and a 3D object are each assimilated to a document, a patch x is defined as the basic
unit for a document; and it is an element of the vocabulary codewords. The document
is reduced to a sequence of vocabulary codewords (after quantization scheme from the
clustering algorithm). Therefore, an image, 3D object or a video frame X are each a
collection of N patches defined as X = (x1, x2, ..., xN ). The variable xn is the nth patch in
the image. A category or a class is a collection of D images such that I = {X1,X2, ...,XD}.
In our image, 3D object, and video analysis within the BoW, the document is a collection
of patches. Though, in 3D object analysis, the document is also defined as a sequence of
images or 2D views which in turn are a collection of patches. Therefore, our model from
image analysis could be easily generalized to a 3D object and a video as we treat each 3D
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Figure 2.2: Topic model for classification problem

or video documents as a sequence of 2D views within the BoW structure.

2.3.2 Proposed topic model

In this chapter, our GD-based collapsed variational Bayesian approach utilizes a topic
modeling scheme for a classification problem using images, 3D objects and videos. Most
importantly, this classification approach emphasizes on the generative probabilistic model
as it has ability to learn both the class-conditional probability p(X|c, ε, ζ) and the prior
probability p(c|µ) (Eq. 113) before estimating the posterior distribution p(c|X , ε, ζ, µ) using
the Bayes’ rule. It is for instance in contrast to the discriminative model that usually learns
directly the posterior distribution p(c|X , ε, ζ, µ) [38]. As a result, in our new framework,
each class-conditional probability is a topic model that learns its codewords distribution.
With the GD conjugate prior to the multinomial, the new method aims to capture semantic
relationships between vocabulary words and between topics. So, through this effective
representation, the model could easily be generalized to several other applications. Again,
as a contribution, this chapter extends the capabilities of the previous CVB technique by
introducing a better prior that facilitates applications using images, 3D objects, and videos.
The topic modeling scheme (GD-based CVB) in this categorization problem ultimately
provides the best model describing codewords distribution of the observed data in each
class. In this section, we will also present the GD distribution and its advantages over the
Dirichlet prior.

In computer science, the time complexity is the computational complexity that describes
the amount of time it takes to run an algorithm. Time complexity is commonly estimated
by counting the number of elementary operations performed by the algorithm, supposing
that each elementary operation takes a fixed amount of time to perform. Thus, the amount
of time taken and the number of elementary operations performed by the algorithm are
taken to differ by at most a constant factor.

When dealing with large scale collection of datasets and their processing, two notions

18



that often come in mind are the time complexity and the memory or space complexity. The
time complexity coul be defined as the computational complexity describing the amount of
time it takes to execute or run an algorithm. The concept ultimately counts the number of
elementary operations performed by the algorithm. The memory complexity is the memory
used by an algorithm. In this chapter, we are deeply interested in the time complexity in our
model as we observe its performance with real data in comparaison to the other classification
models. In a topic model with K as total number of topics, and N the humber of unique
words in the dataset, and V as vocabulary size, we can observe that the LDA and the CVB-
LDA have similar time complexiy noted as O(NK) implying these models have ability to
generate topics. Importantly, the GD-LDA also has the same time complexity O(KN).
While the CVB-LDA and the LDA could only generate topics, the GD-LDA could with
the same amount of time, perform two tasks: semantic relationship between codewords,
and topic correlation analysis. Same time complexity is observed by the LGDA model. In
our model, the CVB-LGDA emphasizes on topic correlation, semantic relationship between
words, and codebook analysis bringing his overall time complexity to O(NKV ) as seen in
Eq. 9. Though the flexibility of the CVB-LGDA allows it to prune out irrelevant topics
and irrelevant vocabulary codewords reducing then the vocabulary size. Therefore, as K
and V can be extremely small due to pruning, O(NKV ) could be reduced to O(N) Eq. 10.
The new mdel can get more done faster.

In addition, the variational Bayes-based methods despite its efficiency could be very slow
as the inference operates in the joint space of the latent variables and the parameters whereas
the new approach operating in the collapsed space is gets its parameters marginalized out
leaving only the latent variables. We finally conclude the new approach has potential to be
faster than its competitors as it still takes advantage of the Taylor approximation to speed
up computation. The models along with their time complexity summarized in Table 2.2

for n = 1 : N
for k = 1 : K

for v = 1 : V

⎫⎪⎪⎬⎪⎪⎭→timeComplexity = O(NKV ) (9)

The objective of this model is that for very large value N (data size) and very small value
of K and V we can reach a linear time O(N) therefore for

K ≪ N

V ≪ N

}
→timeComplexity = O(N) (10)

2.3.3 Inference schemes

This section is dedicated to the inference techniques in the new method. In addition, it
includes the different inference schemes used in the previous extensions.

2.3.3.1 General Bayesian inference procedures with VB and CGS

The goal in any Bayesian framework is the computation of the posterior distribution in
inferences. However, and very often, it involves integrals estimations such as the likelihood
function and the model posterior distribution that are not quite tractable. Therefore,
several schemes such as VB with EM algorithm and MCMC are widely used to uncover
the topics and estimate the model parameters. Each of these methods has its advantages,

19



time complexity Analysis
LDA O(NK) no topic correlation
CVB-LDA O(NK) no topic correlation
GD-LDA O(NK) topic correlation leading to

O(N)
LGDA O(NK) topic correlation leading to

O(N)
CTM and PAM O(K2N) topic correlation but very

expensive O(N)
CVB-LGDA O(NKV) topic correlation and vocabu-

lary analysis leading to O(N)
as time complexity when the
number of topics and vocabu-
lary size are reduced

KNN O(KNDim) No topic correlation as K
refers to the K-nearest neigh-
bors (not topics), and Dim is
the data dimensionality

SVM O(N3) topic correlation but very
expensive O(N3)

BPNN O(N5) topic correlation but very
expensive O(N5)

Table 2.2: Time complexity between the new CVB-LGDA model and the other schemes
within the BoW framework

but also its drawbacks. The state-of-the-art seems to reconcile the advantages of both VB
and the Gibbs sampler in the collapsed space, leading to an hybrid model which represents
the best of both worlds: the collapsed Variational Bayes (CVB) inference. It is intuitively
a variational Bayes approach in the collapsed space of latent variables using the Gibbs
sampler. The CVB inference ultimately solves the problem of convergence in the MCMC
approach. In addition, it removes the bias in the VB method with an inference scheme in
exact fashion where the latent variables are conditionally independent given the parameters
[30]. From the graphical model in Fig. 2.1, given its hyperparameters ε, ζ, and the class
parameter µ, we can express the full generative equation of the model. It is the joint
probability distribution noted p(X , z, θ, φ, c|ε, ζ, µ) and illustrated below as:

p(X , z, θ, φ, c|ε, ζ, µ) = p(c|µ)
K∏
i=1

p(φi|ζ)
D∏
j=1

p(θj |ε, c)×
N∏
n=1

p(zj,n|θj)p(xj,n|φzj,n) (11)

This joint distribution’s equation can be simplified to :

p(X , z, θ, φ, c|ε, ζ, µ) = p(c|µ)p(θ|c, ε)p(φ|ζ)×
N∏
n=1

p(zn|θ)p(xn|zn, φ) (12)

where p(φ|ζ) and p(θ|c, ε) are the corpus prior distribution (GD) with hyperparameters ζ
and a class document prior distribution (GD) with hyperparameter ε, respectively. The
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distributions p(zn|θ) and p(xn|φzn) are multinomial while the distribution p(c|µ) is the
class prior. The Bayesian inference approximates the posterior distribution of the latent
variables z and the model parameters θ and φ given the observations and the class. This is
the joint posterior distribution p(z, θ, φ|X , c, ε, ζ, µ) as shown in the equation below.

p(z, θ, φ|X , c, ε, ζ, µ) = p(X , z, θ, φ, c|ε, ζ, µ)
p(X , c|ε, ζ, µ) (13)

where the denominator is expressed as :

p(X , c|ε, ζ) =
∫
θ

∫
φ

∑
z

p(X , z, θ, φ, c|ε, ζ)dφdθ (14)

with
p(X , c|ε, ζ, µ) = p(X|ε, ζ, c)p(c|µ) (15)

For a uniform class prior, we obtain p(c|µ) = p(c) = 1
C with µ negligible. As a result, the

Eqs. 71 and 72 could be simplified as :

p(X , c|ε, ζ, µ) = p(X|ε, ζ, c)
C

(16)

C is the total number of classes while c is the set of classes in this graphical model. The
posterior distribution is then reduced to :

p(z, θ, φ|X , c, ε, ζ, µ) = p(X , z, θ, φ, c|ε, ζ, µ)
p(X|ε, ζ, c)/C (17)

As the likelihood function here, the class conditional p(X|c, ε, ζ) is not tractable, the
posterior p(z, θ, φ|X , c, ε, ζ, µ) is not tractable as well. Then, the variational Bayes (VB)
estimates the true posterior distribution using variational distributions [30] (factorized
distributions) Q̃(z, θ, φ) such that:

Q̃(z, θ, φ) =
∏
ij

Q̃(zij |ψ̃ij)
∏
j

Q̃(θj |ε̃j)
∏
k

Q̃(φk|ζ̃k) (18)

where Q̃(zij |ψ̃ij) is the variational multinomial distribution with parameters ψ̃ij . However,
Q̃(θj |ε̃j) and Q̃(φk|ζ̃k) are the GD variational distributions with parameters ε̃j and ζ̃k,
respectively, in the joint space of latent variables and model parameters. This VB was
often implemented in LDA and LGDA.

As the standard VB operates in the joint space of latent variables and parameters,
inference in that space requires a family of distributions, a set of variational distributions,
defined as Q̃(z, θ, φ) that are as close as possible or tight to the true posterior distribution
p(z, θ, φ|c, ε, ζ) with the KL (KullBack Leibler) divergence. Importantly, VB introduces a
lower bound to the marginal log likelihood, a concept that is also equivalent to the VB
upper bounding the negative log marginal likelihood − log p(X|c, ε, ζ) in a framework [30]
that utilizes variational free energy as shown in Eqs. 77 and 80. The inference leads to
variational parameters updates and the model parameters estimation. VB is efficient as
it is easy to implement and provides an easy access to convergence. It is a deterministic
approach. From Eqs. 77 to 81, the bound on the loglikelihood is expressed as:
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log p(X|c, ε, ζ) ≥
∫
θ

∫
φ

∑
z

Q(z, θ, φ) log p(X , z, θ, φ, c|ε, ζ)dφdθ

−
∫
θ

∫
φ

∑
z

Q(z, θ, φ) logQ(z, θ, φ)dφdθ

= EQ[log p(X , z, θ, φ, c|ε, ζ)]− EQ[logQ(z, θ, φ)]

(19)

− log p(X|c, ε, ζ) ≤ −
∫
θ

∫
φ

∑
z

Q(z, θ, φ) log p(X , z, θ, φ, c|ε, ζ)dφdθ

+
∫
θ

∫
φ

∑
z

Q(z, θ, φ) logQ(z, θ, φ)dφdθ

= EQ[− log p(X , z, θ, φ, c|ε, ζ)]− EQ[− logQ(z, θ, φ)]

(20)

− log p(X|c, ε, ζ) ≤ F̃(Q̃(z, θ, φ)) = EQ̃[− log p(X , z, θ, φ, c|ε, ζ)]−H(Q̃(z, θ, φ)) (21)

As the variational entropy is expressed as H(Q̃(z, θ, φ)) = EQ̃[− log Q̃(z, θ, φ)], the
variational posterior distribution in the joint space Q̃(z, θ, φ) is factorized using the
independency assumption as shown in Eq. 75. Consequently, in the joint space of VB using a
GD prior, estimating the model parameters θ, φ (in M step) from a variational EM algorithm
requires approximation and update of the GD variational distributions hyperparameters
when using the variational multinomial parameter ψ̃ijkc in the E-step. In terms of inferences,
many researchers have implemented the Dirichlet-based VB [3, 2, 30, 39, 23], but its
limitations (strong independency assumption) ultimately led to the Dirichlet-based CVB
which is a combination of VB and MCMC approaches.

In general, the CVB [30, 40, 13] is an improved version of the VB in the collapsed space
of latent variables; and it is the state-of-the-art inference we are also upgrading because of
the limitation of its Dirichlet prior. The CVB and the CGS both operate in the collapsed
space. Therefore, from the joint distribution p(X , z, θ, φ, c|ε, ζ, µ), the model parameters θ,
φ are integrated out to obtain the marginal distribution p(X , z, c|ε, ζ) defined as :

p(X , z, c|ε, ζ) =
∫
θ

∫
φ
p(X , z, θ, φ, c|ε, ζ)dφdθ (22)

But p(X , z, c|ε, ζ) = p(X , z|c, ε, ζ)p(c) so p(X , z|c, ε, ζ) becomes

p(X , z|c, ε, ζ) = C

∫
θ

∫
φ
p(X , z, θ, φ, c|ε, ζ)dφdθ (23)

Due to the prior conjugacy between the GD and the multinomial distributions, this integral
is easy to compute, and is often expressed as a product of gamma functions. The goal is to
approximate the conditional distribution of the latent variable p(z|X , c, ε, ζ).

2.3.3.2 The New Collapsed Gibbs sampler and Mean field inference

The collapsed space of latent variables is a low dimensional space. The space is suitable for
easy computation of integrals using the conjugacy property between the priors distributions
and the multinomial distributions. Ultimately, the Gibbs sampler provides inference by
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computing expectations through a sampling process of the latent variables to approximate
the posterior distributions using a network of conditional probabilities (Bayesian network).
The CGS [30, 18, 41] in the collapsed space of latent variables is therefore very fast compared
to the standard Gibbs in the joint space of latent variables and model parameters. In
addition, with the CGS, no more use of digamma functions which were computationally
very expensive in VB method. The CGS algorithm estimates the parameters when the
Markov chain reaches its stationary state (stationary distribution) and provides the best
estimate of the true posterior distribution.

From the marginal joint distribution p(X , z|c, ε, ζ), the conditional probabilities of the
latent variable zij are computed given the current state of all variables except the particular
variable zij being sampled [30]. The scheme uses the collapsed Gibbs sampler for topic
assignments. The conditional probability of latent variables is p(zij = k|z−ij ,X , c, ε, ζ)
where −ij corresponds to counts or variables with zij excluded [30]. This conditional
probability is expressed as :

p(zij = k|z−ij ,X , c, ε, ζ) = p(zij , z−ij ,X , c, |ε, ζ)
p(z−ij ,X , c, |ε, ζ) (24)

The above equation using [30] can be simplified since:

p(zij = k|z−ij ,X , c, ε, ζ) ∝ p(zij = k, z−ij ,X , c|ε, ζ) (25)

The obtained Callen equations (below) as in [30] illustrate the way the collapsed Gibbs
actually performs the sampling mechanism. It is an expectation problem as shown in the
equation given as:

p(zij = k|X , c, ε, ζ) = Ep(z−ij |c,X ,ε,ζ)[p(zij = k|z−ij ,X , c, ε, ζ)] (26)

2.3.3.3 Using GD in the collapsed Gibbs sampler

In our model, the parameters θ, φ are drawn from the generalized Dirichlet distribution.
These parameters are now marginalized out in the collapsed space of the latent variables
to speed up sampling process. It is faster to sample in the collapsed space than in the
joint space of latent variables and parameters [30]. The motivation here is to sample
the latent variables from the joint distribution p(X , z|c, ε, ζ) using a network of single
class conditional probabilities illustrated below. As previously mentioned, the conjugacy
assumption facilitates estimation of this integral obtained as a product of gamma functions
(Eq. 127).

p(X , z|c, ε, ζ) = C
D∏
j=1

[
K∏
i=1

Γ (αci + βci)
Γ (αci) Γ (βci)

K∏
i=1

Γ (α′
ci) Γ (β′

ci)
Γ (α′

ci + β′
ci)

]

×
D∏
j=1

[
K∏
i=1

Γ (λr + ηr)
Γ (λr) Γ (ηr)

K∏
i=1

Γ (λ′
r) Γ (η′

r)
Γ (λ′

r + η′
r)

]
(27)

where the document-topic update in class c is expressed as :⎧⎨⎩α′
ci = αci +N i

j(.)
β′
ci = βci +

∑K+1
l=i+1N

l
j(.)

(28)
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The topic-word update is defined as :⎧⎨⎩λ′
r = λr +N i

(.),r
η′
r = ηr +

∑V+1
d=v+1N

i
(.)d

(29)

These update equations above are observed to be very similar to the updates expected from
the variational inference. However, the current multinomial updates are provided by the
Gibbs sampler (Eqs. 128, 142, and 30)⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

N i
j(.) = N ij

jk(.) = N ij
jk.

N l
j(.) = N ij

jl(.) = N ij
jl.

N i
(.),r = N ij

(.),kνij = N ij
.kνij

N i
(.)d = N ij

(.),kd = N ij
.kd

(30)

where i refers to the ith topic in document j . The variable l indexes (k + 1)th topic in
document j. The variable r refers to the vth codeword in topic k while d refers to the
(v+ 1)th codeword in topic k. The count N ij

jk. is the number of word i in the document j in
topic k in class c. In addition, N−ij

jk. is the total number of words in topic k in document j
in class c except the word i being sampled. The constant N ij

.kνij
is the number of times the

codeword ν appears in topic k in document j while N−ij
.kνij

is the number of times the word
ν appears in document j in topic k except the one being sampled.

In Eq. 96, we obtained the sampling equation of a topic zij in a particular class document
j given the observations x and the initial topic assignments associated to each word except
the one being sampled z−ij . The counts in the document-topic and topic-word structure
are ultimately emphasized by the multinomial variable ψ̂ijk in the Gibbs sampler, similar
to the case of the VB. Though, the count in Eq. 96 is obtained in a collapsed space, so it
is different from the one in the joint space of VB. As parameters are marginalized out in a
particular class, the update is reduced to:

ψ̂ijkc = p(zij = k|X , c, ε, ζ) (31)

using p(zij |z−ij ,X , c, ε, ζ) = p(zij ,z−ij ,X ,c,|ε,ζ)
p(z−ij ,X ,c|ε,ζ) from Eq. 90 so that:

p(zij = k|z−ij ,X , c, ε, ζ) ∝

⎡⎣(N−ij
jk. + αck)(βck +

∑K+1
l=k+1N

−ij
jl. )

(αck + βck +
∑K+1
l=k N−ij

jl. )

⎤⎦
×

⎡⎣(N−ij
.kνij

+ λν)(ην +
∑V+1
d=ν+1N

−ij
.kdij

)

(λν + ην +
∑V+1
d=ν N

−ij
.kdij

)

⎤⎦ (32)

Normalizing the distribution above leads to a posterior probability defined as :

p(zij = k|z−ij ,X , ε, ζ) = A(k)
B(k′,K) (33)

such that :

A(k) =

⎡⎣(N−ij
jk. + αck)(βck +

∑K+1
l=k+1N

−ij
jl. )

(αck + βck +
∑K+1
l=k N−ij

jl. )
×

(N−ij
.kνij

+ λν)(ην +
∑V+1
d=ν+1N

−ij
.kdij

)

(λν + ην +
∑V+1
d=ν N

−ij
.kdij

)

⎤⎦ (34)
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and

B(k′,K) =
K∑
k′=1

⎡⎣(N−ij
jk′. + αck′)(βck′ +

∑K+1
l=k′+1N

−ij
jl. )

(αck′ + βck′ +
∑K+1
l=k′ N

−ij
jl. )

(N−ij
.k′νij

+ λν)(ην +
∑V+1
d=ν+1N

−ij
.k′dij

)

(λν + ην +
∑V+1
d=ν N

−ij
.k′dij

)

⎤⎦
(35)

Now, the collapsed Gibbs sampler uses the Callen equations (Eq. 92) as in [30] to
sample z given the observable variable X . This equation implies that the conditional
p(zij = k|X , c, ε, ζ) are approximated through sample mean of p(zij = k|z−ij ,X , c, ε, ζ)
by drawing enough p(zij = k|z−ij ,X , c, ε, ζ) such that the variables z−ij are in turn drawn
from probability distribution p(z−ij |X , c, ε, ζ). In other words, it is the expected value
of p(zij = k|z−ij ,X , c, ε, ζ) where samples are drawn from p(z−ij |X , c, ε, ζ). The Gibbs
sampling is equivalent to an approximation of the true posterior distribution (in a Bayesian
inference) in the collapsed space. As a result, in the CGS, the expected multinomial
parameter in each class is estimated as a count from the true posterior distribution in
the Eq. 96. As the CGS samples from the true posterior distribution in the collapsed space,
the VB updates its variational parameters in the joint space of the latent variables and
model parameters using the expected multinomial parameter ψ̃ijkc. Therefore,

ψ̃ijkc ̸= ψ̂ijkc (36)

2.3.3.4 The GD-based variational Bayes: GD-VB

As a deterministic approach and in contrast to the CGS, the VB insures convergence to
a local minimum. Optimizing the variational distribution in Eq. 75 from Eq. 81 with
respect to the GD variational parameters leads to the following updates in the parameters
of the corpus and documents GD variational distributions. These updates are similar to
the CVB-LDA [30].

α̃jkc = αc +
∑
i

ψ̃ijkc (37)

β̃jk′c = βc +
∑
i

ψ̃ijk′c (38)

λ̃kw = λ+
∑
ij

1⃗(xij = w)ψ̃ijkc (39)

η̃kw′ = η +
∑
ij

1⃗(xij = w′)ψ̃ijkc (40)

where k′ = k + 1 and w′ are respectively the (k + 1)th topic in the document and the
(v + 1)th codeword in the vocabulary. The multinomial update (count) ψ̃ijkc is also obtained
through optimization of the joint posterior variational distribution F̃(Q̃(z)) with respect to
the multinomial variational parameter [30].

In the joint space, the document GD variational parameter α̃jkc is a document-topic
count; it is the total number of words in a topic k in a document j, all in a class c. The GD
variational parameter β̃jkc is also a document-topic count. It is the total number of words
from the next (k + 1)th topic up to the total number of topics in a document j in class c.
The corpus GD variational parameter λ̃kw is a word-topic count: it is the number of times
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a word w (a codeword from a vocabulary of size V ) appears in the topic k in a document
j. Similarly, η̃kw′ is another word-topic count as it is the total number of words left in the
vocabulary once the (v + 1)th word is selected such that the first v words are not counted.
These variational parameters are updated with the variational multinomial parameter ψ̃ijkc.
Despite its efficiency with a well defined convergence criterion [30, 3, 5], the VB often
suffers for large bias (strong independency assumption) as it decouples the joint variational
posterior into a product of individual variational posterior distributions. This is because
the model always neglects (for convenience) to consider that the latent variables and model
parameters could be dependent in the true posterior distribution. The situation could make
inferences (posterior distribution estimation) inaccurate as the lower bound in this case is
no longer robust. In addition, the VB is not always capable of implementing a proper
mean field approximation (inference), because the scheme ultimately operates in the joint
space of latent variables and parameters such that any change in the parameters could
affect the latent variables [30]. Considering efficiency and accuracy, the new technique, the
GD-CVB combines the advantages of both GD-VB and GD-CGS. The approach operates
in the collapsed space of the latent variables.

2.3.3.5 The new GD-based Collapsed variational Bayes (CVB) architecture:
Mean field variational inference

It is a GD-based VB in the collapsed space (GD-CVB inference). This new collapsed
variational Bayes inference (of the CVB-LGDA model) is a combination of the GD-
based VB and GD-based CGS. Similar to [30], the GD-CVB inference procedure models
the dependence of parameters related to the latent variables in an exact fashion where
parameters are either marginalized out in the graphical representation or modeled as the
joint p(θ, φ|z,X , c, ε, ζ). It leaves the latent variables weakly dependent, therefore assumed
independent. As a result, through this weak assumption, the GD-CVB provides an efficient
framework for mean field approximation as latent variables are conditionally independent
given the parameters. Then, based on the conditionally independence assumption of the
latent variables, a better set of variational distributions could be obtained as this weaker
assumption allows to finally decouple effectively the joint Q̂(z, θ, ϕ). It is given as :

Q̂(z, θ, φ) = Q̂(θ, φ|z)
∏
ij

Q̂(zij |ψ̂ij) (41)

where Q̂(zij |ψ̂ij) is the variational multinomial distribution with parameters ψ̂ij in the
collapsed space, and the variational free energy F̂(Q̂(z)Q̂(θ, φ|z)) conditional to z becomes:

F̂(Q̂(z)Q̂(θ, φ|z)) = EQ̂(z)Q̂(θ,φ|z)[− log p(X , z, θ, φ, c|ε, ζ)]−H(Q̂(z)Q̂(θ, φ|z)) (42)

F̂(Q̂(z)Q̂(θ, φ|z)) = EQ̂(z)[EQ̂(θ,φ|z)[− log p(X , z, θ, φ, c|ε, ζ)]−H(Q̂(θ, φ|z))]−H(Q̂(z))
(43)

With only two variational posterior distributions (Q̂(θ, φ|z), and Q̂(z)), the variational
free energy is minimized with respect to Q̂(θ, φ|z) and then with respect to the collapsed
variational Q̂(z) as shown in [30]. A minimum variational free energy is reached at the true
posterior Q̂(θ, φ|z) = p(θ, φ|z,X , c, ε, ζ) which becomes :

F̂(Q̂(z)) ≜ min
Q̂(θ,φ|z)

F̂(Q̂(z)Q̂(θ, φ|z)) = EQ̂(z)[− log p(X , z, c|ε, ζ)]−H(Q̂(z)) (44)
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As a result, the bound in GD-based CVB of the CVB-LGDA can be expressed as :

− log p(X|c, ε, ζ) ≤ F̂(Q̂(z)) = EQ̂(z)[− log p(X , z, c|ε, ζ)]−H(Q̂(z)) (45)

F̂(Q̂(z)) ≤ F̃(Q̃(z)) ≜ min
Q̃(θ)Q̃(φ)

F̃(Q̃(z)Q̃(θ)Q̃(φ)) (46)

The Eq. 105 shows the GD-based CVB being a better and improved approximation than
the standard VB after the parameters are marginalized out in the collapsed space of the
latent variables. In addition, minimizing the variational free energy F̂(Q̂(z)) in Eq. 104
with respect to ψijk leads to the multinomial update in each class as shown in Eq. 107.
Using [89], we have:

logQj(zj) ∝ Ei ̸=j [log p(X , z)] (47)

where Ei ̸=j [...] is the expectation with respect to the variational distribution Q for all zi
such that i ̸= j. The equation above leads to:

Qj(zj) = exp(Ei ̸=j [log p(X , z)])∫
exp(Ei ̸=j [log p(X , z)])dzj

(48)

For our classification problem (in the collapsed space) with z being discrete, we get:

ψ̂ijkc = Q̂(zij = k|c) =
exp(EQ̂(z−ij)[log p(X , z−ij , zij = k, c|ε, ζ])∑K

k′=1 exp(EQ̂(z−ij)[log p(X , z−ij , zij = k′, c|ε, ζ])
(49)

In the GD-based CVB, the latent variables are sampled from the variational posterior
distribution Q̂(z) and uses the GD based-CGS. The expected topic assignments lead to
parameters estimations when the Markov chain is stationary. These conclusions are also
found in [30].

2.3.3.6 Gaussian Approximation in GD-CVB: Second order Taylor approxi-
mation

For large datasets, the implementation of the GD- based CVB in the CVB-LGDA, even
though accurate is very expensive as it computes several expectations similar to Dirichlet-
based CVB in [30]. Dealing with this problem requires the use of Gaussian approximations
to estimate the multinomial parameter ψ̂i′jkc and speed up the process. In this scheme of
improving the speed, the counts in the Gibbs sampler act as fields and can be defined as
a large sum of independent Bernoulli variables 1⃗(zi′j = k), each with parameter ψ̂i′jkc as
shown in [30]. So, the mean of the sum of the Bernoulli variables means and variance of
the sum of the Bernoulli variable variances [30] are respectively computed as :

EQ̂[N−ij
jkc.] =

∑
i′ ̸=i

ψ̂i′jkc (50)

V arq̂[N−ij
jkc.] =

∑
i′ ̸=i

ψ̂i′jkc(⃗1− ψ̂i′jkc) (51)

The variance and the mean are then used in the Gaussian approximation to estimate
the expected values of logarithmic expressions such as EQ̂[log(α + Njk.)]. Using [30], we
obtained:

EQ̂[log(α+Njkc.)] ≈ log(α+ EQ̂[Njkc.])−
V arQ̂[Njkc.]

2(α+ EQ̂[Njkc.])2 (52)
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Therefore, the expression above becomes:

exp(EQ̂[log(α+Njkc.)]) ≈ (α+ EQ̂[Njkc.])− exp
(

V arQ̂[Njkc.]
2(α+ EQ̂[Njkc.])2

)
(53)

This is the second-order Taylor expansion used as an approximation [4]. The model
computes an extremely large amount of expectations; so the scheme is found to be very
useful in speeding up the GD-CVB algorithm. The GD-based CVB in CVB-LGDA update
is finally expressed as :

Q̂(zij = k|c) = ψ̂ijkc ∝⎡⎣(αck + EQ̂[N−ij
jk. ])(βck +

∑K+1
l=k+1 EQ̂[N−ij

jl. ])
(αck + βck +

∑K+1
l=k EQ̂[N−ij

jl. ])

⎤⎦
×

⎡⎣(λν + EQ̂[N−ij
.kνij

])(ην +
∑V+1
d=ν+1 EQ̂[N−ij

.kdij
])

(λν + ην +
∑V+1
d=ν EQ̂[N−ij

.kdij
])

⎤⎦
× exp

⎛⎝− V arQ̂(N−ij
jk. )

2(αck + EQ̂[N−ij
jk. ])2

⎞⎠
× exp

⎛⎝− V arQ̂(
∑K+1
l=k+1N

−ij
jl. )

2(βck + (
∑K+1
l=k+1 EQ̂[N−ij

jl. ])2

⎞⎠
× exp

⎛⎝− V arQ̂((N−ij
.kνij

)

2(λν + EQ̂[N−ij
.kνij

])2

⎞⎠
× exp

⎛⎝ V arQ̂(
∑K+1
l=k+1N

−ij
jl. )

2(αck + βck + EQ̂[
∑K+1
l=k+1N

−ij
jl. ])2

⎞⎠
× exp

⎛⎝− V arQ̂(
∑V+1
d=ν+1N

−ij
.kdij

)

2(ην + (
∑V+1
d=ν+1 EQ̂[N−ij

.kdij
])2

⎞⎠
× exp

⎛⎝ V arQ̂(
∑V+1
d=ν N

−ij
.kdij

)

2(λν + ην + (
∑V+1
d=ν EQ̂[n−ij

.kdij
])2

⎞⎠ (54)

This equation shows that CVB-LGDA samples its latent variables from a variational
posterior distribution Q in the collapsed space of latent variables.

2.3.3.7 Parameters estimates: Predictive distributions

The CVB-LGDA’s generative process for an unseen document (image,3D object, or a
video frame) requires its predictive distribution expressed in terms of its parameter θj
conditional on the model hyperparameters (ε, c) = (αc, βc). Using [30], document parameter
distribution is given as:

θ̂jk = (αkc + EQ[Njk.])(βkc +
∑K+1
l=k EQ[Njk.])

(αkc + βkc +
∑K+1
l=k EQ[Njk.])

(55)
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Conditional on the topic k, the predictive distribution of the words is expressed as φkw such
that:

φ̂kw =
(λv + EQ[N.kvij ])(ηv +

∑V+1
d=v+1 EQ[N.kdij ])

(λv + ηv +
∑V+1
d=v EQ[N.kdij ])

(56)

2.3.4 Empirical likelihood: Evaluation method for the topic model

Very often, the lack of reliable topic labels for the dictionary codewords leads to the need
for an evaluation method to assess or validate the robustness of the estimated topic model
[18]. The goal is to compute efficiently the probability of the held-out dataset [42, 18]. After
estimation of the predictive distributions, we used the empirical likelihood estimate scheme
presented in [18] as a validation method. In the CVB-LGDA model, the likelihood [30, 18]
could be reduced to:

p(XunseenDoc) = p(XunseenDoc|c, ε, ζ) =
∏
ij

∑
k

θ̂jkφ̂kw (57)

such that the counts EQ[Njk.], EQ[N.kvij ], and EQ[N.kdij ] of the unseen document are
obtained from the GD-based CVB sampling process in the collapsed space. The parameters
of the unseen document (or its codewords and topic distributions) are then used to predict
its likelihood.

The classification problem is also reduced to a likelihood estimation approach which
approximates the distribution of codewords in each class. It evaluates the topic model in
each class [18]. It is designed to predict the likelihood of the unknown document. Therefore,
the predictive likelihood p(X|c, ε, ζ) is estimated as follows: for an unseen document to be
classified, some pseudo documents are generated with parameters θ using the GD priors
from the training set. Once we obtain the best candidates of documents in each class, we
estimate their word probability distribution given the corpus parameter φ which leads to
the class conditional probability p(X|c, ε, ζ). With the class conditional probability, we can
assess the probability of seeing the test set (unknown document) in the class. The class
label is then given to the unseen document if it has the highest likelihood. The scheme is
similar to [18, 2]. The empirical likelihood estimate is assumed to be robust compared to
a topic model’s perplexity scheme as an evaluation method (validation) of the performance
of the model.

2.3.5 Bayesian decision boundary for classification

The empirical likelihood estimate provides the probability of seeing the test set. In this
classification problem Fig. 2.2, it is used to assess the class of the test set where the
probability of seeing its class is proportional to the class likelihood for a uniform class
prior. Consequently, once the model parameters and latent variables are estimated for the
generative process in each class, then given an unseen document (image, 3D object, face
expression, video frame) with its BoW representation X , the probability of each class label
(predictive model) is expressed as:

p(c|X , µ, ε, ζ) ∝ p(X|c, ε, ζ)p(c|µ) ∝ p(X|c, ε, ζ) (58)

As a result, to assign a category to an unseen document, the decision is ultimately made
by the category label with the highest likelihood probability [2] such that:

C∗ = argmax
c

p(X|c, ε, ζ) (59)
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2.3.6 Model Selection

It is really challenging in topic modeling framework to choose and fix the number of topics.
As already explained in [5], two reasons tend to justify this tremendous handicap: the
difficulty in selecting an appropriate criterion is one reason as it has been said that an
optimization scheme with respect to the criterion could be very expensive in topic modeling.
The second reason is that data or document collections do grow over time, and the database
tends to contain entities (topics, codewords) and structures that are new or different from
the original training set elements. As a result, this is a serious drawback in the process of
providing a better generalization of the model to future or unseen data. As we are working
in the finite dimensional space using finite mixtures where we deal with finite number
of topics, and fixed size in the vocabulary, our option for a model selection has been to
implement an exhaustive search which ultimately takes into account a series of number of
topics along with vocabulary sizes in search for the optimal values (number of topics, and
vocabulary size) that provide the highest classification accuracy rate. In other words, this
scheme despite being expensive is an attempt to provide the optimal number of topics and
vocabulary size for a better description of our topic model.

2.3.7 Comparison with other classification models

To evaluate our proposed model and inference technique, we set up a goal to compare the
new approach with the following traditional models used in classification framework.

2.3.7.1 K-Nearest Neighbor

As one of the simplest algorithm in machine, the The K-nearest Neighbor (KNN) has been
widely used in machine learning especially in classification. In categorization (supervised
learning), the unseen object is classified by a majority vote of its nearest neighbors. As a
result, the unseen object is assigned to the class label most common within its k-nearest
neighbors. When k=1 the object is just assigned to the class of its single nearest neighbor.
Very often the KNN uses a variety of distance metrics such as the Euclidean metric
Correlation distance, Mahalanobis distance, Mahalanobis distance, Mahanattan distance,
etc [43, 44].

2.3.7.2 Support Vector Machine

In categorization approaches, the Support Vector Machine (discriminative model) is widely
used. While it can perform linear classification, the scheme has ability to perform also
in a non-linear classification framework using the kernel trick that maps the inputs into
high dimensional spaces. The core idea behind the SVM is to construct a hyperplane (set
of hyperplanes) in these high dimensional space where a good separation is reached when
the hyperplane that has the largest functional margin; in other words the distance to the
nearest training points of any class in (Correlation Kernels sor Support vector Machines
Classification with applications in cancer Data) Traditional Kernels include RBF (radial
basis functions), linear, hyperbolic tangent, and polynomial. As pointed out in [44], one of
the challenges in using SVM is the choice of the Kernel as it dictates the performance of
the classifier with the dataset. This has resulted in the use of appropriate kernels within
the bag of word framework such as the Hellinger Kernel, Histogram intersection kernel,
Generalized Gaussian Kernel (Eq. 62) where D can be Euclidean or Chi-square distance;
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A is a scaling parameter that can be determined through cross-validation [45, 46]. These
Kernels are defined as:

• Hellinger Kernel:

K(h1, h2) =
N∑
i=1

√
h1(i)h2(i) (60)

• Histogram intersection Kernel:

I(h1, h2) =
N∑
i=1

min(h1(i), h2(i)) (61)

• Generalized Gaussian Kernel:

K(h1, h2) = exp
(
−D(h1, h2)2

A

)
(62)

D can be Euclidean distance (leading to the RBF Kernel), χ2 distance etc.

Dχ2(h1, h2) =
N∑
i=1

((h1(i)− h2(i))2

h1(i) + h2(i) ) (63)

• Quadratic distance (cross bin):

K(h1, h2) =
N∑
i,j

Aij (h1(i)− h2(j))2 (64)

2.3.7.3 Backpropagation Neural Network

Used in artificial Neural network (ANN) for classification, the backpropagation neural
network (BPNN) ultimately approximates the nonlinear relationship between the input
and its ouputs through adjustment in the weigth values. Its goal is to minimize the error
function, using gradient descent scheme so that output value matches the target value.
Though, in this scheme, the error calculated at the output is propagated back to its layers: a
feedforward and a backpropagation processes are executed one after the other until the error
between the target value and the network output (at the output layer) is fully minimized.
One of the challenges in BPNN is about determining the number of neurons in the hidden
layers [43].

2.3.7.4 Generative adversarial Networks

The research and science community have seen a recent interest in the generative models
especially in the Generative Adversarial Networks (GANs) [47] due to its wide applications
including classification using deep learning. Basically, the model is a combination of a
generative model and a discriminative one that compete against each other in a zero-sum
game framework. In fact, the generator takes noise from input and generates samples from
it while the discriminator tries to distinguish samples from the generator and the original
training set. In this game, the generator finally learns to generate very realistic samples
whereas the discriminator becomes also very talented in distinguishing the generated data
from the real data. The ultimate goal is to make the generator generate samples that
become indistinguishable from the real data.
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Images Face expressions 3D Action Recognition in
videos

LGDA 55.28% 70.4% 61% 68%
GD-LDA 65.1% 69% 56.23% 51%
LDA 57% 50.3% 54% 50.25%
CVB-LDA 59.6% 61.40% 60.57% 60.46%
CVB-
LGDA

70.27% 89.8% 63.46% 70.12%

Table 2.3: Comparison between the new CVB-LGDA model and the other schemes within
the BoW framework

2.4 Experimental results
In the topic modeling literature, several applications have often focused on text modeling.
In our experiments in this chapter, we are implementing some challenging applications to
show the merits of the new approach. These applications ultimately include: image and
3D object classification, facial expressions recognition and their categorization, and action
recognition in videos. Following the bag of visual words framework, these applications in
this chapter mainly emphasize on representations using local features.

2.4.1 Image Categorization

2.4.1.1 Methodology

In our experiments, we constructed our model using the well-known grayscale 15 categories
natural scenes dataset [48] . As illustrated in Fig. 2.3 and Table 3.3, this widely known
and challenging data set includes the folloiwng categories suburb, living room, coast, forest,
highway, mountain, street, office, store, bedroom, inside city, tall building, open country,
kitchen, and industrial. In each category, the data is subdivided into two parts: the testing
set contains 100 samples while the remaining constitutes the training set.

In the BoW framework, the local feature representation of the corpus leads to vectors
of counts in each document (image) in the preprocessing stage. The following steps are
essential in the BoW representation: first, using the entire collection of the corpus, local
features (from local patches) are extracted from them using the SIFT (Scale Invariant
Feature Transform) algorithm (Fig. 3.12). The collection of the training set image
descriptors is clustered using K-means algorithm to find a unique representation in the
dataset (where similar patches are grouped together to form a cluster). After quantization,
each cluster center is a codeword and the total number of codewords is the codebook
(dictionary or vocabulary). With the codebook, each image (document) is then represented
as a vector of counts: this is the bag of visual word representation of the corpus.

The training set count data are then used to implement the CVB-LGDA model with
asymmetric GD priors. The topic parameters estimation leads to the predictive model.
Using the topic predictive distributions, we used the empirical likelihood framework as
evaluation method for the robustness of the topic distribution. It then leads to the
estimation of the class likelihood (class conditional probability). The class conditionals
help predicting the class label of unseen images or documents. As a result, the category of
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(a) suburb (b) Living
room (c) Coast (d) Forest (e) Highway

(f) Mountain (g) Street (h) Office (i) Store
(j) Inside city

(k) Tall build-
ing

(l) Open coun-
try

(m) Kitchen (n) Industrial (o) Bedroom

Figure 2.3: Examples from the natural scenes images dataset (15 categories).

Categories Size
suburb 241
living room 289
cost 360
forest 328
highway 260
mountain 374
street 292
office 215
store 315
Bedroom 216
Inside City 308
Tall buidling 356
Open country 410
Kitchen 210
Industrial 311

Table 2.4: size of each image category.

unseen image is chosen by the class with the highest class posterior distribution which is
equivalent to the class conditional probability for a uniform prior.
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Figure 2.4: Confusion matrix for the natural scenes classification problem.

2.4.1.2 Results

The CVB-LGDA was able to provide a better result in terms of accuracy as shown in the
confusion matrix (Fig. 3.2). In model selection (Fig. 2.6), the optimal number of topics
obtained is K = 145 while the optimal vocabulary size is V = 1450. The overall accuracy
rate is 70.27% at these optimal values. Due to an efficient feature representation, these
results ultimately show the flexibility of the new approach (robust prior) as the model
has ability to compute true posterior distributions rather than approximating them as in
variational methods with the variational posterior distributions. In addition, a correlation
map (Fig. 3.3) shows the dependency between any two classes in our categorization problem.
These results reinforce the concept of generalization of the LDA model (to different data
types) in which richer codewords, robust generative schemes (with flexible priors), and
inference techniques could enhance performance.

2.4.2 Facial Expression recognition

Facial expressions and emotions recognition are getting a lot of attention today as they
are hot topics in data analytics due to the impact of social media (Twitter, Instagram,
Facebook, Flickr, and Youtube). The facial expression model is concerned with a visual
learning process that can also focus on the classification of characteristics such as facial
motions used in various applications (image understanding, virtual reality, synthetic face
animation, facial nerve grading in medicine etc [49, 50]).

In this application, we decided to use a very flexible and robust descriptor from the Fast
LBP-TOP (Local Binary Patterns histogram from Three Orthogonal Planes) scheme as
suggested in [51] for facial expression images modeling. We considered the JAFFE (Japanese
Female Facial Expression) dataset (See Figs. 3.4 and 3.5). It contains 213 images obtained
from 10 Japanese females showing 7 facial expressions such as surprise, anger, happiness,
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Correlation Map, Variables in Original Order
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Figure 2.5: Natural scene images correlation map.
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Figure 2.6: Optimal number of topics and vocabulary size for image classification problem.
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sadness, fear, disgust, and neutral. The first task is to group these females according to
these seven expressions representing our different classes. The dataset is partitioned into a
training set and a testing set. From the training set, we obtained the corpus features from
the Fast LBP-TOP descriptors. These normalized histograms are then clustered and then
quantized to get the codebook of the corpus leading to the bag of visual word representation
of images (documents) in the training set. Prior to the BoW representation of the corpus,
key features are drawn from each image regions of interest (Fig. 3.6). Within the BoW, the
documents with vectors of counts are then used to build the CVB-LGDA model where we
compute the parameters of the topics in each class; and then use the topic distribution in
each class to predict the category of unseen documents. As a result, the class label is given
to the class with the highest posterior distribution or class conditional probability (for a
uniform class prior).

The confusion matrix (Fig. 3.7) obtained shows high accuracy rate of 89.8% as shown
in Fig. 2.12. which outperforms its competitors (see Table 3.2). In addition, the optimal
number of topics is K = 70 while the optimal vocabulary size is V = 105. We illustrated
a correlation map (Fig. 2.11) that measures the dependency between any two categories in
this classification problem. It also demonstrates the capability of the GD in coping with
both negatively and positively correlated data.

NeutralSurprise Anger

Happiness SadnessFear

Disgust

Figure 2.7: Facial expressions and emotions in the JAFFE dataset

2.4.3 3D object classification

The dataset (Fig. 2.18) we consider in this application contains 10 classes of 3D objects
[52]. These classes are: stapler, car bicycle, head, computer, mouse, toaster, cellphone,
shoe, and iron. It is important to point out that these are collections of objects under
different 2D views to implicitly create a 3D concept of the objects (the bicycle for instance)
as illustrated in Fig. 2.18. For the training set, 7 (3D) objects are randomly selected with
around 250 images per 3D object. The remaining is allocated to the testing set in each
class. We obtained around 80 images per object.

From observation in the dataset, in every 3D class, the characteristics of the object
are represented using a very large collection of the object’s 2D images seen from different
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Figure 2.8: Women showing a "surprised" facial expression

Figure 2.9: Facial Expression: Key Regions of Interest and Extraction

angles or views. In other words, these views are used to generate the 3D characteristics
of the object in each class. As a result, constructing a 3D class is equivalent to extracting
the features characteristic from its different parts emphasized by the different 2D views. In
this application, this is also done using the 2D SIFT descriptors so that each 3D object
class contains its intrinsic bag of features (Fig. 2.16). The entire collection of features
from the 3D object classes is first clustered using K-means and then quantized to obtain
the codebook of the corpus. The codebook provides the BoW representation (count data)
of each 3D class. The data is then used to implement the CVB-LGDA which preforms a
classification’s task based on the topic signatures from every 3D class. With the flexibility
of the GD prior, the model could easily cope with a large vocabulary size and an increasing
number of topics in the dataset.

The optimal number of topics obtained for 3D object modeling is K = 180 for an optimal
vocabulary size of V = 1800. At these optimal values (Fig. 2.15), the accuracy rate shown
by the confusion matrix (Fig. 2.13) reaches a maximum of 63.46%. Due to the high level of
noise (background) in the 2D images representing the 3D objects as shown in the example
in Fig. 2.18, we can say this is a very satisfactory result also taking into account the
complexity in the overall 3D dataset structure in comparison to the image categories data.
The robustness can be compared to the other models as illustrated in Table 3.2. The model
was still able to provide a better result with a very challenging dataset where correlation
analysis has been useful as shown in Fig. 2.14.

37



0.929

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.929

0.000

0.000

0.000

0.000

0.000

0.071

0.000

1.000

0.000

0.071

0.000

0.071

0.000

0.071

0.000

0.714

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.857

0.071

0.000

0.000

0.000

0.000

0.000

0.071

0.929

0.000

0.000

0.000

0.000

0.286

0.000

0.000

0.929

Surp
ris

e

A
nger

H
ap

pin
es

s

Sad
nes

s

Fea
r

D
is

gust

N
eu

tr
al

Surprise

Anger

Happiness

Sadness

Fear

Disgust

Neutral

Figure 2.10: Confusion matrix from the Facial expressions classification

2.4.4 Action recognition in videos

A robust motion recognition system and a deep analysis represent the two best ingredients
for a complete implementation of human behaviour’s understanding using automated
surveillance systems [53]. In this chapter, the action recognition of motions in video has been
implemented with the optical flow algorithm which helps collecting relevant features for the
BoW representation of the corpus data in order to build our model. In this experiment, we
have used the KTH dataset which contains 2391 video sequences at 25 frames [54, 55]. It
mainly includes individuals (25 actors) in 4 scenarios performing 6 types of human actions
(walking, running, jogging, boxing, hand waving, and hand clapping) as illustrated in Table
3.6. In these figures, each column represents a human action in 4 different scenarios. For
processing purpose, the sequences were downsampled to a resolution of 160 by 120 pixels
with a length of 4 seconds.

In our experiment, 60% of the dataset were used for training while the remaining
constitutes the testing set. Around 100 frames were collected from each video sequence
in each class.

Within the BoW, we first needed a method that could capture the motion of objects in
the video sequences for a better representation of the dataset. And this is obtained with
the optical flow scheme proposed by the Horn and Schunck algorithm [56]. It is a global
approach that has ability to yield a dense flow often needed and preferred in computer
vision applications.

After obtaining the optical flow for the frames (images), a threshold is set to only recover
the most relevant components of the optical flow matrices. These relevant components of all
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Figure 2.11: Correlation map for facial expression categories

categories of actions in the training set are then grouped and then clustered with a K-means
algorithm in order to express a unique representation as a codebook. From the codebook,
each component can be represented as a BoW feature similar to [35], which is used in our
CVB-LGDA model.

This model with the optical flow technique is very computationally expensive as it
requires so many features; however, it was able to provide an overall accuracy of 70.12%.
The stability of the model insured the motion detection, recognition and classification in
the video sequences. This is also due to the efficiency in the GD prior within the collapsed
variational Bayes inference scheme.

From the results obtained in these applications (Table 3.2), we can say that the CVB-
LGDA model is very robust and could be definitely an alternative to finite mixture models
considering its performances [57, 7].

It is important to finally observe that as the global method proposed by Horn and
Schunk has some limitations due to the very sensitiveness of the optical flow algorithm to
noise, an improvement could be a framework that combines the local methods (robust to
noise) proposed by Kanade and Lucas and the global schemes of Horn-Schunck’s approach
(dense flow fields). This hybrid scheme should ultimately provide the best optical flow
features.

2.4.5 Classification results with other supervised models

In our setting, a 5-fold cross-validation scheme has been implemented in the classification
models. And to ensure stability in the results the cross-validation technique has been
performed 8 times where finally the classification accuracy was then measured as the
averaged accuracy over these 8 runs.
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Figure 2.12: Model selection for facial expressions

Each table summarizes the three classification models (KNN, SVM, and BPNN) to each
dataset. In this chapter, as our entire collections have a BoW feature representation, the
distance of choice in case of the KNN was the Euclidean distance. We therefore performed
the K-nearest neighbor algorithm on different datasets such as images, videos, 3Ds. We used
different values of K to analyze the influence it has on the performance of the classifier. As a
result, values such as K = 1, K = 7, and K = 10 have been selected. The different average
accuracy values obtained from these datasets are summarized in Tables 2.5, 2.6, 2.7, and
2.8. From this table, we can observe (through the performance of the model using these
datasets) that the best results were obtained at lower values of K (K = 1 and K = 7). Any
value of K above 7 has seen a decrease in the performance. In addition, For all datasets
in low dimension, KNN provides good performance than in the case of high dimensional
data (videos and 3Ds) due the large vocabulary size. Among these 3 classifiers the high
performances were obtained with face expression dataset (69.4%), natural scene (63.14%),
and videos (66.1%).

In SVM, we decided for the Radial Basis Function (RBF) Kernel. For this Kernel,
the parameter A is taken from {0.1, 1.0, 4}. The results in terms of averaged classification
accuracy obtained in Tables 2.5, 2.6, 2.7, and 2.8 show that the performance hits a ceiling
at A = 1 and from that point, we notice a significance decrease in the performance.

From these datasets, the videos (activity recognition in videos) and the images datasets
(scenes and face expressions) provided the best results: 68.1%, 66.4%, and 71.25%,
respectively. Though, their performances has dropped when the value of A increased.

In the case of BPNN, we first equipped the hidden layer with 4 neurons and then
6 neurons. The output layer carries neurons equal to the total number of categories in
our classification problem. We observed that in our neural network model, the accuracy
increases with the number of neurons in the output layer. Though, everything is getting
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Figure 2.13: 3D object confusion matrix
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Figure 2.14: Correlation map for the 3D objects categories.
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Figure 2.15: Optimal number of topics and vocabulary size for 3D modeling

Figure 2.16: 2D Features extraction for a 3D modeling
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Figure 2.17: Natural scene image Features extraction

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 2.18: An object from a bicycle’s class at different 2D views for a 3D modeling

slow as we increase the number of neurons. In this experiment, the best results are obtained
with the natural scene dataset (including the face expression data) and the video dataset.
One of the challenges when implementing a BPNN is the number of hidden layers needed
along with their size.

In overall, the image (natural scene and face expressions) and video datasets provided
the best averaged accuracy rates among these 3 classifiers: 68.4%, 64.8%, and 67.82%,
respectively at L = 6. However, these values are still low compared to the CVB-LGDA’s
performances on these datasets. This is due the flexibility of its prior which has a very
general covariance structure compared to the traditional Dirichlet with very restricted
covariance structure. In addition, SVM, KNN, and BPNN are very slow compared to the
majority of other methods. It is also justified by their time complexity in Table 2.2. This
suggests that for extremely large datasets if speed is your point of interest, these classifiers
might not be the best choices. They also tend to use a lot of memory spaces from the
time-memory tradeoff concept. This concept is defined as follows: the time complexity is
inversely proportional to the space(memory) complexity.

TC ∝ 1
MC

(65)

TC is the time complexity and MC the memory or space complexity. In a future we will
deeply investigate on the distance metrics for the KNN and the Kernels for the SVM as
they tend to control or affect the output of the classifier. Learning a proper distance

43



0.650

0.045

0.082

0.057

0.072

0.032

0.085

0.850

0.087

0.048

0.075

0.042

0.065

0.025

0.558

0.046

0.057

0.056

0.055

0.020

0.083

0.770

0.060

0.058

0.065

0.040

0.114

0.035

0.665

0.097

0.080

0.020

0.077

0.044

0.071

0.715

w
av

in
g

jo
ggin

g

ru
nnin

g

boxi
ng

han
d w

av
in

g

han
d c

la
ppin

g

waving

jogging

running

boxing

hand waving

hand clapping

Figure 2.19: Confusion matrix of the action classes in video

BPNN SVM KNN
L=4 L=6 A=0.1 A=1 y=10 K=1 K=7 K=10
47.3% 68.4% 57.3% 66.4% 61.8% 48.4% 63.14% 61.22%

Table 2.5: Performance of BPNN SVM and KNN using images (natural scene)

BPNN SVM KNN
L=4 L=6 A=0.1 A=1 A=10 K=1 K=7 K=10
45.9% 64.8% 48.3% 71.25% 47.21% 66.1% 69.4% 58.6%

Table 2.6: Performance of BPNN SVM and KNN using Face expressions

metric for histograms data always plays a central role in computer vision tasks. For our
model, another extension could be to equip the clustering algorithm (for the implementation
of the codebook) with another distance metric such as the Mahalanobis distance before
constructing the Bow features. Basically, we will just remove the Euclidean distances and
replace it with the Mahalanobis distance.

Concerning our BoW-based model being evaluated in performance with Generative
Adversarial network, we think for now our model could not compete yet with a very
sophisticated hybrid deep learning generative model that combines both a generative and
discriminative models. For a fair comparison, we are planning to first equip our generative
model with a discriminative structure to allow it to be comparable to the GANs models.
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Figure 2.20: Model selection for actions using videos

BPNN SVM KNN
L=4 L=6 A=0.1 A=1 A=10 K=1 K=7 K=10
44.3% 58.2% 58% 60.4% 51.21% 58.1% 59.1 % 58.4%

Table 2.7: Performance of BPNN SVM and KNN using 3D objects

BPNN SVM KNN
L=4 L=6 A=0.1 A=1 A=10 K=1 K=7 K=10
45.73% 67.82% 54.7% 68.1% 61.7% 65.3% 66.1% 54.4%

Table 2.8: Performance of BPNN SVM and KNN using action recognition datasets

2.5 Conclusion
In this chapter, we proposed and implemented a new approach to improve the original
LDA hierarchical model. The objective was to provide a strong generalization of the LDA
model so that it successfully performs on a variety of datasets besides the usual text data.
For this purpose, the new method introduces a flexible GD prior for a robust, complete
probabilistic and generative process while maintaining an effective inference technique
(CVB). Consequently, the new scheme, the CVB-LGDA is an extension to the GD-LDA,
LGDA, and the CVB-LDA. In general, these previous extensions do suffer from two major
limitations: incomplete generative processes including the use of priors with very limited
capabilities (Dirichlet distribution with very restricted covariance structure) and inefficient
inference techniques to build an effective model that could have ability to take into account
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or handle datasets of different types. Many previous models, were still using the traditional
inferences such as VB and CGS (MCMC). These inference schemes have their drawbacks:
for instance, the VB suffers from a large bias due to its strong independency assumption
between latent variables and parameters. The CGS has a convergence problem. The
CVB-LGDA provides a solution to all these different challenges and shortcomings. In the
generative process, the new model replaced the Dirichlet distribution on both the corpus
and the document parameter with the GD prior, which is shown to be more flexible than
the Dirichlet distribution. Doing so, it improved the CVB-LDA, GD-LDA, and the LGDA
models. In addition, as consequence of the choice of the GD prior, the CVB-LGDA inference
technique is robust, and could perform well in topic correlated environments. Due to the
advantages of the GD in topic correlation, the new approach has ability to access a model
selection with an optimal number of topics including an optimal vocabulary size (by pruning
both irrelevant topics and vocabulary codewords). The amount of correlation between
classes (categories) in our experimental datasets showed the flexibilities of the GD prior.
It also demonstrates how a positively correlated dataset could hinder the performance in
Dirichlet-based LDA models while it is not an issue for the GD-based approaches with the
flexibility of the prior’s covariance structure.

The performance of the new approach using images, 3D objects, facial expressions,
and actions in videos datasets shows the efficiency in the new model. Despite its easy
convergence, the CVB-LGDA could be sometimes computationally expensive as it deals
with extremely large and complex features from its various descriptors algorithms. The
feature extraction could carry a lot of noise that can jeopardize performance if care is not
taken in the preprocessing stage. This situation occurred in our images and especially during
the 3D and video datasets modeling as some of 2D views of 3D objects were highly corrupted
with background noise. Nevertheless, the model was able to provide very satisfactory
accuracy rates despite the complexity in these large collections. In addition the new model
outperformed its competitors in classification such as the KNN, SVM, and BPNN. As the
GAN is getting a lot of attention these days in data analytics with its amazing results, we
are planning to equip the CVB-LGDA with a discriminative model to have a fair comparison
between the GAN (deep learning) and our model in a categorization framework.

For future work, we will also continue to investigate on the best methods to efficiently
perform a preprocessing technique where corrupted background noise effects could be
minimized in these datasets. Richer codewords and hierarchies are key to a better
performance and result. In addition, we can investigate on other flexible priors to improve
our performance in the topic modeling. The model could also be executed in an online
fashion to cope with situations where new documents could recursively update the codeword
distributions in the database.
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boxing hand clapping jogging hand waving Running walking

Table 2.9: KTH Action Recognition Dataset
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Chapter 3

Stochastic Topic Models for Large
Scale and Nonstationary Data

Many traditional database’s processing schemes are batch-based with their abilities to
utilize the entire information available at a time. Though, their limitations include storage
(memory issues) and computational speed (often slow) for large scale applications. Another
major disadvantage of the batch processing is that any small change or update in the
database often requires a reevaluation using all the data at a time. This is not efficient as
it is time consuming and exhausting. So, the approach seems to be a little obsolete in this
new generation of fast computation. Furthermore and recently, the decrease in the cost
of performing computations online promoted the increase in streaming and online-based
models. In other words, new systems are taking advantage of the online setting to build
models that are able to perform in real time and handle fast computations with real time
updates. Traditional models could no longer scale to very large applications. So, much
support has been given to online framework as these massive and nonstationary data could
not keep up with the available storage. In the case of generative models, usually, the
lack of flexible priors and sometimes the high complexities in the methods often hindered
their performances. In addition and most importantly, many online-based models still use
traditional inference approaches such as variational Bayes (VB) and Markov chain Monte
Carlo (MCMC) which individually are not flexible enough as they suffer from either accuracy
or efficiency. As a result, we propose in this chapter, a new model that operates in online
fashion with BL (Beta-Liouville) prior due to its flexibilities in topic correlation analysis.
Carrying only very few parameters (compared to the generalized Dirichlet distribution,
for instance), the BL is now coupled with a robust and stochastic generative process
within a new hybrid inference that combines only the advantages of the VB and Gibbs
sampling in the collapsed space. This insures an efficient, fast, and accurate processing.
Experimental results with nonstationary datasets for face detection, image classification,
and text documents processing show the merits of the new stochastic approach.

3.1 Introduction
Owing to internet technology, this era of information could be mainly described by the rapid
development of social media platforms where individuals now share knowledge and expertise.
Therefore, these sites have not only become repositories of valuable information, but also
valuable assets for data science for analytics. Learning from data to minimize costs and
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risks while improving productivity remains the challenging task for the data scientist. The
ability to provide ultimate solutions to industries to maximize profits requires sometimes
major changes in the traditional systems and processing methods.

Years ago, batch processing dominated data analytics where high volume of documents
and files were stored and processed all at the same time. In other words, in batch processing
systems, the entire data is generally presented to the computer’s programs that handle
them all at once. Ultimately, the scheme has been originally favored when response and
feedback (updates) are not needed immediately, and so, batch-based systems can operate for
a long period of time, especially unattended. They can therefore deal with large files such
as payrolls, bank transactions, billing cycles, examination records, etc. Therefore, batch
processing owes its success to batch-based models that continue to support the framework
with their ability to perform on large files. The use of generative topic models have also
contributed to the extension of batch-based models. Widely used in natural language
processing and machine learning, a topic model is a generative technique that has ability
to compress a collection of documents into a set of abstract topics or themes [3, 2]. The
discovery of these hidden topics (latent variables) in the collections follows the BoW(bag of
words) framework.

The Latent Dirichlet Allocation (LDA) in [3] is the first topic model to organize a
document into topics using a codebook (dictionary or a vocabulary) from its corpus. Due
to the limitations of the Dirichlet prior in text modeling using LDA, data scientists are
extending the capabilities of the model in a variety of applications especially in computer
vision. This ultimately requires the use of better and more flexible priors such as the BL
[58] to improve estimations. Since it has less parameters than the generalized Dirichlet
[24, 18, 23], this flexible and conjugate prior to the multinomial has been the distribution
of choice in many topic models [50, 35]. Though, one major drawback in these models has
been the use of the traditional variational Bayesian inference due to the strong independency
assumption in the scheme that tends to affect accuracy in estimation of the likelihood as
the lower bound could become unstable. Another important limitation with the batch
processing is the constant re-evaluation of the entire system’s information in a case of any
small change or update in the database. That is time consuming, and as a result not
efficient. This also demonstrates the difficulty and complexity in handling theses data
as some change with time, and they can become unpredictable. Therefore, the explosion
of digital information, the proliferation of large scale datasets have provided a new way
of exploring and analyzing data as performances in batch schemes are seriously getting
affected by the load, computational speed (slow), memory space (shortage), and convergence
problems in the algorithms. In addition, recursive updates are now crucial in order to
perform in real time and handle fast computations effectively while managing and optimizing
the database’s storage.

Then recently, with the invasion of nonstationary data, the online or stochastic
processing has started to get a lot of attention in the research community as it can handle
one data at a time and exhibit real time updates. This obviously makes the technique
fully inline with the new generation of fast computational systems that could provide
immediate feedback or update. The huge interest in online systems has also been stimulated
by the decrease in the cost of hardware such as supercomputers with their powerful and
fast graphics cards: it is very cheap now to perform online processing than it was in the
past. Similar to batch systems, online framework has also allowed the implementation of
generative models such as [1, 13, 59, 60, 61, 62] that operate in online fashion. The stochastic
nature in these methods provides effective data management and storage. Many authors
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have presented with success the important steps and foundations for online inferences and
stochastic learning [13, 63] in generative models ([59, 64]). For instance, the authors in
[65, 66] propose a framework that uses latent variables models learning in online fashion
while the authors in [4] encourage the collapsed representation for an effective stochastic
learning. As a result, considering the major contributions from previous models and
frameworks, our proposed approach ultimately implements an online inference technique
that has ability to handle a variety of applications other than the traditional text document
analysis often observed in the previous schemes. In other words, our developed framework
mainly emphasizes on images and videos processing (computer vision) with also a focus
on the use of a better prior distribution for efficiency and flexibility in the generative
probabilistic models using the BoW approach.

However, many online schemes were built with the VB (variational Bayesian inference),
making them limited in terms of performance [12]. While some authors using nonparametric
settings implement models that have too much complexities for an already computationally
expensive approach [59, 62], the traditional Gibbs sampling method is not a deterministic
technique [12]. As a result, we propose a new model, the stochastic collapsed variational
Bayesian-based latent Beta-Liouville allocation (SCVB-LBLA) which is implemented in
the collapsed space of latent variables. As a hybrid model, it integrates the advantages
of VB and CGS (Collapsed Gibbs Sampler) as in [12] where it now uses the BL in the
generative process in online fashion. Experimental results with nonstationary data in
image recognition and categorization, videos, and text analysis show the merits of the new
approach which carries the online framework using the minibatch scheme. Its contribution
can be summarized as follows:

• While using the robust minibatch method, the new model with the BL prior has few
parameters to estimate, so its MLE (maximum likelihood estimation) performs faster
than the case of generalized Dirichlet-based models ([18, 64, 67]). It therefore has a
better time complexity compared to its major competitors, and the stochastic nature
of the model could handle nonstationary data better than batch approaches. This
ultimately improves computational speed and data storage.

• It is implemented with an efficient inference technique using a prior distribution that
could effectively facilitate online topic correlation learning and vocabulary analysis.
As a result, we can reach a model selection scheme that considers both the optimal
number of topics and the size of the codebook (vocabulary).

• This approach carries the advantages of the collapsed representation that is known to
be suitable for stochastic inference. Its collapsed variational Bayesian (CVB) inference
is an improved version of the variational Bayes since the collapsed representation
provides a better lower bound that is stable for the parameters estimation. The
model is so flexible it could be used in a wide variety of applications such as retrieval,
classification, recognition, and analysis.

• It can ultimately handle faster large scale corpora’s processing with efficiency, due
to its memoryless (online) structure as there is no need to maintain local estimates
(distributions) during update as in [13, 65].

This chapter is structured as follows: section 4.2 illustrates the background and related
work. Section 3.3 presents the new approach (which introduces a batch model before the
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online scheme) while section 4.4 covers the experiments and results in several applications.
Finally, section 4.5 explores some future work and provides a conclusion.

3.2 Related Work And Background
The original batch-based topic model was implemented using the LDA (latent Dirichlet
allocation) model. As a generative probabilistic model, the LDA uses the BoW framework
where its documents are usually represented as frequency counts. Its generative process is
widely detailed in so many publications such as [3, 2, 13]. Based on this complete generative
process, the one for the LBLA [35] using K topics is easily defined as follows:

Generate each topic φk ∼ Beta-Liouville(ζ) where k ∈ 1, ...,K
For each document j

Generate a distribution over topics θj ∼ Beta-Liouville (ε)
For each word i in document j

Sample a topic zij ∼ Discrete(θj) or Multinomial(θj)
Sample the word wij ∼ Discrete(φzij ) or Multinomial(φzij )

It is noteworthy to mention that in a case of a classification, the model generates the class,
then the topics followed by the words for the class using the framework proposed in [2] for
the LDA.

The batch-based models were widely used because of their ability to process all the
information available at a time. Due to their success, many authors have provided important
contributions for the batch processing. For instance, it has been proved in [13] that
concerning the batch modeling, inference schemes that usually operate in the collapsed
space (where parameters are marginalized out leaving only the latent variables) can improve
probabilities of the held-out compared to the uncollapsed space also known as the joint
space of latent variables and parameters. Moreover, this collapsed representation provides
a better variational bound as it induces models with fewer parameters to update where
also the digamma functions estimations are finally avoided. For the records, the digamma
functions are known for slowing down computations and updates. As a result, despite
the use of flexible priors such as the BL, batch-based models including inference schemes
such as [50, 35] are still not robust enough to provide good performance since they all
operate in the uncollapsed space within the VB inference. This could affect the accuracy
in predictive models [13]. The variational Bayes alone as an inference technique could have
a limitation due to the strong independency assumption between the latent variables and
the parameters. This situation could negatively have an impact on the lower bound and
the model likelihood probability function as they could become loose and inaccurate [12].

Despite the tremendous success in the field of topic modeling, it is noteworthy that
one of the major disadvantages in batch processing remains the fact that it is usually
time consuming as a small change or update in the system database often require a
reevaluation of the entire database. Consequently, extensions to the state-of-the-art batch-
based approaches such as the CVB0 [4] and the CVB-LGDA (collapsed variational Bayesian
inference technique for latent generalized Dirichlet allocation) [67] are still limited in terms
of flexibility in the performance. In fact, the drawback in the CVB0 for instance includes the
extremely large memory requirement it often needs to store a variational distribution over
the topic assignment for every word in the corpus [4]. In general, these previous techniques
and extensions to the LDA [3] are not capable of scaling to very large datasets including
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nonstationary data [13]. As a result, concerning batch processing, these shortcomings have
finally made online schemes suitable for fast and efficient computional systems. However,
many of the current existing online-based inference techniques in topic modeling also do
not fully take advantage of the collapsed space either as the majority of them such as
[1, 13, 59, 60, 61, 62] are still variational-based within the uncollapsed space. These
models are often implemented with priors with limitations such as the Dirichlet or built
within a nonparametric setting (Dirichlet processes) that ultimately increases the model
computational complexity. One of the first collapsed representations is the sparse online
LDA proposed in [68]. As based on Dirichlet, this online model in the collapsed space only
marginalizes the documents parameters while leaving the corpus parameters. Shortly, the
memory issues in the CVB0 ultimately leads to the stochastic CVB0 or the SCVB0 [13].

While maintaining all the advantages of the collapsed representation, the SCVB0 also
solves the memory space problem in the batch processing in the CVB0. The CVB0 has been
previously known as the fastest method for single-core batch inference due to its convergence
rate [4, 13]. Now, the SCVB0 algorithm does no longer need to maintain the variational
distribution on every word, solving therefore the memory issue in the LDA. And, despite
the success of this online-based model for text documents, the technique is still Dirichlet-
based (as the batch models in [3, 69]), and so, could not be effective in topic correlation
[18] and vocabulary analysis [67]. The constant problem with the Dirichlet prior is its
very restrictive covariance structure (negative correlation) which can hinder performance
for modeling positively correlated datasets [7].

Considering all these challenges and shortcomings, we propose in this chapter, the
SCVB-LBLA (stochastic collapsed variational Bayesian inference for the latent Beta-
Liouville allocation) model. It is a direct extension to the SCVB-LDA (stochastic collapsed
variational Bayesian inference for the latent Dirichlet allocation)[4] which so far operates
on text documents only. One of the goals here is to extend the capabilities of the LDA
structure and its generative scheme using for instance nonstationary data (in online fashion).
Consequently, we emphasize on experimental results using applications related to a wide
variety of nonstationary datasets that include images, videos, and texts to show the
flexibilities and merits of the new approach compared to its major competitors such as
[67, 1, 13, 59, 60, 61, 62]. The new generative scheme in our method, in contrast to the
one proposed in [67], has now the corpus and documents parameters all drawn from the
BL instead of using the generalized Dirichlet (GD). In addition, as the new technique is an
extension to the batch-based LBLA [35], we will first present the CVB-LBLA (collapsed
variational Bayesian inference for the latent Beta-Liouville allocation) model before the
stochastic SCVB-LBLA which is ultimately the online version of the CVB-LBLA. It is
noteworthy that in the LBLA proposed in [35], the document parameter is drawn from a
BL while the corpus parameter remains non generated to facilitate parameter estimation
during MLE. Such approach is acceptable in VB. However, the collapsed representation
using the Gibbs sampler, as in our proposed approach, requires both the corpus and the
document parameters to be sampled (in this case from BL). As the authors [1, 66] provided
the platform for online topic modeling, we are taking advantage of their framework for a
robust extension of the LDA using the BL prior.

3.2.1 Beta-Liouville distribution

The LDA and its Dirichlet prior have a very rich literature in text modeling and computer
vision. The generative process in LDA has been extensively described in so many
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publications [3, 69, 67]. Often presented as a solution to the limitation of the Dirichlet
distribution, the Beta-Liouville (BL) distribution is a generalization of the Dirichlet prior.
In other words, the Dirichlet could be seen as a special case of the BL. In fact, the BL has
a more general covariance structure. This shows the flexibility of the BL for its use in a
variety of data such as non Gaussian proportional data (normalized histograms) [11, 59]
and count data [67].

Mathematically, these two conjugate priors (Dirichlet and BL) to the multinomial
distributions could be defined as follows: In a K−dimensional space, the K−dimensional
random variable (vector) θ⃗ following a Dirichlet distribution with hyperparameters ε could
be expressed as:

p(θ⃗|ε) = Γ(
∑K
k=1 εk)∏K

k=1 Γ(εk)

K∏
k=1

θεk−1
k (66)

such that
∑K
k=1 θk = 1. Though, in a (K+1)−dimensional space, any K−dimensional vector

π⃗ drawn from the Beta-Liouville distribution with hyperparameters ϱ = (α1, ..., αK , α, β) is
defined as:

p(π⃗|ϱ) =
Γ
(∑K

d=1 αd
)

Γ (α+ β)
Γ (α) Γ (β)

K∏
d=1

παd−1
d

Γ (αd)

(
K∑
d=1

πd

)αd−
∑K

d=1 αd

×
(

1−
K∑
d=1

πd

)β−1

(67)

If π⃗ = (π1, ..., πK) follows a Beta-Liouville distribution with hyperparameter ϱ and the
vector of counts X⃗i = (X1, ..., XD+1) follows a multinomial distribution with parameter π⃗,
then the posterior distribution p(π⃗|ϱ, X⃗i) is also a Beta-Liouville [35] due to the conjugacy
property between the BL prior and the multinomial distribution where the parameter
updates are given as :
α′
d = αd +Xd α′ = α+

∑D
d=1Xd β′ = β +XD+1

3.2.2 Time complexity

As data increase in size and complexity, this does not translate automatically into a better
performance in traditional models because they cannot scale to very large data. It means
these models could not accurately and efficiently operate on high volume of datasets. For
instance, in batch learning, for a corpus of N words, within the BoW, and K topics, the
time complexity for a batch-based model is about O(NK) in LDA with the VB inference.
However, this time complexity is a little smaller with the CGS [12]. With the CVB inference
scheme, the computational cost scales up to O(MK) where M is the number of unique words
in the corpus. So we can observe that the computation is faster in CVB-LDA compared to
the LDA as N > M . In CVB-LGDA [67], the time complexity is almost close to the one
in CVB-LDA, but the model is able to perform more tasks such as semantic relationship
between words, topic correlation, and vocabulary analysis. It makes the CVB-LGDA more
flexible in batch processing than the CVB-LDA and the LDA, as it implicitly performs
faster each one of those tasks.

In the stochastic framework with minibatches, let’s assume Υ being a minibatch and |Υ|
the size of each minibatch to follow the definition in [13]. The time complexity will be just
about O(|Υ|K). However, usually in the online scheme, the model does not need to analyze
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all the documents before updating its parameters. It makes sense the stochastic learning
is very fast as its time complexity could be a little less than O(|Υ|K) since |Υ| could be
very small. Therefore, we can make a very quick conclusion that the SCVB-LBLA and
even the SCVB-LDA have arguably the same time complexity of O(|Υ|K). Nevertheless,
the SCVB-LBLA is more complex and far superior compared to the SCVB-LDA. In other
words, the SCVB-LBLA, as previously mentioned, has also ability to execute many tasks
at once including topic correlation analysis, vocabulary analysis if needed, and semantic
analysis between words. It implies that it just performs each one of these tasks faster than
the SCVB-LDA which is limited as it could not even process positively correlated data
due to the Dirichlet prior. The time complexity also justifies the reason the online scheme
is preferred compared to the batch methods. The batch techniques are usually slow and
require more memory space while the stochastic learning models are often faster with a low
memory requirement, ideal framework for large scale applications.

3.3 The New Approach
The original LBLA (latent Beta-Liouville allocation model) in [35] manages to replace the
Dirichlet prior in the original LDA with the BL while using the VB inference. We are
providing an extension (SCVB-LBLA) to this work in online fashion where we implement
instead the collapsed variational Bayesian inference which is a hybrid inference between
the VB and CGS also using the BL prior distributions. Though, we will first introduce the
batch-based CVB-LBLA model since such setting will allow the readers to better understand
the motivations around our proposed online version.

3.3.1 Overview: description, notations, and definitions within the bag of
word framework

In this chapter, we propose a model that uses the Beta-Liouville (BL) prior on both the
document and corpus parameters in a collapsed space for its flexibility [23, 36]. The BL
has a more general and versatile covariance structure than the Dirichlet prior. It also
has less parameters compared to the GD [23]. A variational inference scheme with this
conjugate prior in the collapsed space is an improvement to the state-of-the-art topic
modeling inference proposed in [12] within the BoW framework. In addition, the new
model deals with challenges related to an extensive vocabulary size, and increasing number
of topics. The approach integrates two models: a topic model (unsupervised learning) and
a classification model (supervised learning).

As we are planning to implement inferences in the two spaces (the collapsed space and the
joint space), details about each of them will be provided along with their characteritics and
variables that define each one of them. Though, to briefly describe the architecture in our
model which is based on a graphical representation similar to the smoothed LDA proposed
in [3], the variable ε carries the document hyperparameters α and β while ζ holds the corpus
hyperparameters η and λ. Moreover, the couple (ε,c) is defined as the hyperparameter set
for a document in a class c where it is extended as: (ε, c) = (αc1, ..., αcK , αc, βc) with K
as the number of topics in the corpus. Similarly, the hyperparameter variable ζ can also
be extended as: ζ = (λ1, ..., λV , λ, η) where the subscript V is the size of the codebook. In
our method, documents are drawn from the class set c, where their parameters θ and the
corpus parameters φ are sampled from the Beta-Liouville distributions. In implementation,
the hyperparameter variable ε holds two 1×C vectors αc and βc and a single C×K matrix
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Table 3.1: Model variables and definitions

Model Variables
D Total number of documents
N Total number of words in a document
K Total number of topics
V Vocabulary size
(i, j) ith word or topic assignment in the jth document
k kth topic
x = {xij} Observed words
Z = {zij} Latent variables
θj = {θjk} Mixing proportions
φk = {φkw} Corpus parameters
BL(ε) Beta-Liouville distribution with parameter ε
θjk/ε ∼ BL(ε) θjk/ε drawn from BL(ε)
φkw/ζ ∼ BL(ζ) φkw/ζ drawn from BL(ζ)
Mult(θjk) Multinomial distribution with parameter (θjk)
zjk/θjk ∼Mult(θjk) zjk/θjk drawn from Mult(θjk)
xjk/zjk, φjk ∼Mult(φkw) xjk/zjk, φjk drawn from Mult(φkw)
c = {1, 2, ..., C} Number of classes
N−ij Counts where the superscript −ij denotes the corresponding

variables with xij and zij excluded
Υ A minibatch

where each row is the K-dimensional vector (αc1, ..., αcK) such that εc is K-dimensional BL
hyperparameter (αc1, ..., αcK , αc, βc) for the document in a class c in a (K + 1)-dimensional
space. Similarly, for every topic k, the hyperparameter variable ζ contains one vector of
size V × 1, (λ1, ..., λV ) and two strictly positive constants (λ and η) such that ζ is a V -
dimensional BL hyperparameter (λ1, ..., λV , λ, η) for the corpus in a (V + 1)-dimensional
space.

Furthermore, in inferences, the new approach uses concepts of variational distributions
and variational lower bound to help approximating the posterior distributions. Therefore,
following the work in [12], the variable ∆̃ is the variational distribution in the standard
space or the uncollapsed space (the joint space of parameters and latent variables or
the uncollapsed space [13]). However, ∆̂ is the variational distribution of the collapsed
space of latent variables where the parameters are marginalized out. In LDA, using the
exponential family distributions, the likelihood function (the normalization factor in the
posterior distribution) is often approximated by a lower bound defined as exp(F(∆(x))),
where F(∆(x)) is the variational lower bound in the log space [37]. This functional is called
the variational free energy [12]. One objective is to demonstrate that our new model is
an improved stochastic variational Bayes scheme in the collapsed space of latent variables
compared to the traditional batch-based VB inference that is performed in the joint space
of latent variables and model parameters. The traditional VB is slow when compared to
the one in the collapsed space. We can finally define the bounds to show all the steps for
the implementation of the new approach in the collapsed space. As a result, similar to
the variational distributions ∆̃ and ∆̂, the variable F̃ is the variational bound in the joint
(uncollapsed) space, and F̂ is the variational bound in the collapsed space.
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Widely used in computer vision, the bag of word (BoW) framework can represent any
data as a collection of documents containing frequency counts, after implementation of the
model codebook. Using the bag of word (or visual word) architecture, an image patch can
be assimilated to a word, and it is the basic unit in a document while a document X itself
is a collection of N patches (words) such that X = (x1, x2, ..., xN ). The variable xn is the
nth patch in the document. A category is a group of D documents within the same class
such that I = {X1,X2, ...,XD}.

3.3.2 Batch Learning: inferences

Our proposed approach is composed of two main inferences: the variational Bayes and the
collapsed Gibbs sampling. These two methods lead to the collapsed variational Bayesian
inference that is a hybrid technique combining the CGS and the VB. The (batch) LBLA
model proposed in [35] has proved in various applications to outperform the original LDA.
In this chapter, one of the objectives, is still to show that our batch-based CVB-LBLA
model also represents an extension to the LBLA and LDA, with a better generative process
and a robust inference technique [67].

This hybrid model combines the advantages of the VB and the CGS while maintaining
accuracy and efficiency in its hybrid inference. It is noteworthy that once the batch CVB-
LBLA framework is implemented, its stochastic version, that is our main model in this
chapter, should be easy to understand.

3.3.2.1 General Batch-based Bayesian inference framework in the joint space

In machine learning, the Bayesian inference computes the posterior distribution (of the
hidden variables) given the observations. However, the estimation of the posterior in
topic modeling literature involves integrals evaluation in the likelihood function that turns
out to be intractable. It does finally make the posterior distribution also not tractable
due to its direct relationship with the likelihood function in the Bayesian framework.
Consequently, inference methods such as VB and MCMC (Gibss sampling) are often
implemented to estimate the latent topics and the model parameters. For instance, given
the hyperparameters ε, ζ, and the class parameter µ, we can express the full generative
equation of the model as a joint probability distribution noted p(X , z, θ, φ, c|ε, ζ, µ):

p(X , z, θ, φ, c|ε, ζ, µ) = p(c|µ)
K∏
i=1

p(φi|ζ)
D∏
j=1

p(θj |ε, c)
N∏
n=1

p(zj,n|θj)p(xj,n|φzj,n) (68)

This joint distribution’s equation can be reduced to:

p(X , z, θ, φ, c|ε, ζ, µ) = p(c|µ)p(θ|c, ε)p(φ|ζ)
N∏
n=1

p(zn|θ)p(xn|zn, φ) (69)

where p(φ|ζ) and p(θ|c, ε) are the corpus BL (prior) distribution with hyperparameters
ζ and document BL (prior) distribution with hyperparameter ε in class c, respectively.
The distributions p(zn|θ) and p(xn|φzn) are multinomials while p(c|µ) is the class prior
distribution. The Bayesian inference estimates the joint posterior distribution of the latent
variables z and the model parameters (θ and φ) given the observations and the class,
p(z, θ, φ|X , c, ε, ζ, µ) as seen in the equation below:

p(z, θ, φ|X , c, ε, ζ, µ) = p(X , z, θ, φ, c|ε, ζ, µ)
p(X , c|ε, ζ, µ) (70)
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where its denominator is given as :

p(X , c|ε, ζ) =
∫
θ

∫
φ

∑
z

p(X , z, θ, φ, c|ε, ζ)dφdθ (71)

with
p(X , c|ε, ζ, µ) = p(X|ε, ζ, c)p(c|µ) (72)

For a uniform class prior, we obtain p(c|µ) = p(c) = 1
C with µ negligible. As a result, the

Eq.71 and Eq.72 could be reduced to:

p(X , c|ε, ζ, µ) = p(X|ε, ζ, c)
C

(73)

C is the total number of classes while c is the set of classes in this graphical model. The
posterior distribution then becomes:

p(z, θ, φ|X , c, ε, ζ, µ) = p(X , z, θ, φ, c|ε, ζ, µ)
p(X|ε, ζ, c)/C (74)

As mentioned previously, the class conditional p(X|c, ε, ζ) also known as the likelihood
function is not tractable implicitely making the posterior p(z, θ, φ|X , c, ε, ζ, µ) also
intractable. The variational Bayes (VB) technique apprroximates the true posterior
distribution using variational distributions [3, 12] ∆̃(z, θ, φ) that could be factorized as:

∆̃(z, θ, φ) =
∏
ij

∆̃(zij |ψ̃ij)
∏
j

∆̃(θj |ε̃j)
∏
k

∆̃(φk|ζ̃k) (75)

where ∆̃(zij |ψ̃ij) is the variational multinomial distribution with parameters ψ̃ij . In
addition, ∆̃(θj |ε̃j) and ∆̃(φk|ζ̃k) are the BL variational distributions with parameters ε̃j and
ζ̃k, respectively, in the joint space of latent variables and model parameters. The standard
and traditional VB operates in the joint space of latent variables and parameters, and this
inference always requires a set of variational distributions, defined as ∆̃(z, θ, φ) that should
be close to the true posterior distribution p(z, θ, φ|c, ε, ζ) with the KL (KullBack Leibler)
divergence. This leads to an optimization scheme [3] as it is defined below:

(ψ̃∗
ij , ε̃

∗
j , ζ̃

∗
k) = argmin ψ̃ij , ε̃j , ζ̃kD(∆̃(z, θ, φ|ψ̃ij , ε̃j , ζ̃k)||p(z, θ, φ|X , c, ε, ζ, µ)) (76)

The variational Bayesian inference always provides a lower bound to the marginal log
likelihood function; that is equivalent to the VB upper bounding the negative marginal
log likelihood − log p(X|c, ε, ζ) in a scheme [12] that utilizes the concept of variational free
energy (Eqs. 77 and 80). As a deterministic approach, the VB is efficient since it is easy
to implement with an easy access to convergence. The inference computes the variational
parameters updates and finally the model parameters in an expectation-maximization (EM)
method. Using Eqs. 77 to 81, the lower bound on the log likelihood is expressed as:

log p(X|c, ε, ζ) ≥
∫
θ

∫
φ

∑
z

∆(z, θ, φ)× log p(X , z, θ, φ, c|ε, ζ)dφdθ (77)

−
∫
θ

∫
φ

∑
z

∆(z, θ, φ) log ∆(z, θ, φ)dφdθ (78)

= E∆[log p(X , z, θ, φ, c|ε, ζ)]− E∆[log ∆(z, θ, φ)] (79)
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− log p(X|c, ε, ζ) ≤ −
∫
θ

∫
φ

∑
z

∆(z, θ, φ)× log p(X , z, θ, φ, c|ε, ζ)dφdθ

+
∫
θ

∫
φ

∑
z

∆(z, θ, φ) logQ(z, θ, φ)dφdθ

= E∆[− log p(X , z, θ, φ, c|ε, ζ)]− E∆[− log ∆(z, θ, φ)]

(80)

− log p(X|c, ε, ζ) ≤ F̃(∆̃(z, θ, φ)) = E∆̃[− log p(X , z, θ, φ, c|ε, ζ)]−H(∆̃(z, θ, φ)) (81)

While the variational entropy H(∆̃(z, θ, φ)) is computed as H(∆̃(z, θ, φ)) =
E∆̃[− log ∆̃(z, θ, φ)], the variational posterior distribution in the joint space ∆̃(z, θ, φ)
is factorized using the independency assumption (Eq. 75). In the joint space using
the VB with the BL prior, the model follows the EM algorithm framework where its
parameters θ, φ are estimated in M -step after an E-step that updates the variational
distributions hyperparameters from the estimate variational multinomial parameter ψ̃ijkc.
Many publications in topic modeling have covered the implementation of the Dirichlet-based
VB inferences [3, 2, 12, 39, 23]; however, the limitations often observed in the Dirichlet prior
coupled with the strong independency assumption in VB (that could in overall jeorpardize
performances) ultimately led to changes in our proposed Bayesian inferences that aim to
improve traditional techniques instead.

The CVB is not only a combination of VB and MCMC approaches, but also an improved
version of the VB method in the collapsed space of latent variables [12, 40, 13]. It is the
state-of-the-art inference we are upgrading in this chapter with a better and more flexible
prior that is the Beta-Liouville distribution mainly for online learning. As the CVB and
the CGS both operate in the collapsed space of latent variables, in the joint distribution
p(X , z, θ, φ, c|ε, ζ, µ), the model parameters θ, φ are marginalized out to obtain the marginal
joint distribution p(X , z, c|ε, ζ) defined as:

p(X , z, c|ε, ζ) =
∫
θ

∫
φ
p(X , z, θ, φ, c|ε, ζ)dφdθ (82)

But p(X , z, c|ε, ζ) = p(X , z|c, ε, ζ)p(c) so p(X , z|c, ε, ζ) becomes

p(X , z|c, ε, ζ) = C

∫
θ

∫
φ
p(X , z, θ, φ, c|ε, ζ)dφdθ (83)

One of the advantages of the collapsed representation is the easiness in computing the
integral above (Eq. 83) which becomes a product of Gamma functions (Eq. 93), avoiding
therefore the difficulty to perform parameters estimation with digamma functions in the
joint space as they tend to slow down processing in VB and updates. This advantage in
VB is due to the conjugacy property between the BL and the multinomial distribution.
The ultimate goal is to approximate the conditional distribution of the latent variables
p(z|X , c, ε, ζ) through an efficient sampling process.

3.3.2.2 Variational Bayes with BL prior: BL-based VB

As a deterministic approach and in contrast to the CGS, the VB insures convergence to
a local minimum with the EM (Expectation-Maximization) algorithm [3]. Following the
method in [12], optimizing the variational distribution in Eq. 75 from Eq. 81 with respect to
the BL variational parameters leads to the following updates in the variational distributions:
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α̃jkc = αck +
∑
i

ψ̃ijkc (84)

α̃jc = αc +
∑
i

ψ̃ijkc (85)

β̃jc = βc + ψ̃ij(K+1)c (86)

λ̃kw = λw +
∑
ij

1⃗(xij = w)ψ̃ijkc (87)

λ̃w = λ+
∑
ij

1⃗(xij = w)ψ̃ijkc (88)

η̃kw = η + (xij = w′)ψ̃ijk (89)

where w′ is the (v + 1)th codeword in the vocabulary or codebook. The multinomial update
or count ψ̃ijkc is also obtained through an optimization of the joint posterior variational
distribution F̃(∆̃(z)) with respect to the multinomial variational parameter [12].

From observations, these updates look similar to those found in the LBLA proposed in
[35]. Nevertheless, the difference is noticeable as we can see here the updates in the corpus
(Eqs. 87 to 89). In the LBLA, only the document parameters were updated. This provides
another flexibility in our new model that aims to show efficiency and accuracy in inferences.
In the joint space, the BL variational parameter α̃jkc is a document-topic count as it is the
total number of words in a topic k in a document j, all in a class c. The BL variational
parameter α̃j is also a document-topic count defined as the total number of words in the first
K topics in a document j. Finally, β̃j is a document-topic count for the (K + 1)th topic.
Similarly, in the corpus, the BL variational parameter λ̃kw is defined as a word-topic count,
and it is the number of times a word w from a codebook appears in a topic k while λ̃kw
is another word-topic count that suggests the total number of times the first V codebook
words appear in the corpus. The variational parameter η̃kw is the number of times the
(V + 1)th word appears in the corpus. The VB has a well defined convergence criterion
[12, 3, 5], but often the inference techniques suffers from a large bias due to its strong
independency assumption which allows to decouple the joint variational posterior into a
product of individual and independent variational posterior distributions. This is because
the scheme always assumes (for convenience) that latent variables and model parameters
are independent in the true posterior distribution. In the case this assumption fails, this
could make the current VB inferences inaccurate as the lower bound in this case could no
longer be stable, affecting therefore the log likelihood function and the possibility for a true
mean field approximation [12].

3.3.3 The Collapsed space: CGS, CVB, and CVB0

It is the space where the parameters are marginalized out leaving only the latent variables
that become conditionally independent given the parameters [12]. We will later show that
the collapsed representation is suitable for models that operate in online fashion [70]. The
collpased space inferences are often represented by the CGS, the CVB, and the CVB0 which
is a simple version of the CVB [13]. Performing estimation in a reduced space is necessary
for fast computation. And the collapsed representation offers that property and advantage
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as parameters are marginalized out. In addition, the BL has few hyperparameters than
the GD (generalized Dirichlet) distribution which implies that this model will be fast when
performing MLE.

3.3.3.1 The Collapsed Gibbs sampler and Mean field inference

The low dimensional space provided by the collapsed representation with its reduced number
of hidden variables (as parameters are integrated out) offers the possibility for true mean
field inference. In addition, as mentioned previously, it is suitable for easy computation
of integrals. In this space, the collapsed Gibbs sampler provides inference by computing
expectations through a sampling process of the latent variables. This aims to approximate
the posterior distributions using a network of conditional probabilities (Bayesian network).
The CGS [12, 18, 41] in the collapsed space of latent variables allows a very fast estimation
compared to the standard Gibbs sampler that operates in the joint space of latent variables
and model parameters. Obviously, with the CGS, no more use of digamma functions which
are computationally very expensive in VB method and updates. The CGS algorithm is
required to estimate the parameters when the Markov chain reaches its stationary state
(stationary distribution) where it provides the most accurate estimate of the true posterior
distribution than the VB.

The marginal joint distribution p(X , z|c, ε, ζ) in Eq. 83 is in integral form. Using
this integral, the conditional probabilities of the latent variables zij are estimated given
the current state of all variables while discarding the single variable zij [12]. The collapsed
Gibbs sampler estimates the topic assignments associated with the observed words using the
conditional probability of latent variables p(zij = k|z−ij ,X , c, ε, ζ) where −ij corresponds
to counts or variables with zij discarded [12]. This conditional probability is defined as:

p(zij = k|z−ij ,X , c, ε, ζ) = p(zij , z−ij ,X , c, |ε, ζ)
p(z−ij ,X , c, |ε, ζ) (90)

Following the work in [12], it can still be simplified since:

p(zij = k|z−ij ,X , c, ε, ζ) ∝ p(zij = k, z−ij ,X , c|ε, ζ) (91)

The obtained Callen equations (below) as in [12] demonstrate the way the collapsed Gibbs
performs its sampling mechanism that can be finally summarized as an expectation problem:

p(zij = k|X , c, ε, ζ) = Ep(z−ij |c,X ,ε,ζ)[p(zij = k|z−ij ,X , c, ε, ζ)] (92)

3.3.3.2 The New collapsed space with the BL prior

Following the work in [12], it is faster to sample in the collapsed space of just latent variables
than it is in the joint space of both latent variables and parameters [12]. The motivation here
is to sample the latent variables from the joint distribution p(X , z|c, ε, ζ) using a network
of single class conditional probabilities. The conjugacy assumption facilitates estimation of
the integral in Eq. 83 obtained as a product of Gamma functions (Eq. 93).
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p(X , z|c, ε, ζ) = C
M∏
j=1

⎡⎣Γ
(∑K

i=1 αci
)

Γ (αc + βc)

Γ (αc) Γ (βc)
∏K
i=1 Γ (αci)

⎤⎦
× Γ (α′) Γ (β′)

∏K
i=1 Γ (α′

ci)
Γ
(∑K

i=1 α
′
ci

)
Γ (α′ + β′)

×
K∏
i=1

Γ
(∑V

r=1 λr
)

Γ (λ+ η)

Γ (λ) Γ (η)
∏V
r=1 Γ (λr)

× Γ (λ′) Γ (η′)
∏V
r=1 Γ (λ′

r)
Γ
(∑V

r=1 λ
′
r

)
Γ (λ′ + η′)

(93)

where the document-topic update in a class is expressed as:⎧⎪⎪⎨⎪⎪⎩
α′
ci = αci +N i

j,(.)
α′
c = αc +

∑K
i=1N

i
j,(.)

β′
c = βc +NK+1

j,(.)

(94)

The topic-word update is defined as:⎧⎪⎪⎨⎪⎪⎩
λ′
r = λr +N i

(.),r
λ′ = λ+

∑V
r=1N

i
(.),r

η′ = η +N i
(.),V+1

(95)

We can easily observe that the update equations obtained above from Eqs. 94 and 95
look very similar to those obtained in VB in the joint space of latent variables and model
parameters (Eqs. 84 to 89). The multinomial updates are represented by N i

j,(.) for the
document-topic count, and N i

(.),r for the topic-word count. In Eq. 96, we obtained the
sampling equation of a topic zij in a particular document j in a class c given the observations
X and the initial topic assignments associated to each word except the one being sampled
z−ij . From the collapsed Gibbs sampler, the multinomial variable ψ̂ijk controls the counts
in the document-topic and topic-word structures as in VB. However, the count ψ̂ijkc in Eq.
96 obtained in the collapsed space is different from the one (ψ̃ijk) in the joint space of VB.
The collapsed representation offers in a particular class, the following update:

ψ̂ijkc = p(zij = k|X , c, ε, ζ) (96)

using:

p(zij |z−ij ,X , c, ε, ζ) = p(zij , z−ij ,X , c, |ε, ζ)
p(z−ij ,X , c|ε, ζ) (97)

from Eq. 90 so that:

p(zij = k|z−ij ,X , c, ε, ζ) ∝⎛⎝(N−ij
jk. + αck)(λ+

∑V
r=1N

−ij
.krij

)

(λ+ η +
∑V+1
r=1 N

−ij
.krij

)

⎞⎠
×

⎛⎝(λv +N−ij
.kvij

)(η +N−ij
.k(V+1)ij )

(
∑V
r=1N

−ij
.krij

+ λr)

⎞⎠ (98)
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Now, the collapsed Gibbs sampler implements the Callen equations (Eq. 92) as in [12]
to sample z given the observable variables X . Consequently, in the collapsed space, the
expected multinomial parameter in each class is estimated as a count from the true posterior
distribution in the Eq. 96 while the VB updates its variational parameters in the joint space
of the latent variables and model parameters using the expected multinomial parameter
ψ̃ijkc. This justifies again the difference between the two spaces as:

ψ̃ijkc ̸= ψ̂ijkc (99)

3.3.3.3 The Collapsed variational Bayes (CVB) with the BL prior and Mean
field variational inference

This new collapsed variational Bayesian inference (of the batch CVB-LBLA model) is
naturally a combination of the BL-based VB and BL-based CGS. Therefore, it is a direct
extension to the LDA and the CVB-LDA models as both still utilize the Dirichlet prior.
Following the framework proposed in [12], the new BL-based CVB algorithm relaxes the
strong independency assumption and provides a weaker assumption which is more accurate.
It now models the dependence of parameters related to the latent variables in an exact
fashion where parameters are either marginalized out or modeled separately as the joint
p(θ, φ|z,X , c, ε, ζ). In both cases, it turns out it leaves the latent variables weakly dependent;
as a result, assumed independent. Consequently, with this weak assumption, the BL-based
CVB provides an efficient setting for mean field approximation as latent variables become
conditionally independent given the parameters. With this conditionally independence
assumption of the latent variables in the collapsed representation, a much better set of
variational distributions could be obtained since the weaker assumption allows to decouple
effectively the joint ∆̂(z, θ, ϕ) as:

∆̂(z, θ, φ) = ∆̂(θ, φ|z)
∏
ij

∆̂(zij |ψ̂ij) (100)

where ∆̂(zij |ψ̂ij) is the variational multinomial distribution with parameters ψ̂ij in the
collapsed space, and the variational free energy F̂(∆̂(z)∆̂(θ, φ|z)) conditional to z becomes:

F̂(∆̂(z)∆̂(θ, φ|z)) = E∆̂(z)∆̂(θ,φ|z)[− log p(X , z, θ, φ, c|ε, ζ)]−H(∆̂(z)∆̂(θ, φ|z)) (101)

F̂(∆̂(z)∆̂(θ, φ|z)) = E∆̂(z)[E∆̂(θ,φ|z)[− log p(X , z, θ, φ, c|ε, ζ)]−H(∆̂(θ, φ|z))]−H(∆̂(z))
(102)

With only two variational posterior distributions (∆̂(θ, φ|z), and ∆̂(z)), the variational
free energy is minimized with respect to ∆̂(θ, φ|z), and then with respect to the collapsed
variational ∆̂(z) following the work in [12]. A minimum variational free energy is reached
at the true posterior ∆̂(θ, φ|z) = p(θ, φ|z,X , c, ε, ζ) which becomes :

F̂(∆̂(z)) ≜ min
∆̂(θ,φ|z)

F̂(∆̂(z)∆̂(θ, φ|z)) = E∆̂(z)[− log p(X , z, c|ε, ζ)]−H(∆̂(z)) (103)

So, the bound in BL-based CVB in the batch CVB-LBLA can be expressed as :

− log p(X|c, ε, ζ) ≤ F̂(∆̂(z)) = E∆̂(z)[− log p(X , z, c|ε, ζ)]−H(∆̂(z)) (104)
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F̂(∆̂(z)) ≤ F̃(∆̃(z)) ≜ min
∆̃(θ)∆̃(φ)

F̃(∆̃(z)∆̃(θ)∆̃(φ)) (105)

From Eq. 76, the optimization scheme using KL divergence in the collapsed space where
the parameters θ and φ are marginalized out could therefore be reduced to:

(ψ̂∗
ij) = argmin ψ̂ijD(∆̂(z|ψ̂ij)||p(z|X , c, ε, ζ, µ)) (106)

The Eq. 105 illustrates the BL-based CVB is a better and much improved approximation
than the standard VB. This advantage is only provided in the collapsed representation [13].
In addition, minimizing the variational free energy F̂(∆̂(z)) in Eq. 104 with respect to ψijk
leads to the multinomial update in each class as shown in Eq. 107 following the work in
[12].

ψ̂ijkc = ∆̂(zij = k|c) =
exp(E∆̂(z−ij)[log p(X , z−ij , zij = k, c|ε, ζ])∑K

k′=1 exp(E∆̂(z−ij)[log p(X , z−ij , zij = k′, c|ε, ζ])
(107)

In CVB-LBLA model, the latent variables are drawn from the variational posterior
distribution ∆̂(z) using the BL-based CGS while the expected topic assignments lead to
the parameters estimation when the Markov chain is stationary. The same conclusions are
also found in [12, 67].

Using batch learning, the CVB-LBLA, for extremely large datasets, can be slow despite
its accuracy in inference. In the literature, a solution to this handicap has been the use of
Gaussian approximation or the second order Taylor approximation [12, 4]. The inference
computes an extremely large amount of expectations. The batch learning’s update in CVB-
LBLA is finally computed as:

∆̂(zij = k|c) = ψ̂ijkc :∝ (
αck + E∆̂[N ij

jk.]
) (
λ+ E∆̂[N ij

.k.]
)

×
(
λv + E∆̂[N ij

.kxij
]
) (
η + E∆̂[N ij

.k(V+1)ij ]
)

×
(
λ+ η +

V+1∑
r=1

E∆̂[N ij
.krij

]
)−1

(E∆̂[N−ij
.k. ] +

V∑
r=1

E∆̂[λr])−1

× exp

⎛⎝− V ar∆̂(N ij
jk.)

2(αk + E∆̂[N ij
jk.])2

⎞⎠
× exp

(
−

V ar∆̂(N ij
.k.)

2(λ+ E∆̂[N ij
.k.])2

)

× exp

⎛⎝− V ar∆̂(N ij
.kxij

)

2(λv + E∆̂[N ij
.kxij ])2

⎞⎠
× exp

⎛⎝+
V ar∆̂(

∑V+1
r=1 N

ij
.krij

)

2(η + λ+
∑V+1
r=1 E∆̂[N ij

.krij
])2

⎞⎠
× exp

(
+

V ar∆̂(N ij
.k.)

2(E∆̂[N ij
.k.] +

∑V
r=1 E∆̂[λr])2

)
(108)
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The sampling equation above shows that the CVB-LBLA samples its latent variables from
a variational posterior distribution ∆̂ in the collapsed space of latent variables such that:

ψ̂ij =
∑
k

ψ̂ijk (109)

This observation is consistent with the work in [12], and the new update is also an improved
version of the one estimated in that framework. The batch CVB-LBLA process is fully
described in Algorithm 4.

3.3.3.4 Predictive distributions

At the stationary distribution, the batch CVB-LBLA’s generative process for an unseen
document utilizes its predictive distribution expressed in terms of its parameters conditional
on the model hyperparameters. Using [12], the batch-based document parameter’s
distribution is estimated as:

θ̂jk =
(αck + E∆̂[Njk.])

(E∆̂[Nj..] +
∑K
i=1 αck)

(110)

Then conditional on the topic k, the predictive distribution of the words φkw is:

φ̂kw =
(

(λ+ E∆̂[N.k.])(λv + E∆̂[N.kxij ])
(λ+ η +

∑V+1
r=1 E∆̂[N.krij ])

)

×
(

(η + E∆̂[N.k(V+1)ij ])
(E∆̂[N.k.] +

∑V
r=1 λr)

)
(111)

3.3.4 Evaluation method for the batch topic model

The topic model is always obtained using unsupervised learning. However, the lack of
reliable topic labels for the dictionary codewords complicates ideas of using topics in
a classification framework. It results in a need for an evaluation method that could
assess or validate the robustness of the estimated topic model [18]. Since the goal is to
compute efficiently the probability of the held-out dataset [42, 18], after estimation of the
predictive distributions (parameters), we implemented the empirical likelihood estimate
scheme presented in [18] as a validation method for the topics. In the batch CVB-LBLA
model, the likelihood [12, 18] could be computed as:

p(X ) = p(X|c, ε, ζ) =
∏
ij

∑
k

θ̂jkφ̂kw (112)

such that the counts E∆[Njk.], E∆[N.kvij ], and E∆[N.kdij ] of the unseen document are
obtained from the BL-based CVB sampling process in the collapsed space. As seen in
Eq. 112, the parameters of the unseen document are then used to predict its likelihood
[18]. However, the predictive likelihood p(X|c, ε, ζ) is evaluated as follows: for an unseen
document to be classified, some pseudo documents are generated with parameters θ using
the BL priors from the training set. When the best candidates in documents in each class
are obtained, we estimate their word probability distribution given the corpus parameter
φ that leads to the class conditional probability p(X|c, ε, ζ) [18]. With the class likelihood
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function, we can assess the probability of seeing the test set (unknown document) in the
class. The class label is then given to the unseen document if it has the highest likelihood
using the work presented in [2]. The empirical likelihood estimate is said to be robust
compared to topic model’s perplexity scheme as an evaluation method (validation) of the
topic model [18].

The batch framework will be used when implementing the online learning that is based
on accessing one minibatch at a time.

3.3.5 Classification’s Bayesian decision boundary

The empirical likelihood estimate generates the probability of seeing the unseen document.
In other words, it is used to get the class of the test set where the probability of seeing
the class is proportional to the likelihood for a uniform class prior. Consequently, given an
unseen document with its BoW representation X , the probability of its class label (predictive
model) is expressed following the Bayes rule as:

p(c|X , µ, ε, ζ) ∝ p(X|c, ε, ζ)p(c|µ) ∝ p(X|c, ε, ζ) (113)

The decision about the category is ultimately made by the category label with the highest
likelihood probability [2] such that:

C∗ = argmax
c

p(X|c, ε, ζ) (114)

3.3.6 Stochastic learning using minibatches: SCVB-LBLA and SCVB0-
LBLA

Online learning is dominating Artificial Intelligence because in many situations the method
is implemented when it becomes compuationally impossible to train over the entire dataset.
In addition, many traditional models are still not capable of scaling to extremely large data.
Online learning is also used to allow algorithms to dynamically adapt to new patterns in
the data or in case of data that are time dependent. Nevertheless, it has been observed
that a true online learning where the model updates the best predictor for future data at
each step (by using one sample at the time) is not always possible as the model learns
new inputs based on the current predictor value and the previous data. As the situation
often requires to store all these previous data points, it is getting difficult to perform this
technique. As a result, the constant space requirement is no longer guaranteed even though
the time requirement to execute an update is fast.

A solution to this case has been the use of minibatches to maintain the constant memory
requirement as the model is learning on a small batch instead. Though, in the past, a
stochastic variational inference algorithm [65, 1] was implemented to scale the LDA inference
to very large datasets. The scheme works on graphical models that operate with both global
and local parameters for each data point xj , and complete conditional distributions that
are exponential family for each data variable [13]. In their online framework, the algorithm
analyzes one data point at a time to learn about its local variational parameters such as
θj that is used to update the global variational parameters such as the topics φk through
a stochastic natural gradient update. As this method is guaranted to converge to the
optimal variational solution [13], an extension of this approach to the batch CVB-LBLA is
to update the parameter for the variational BL distribution on φk as shown in Eqs. 115
and 116 below. Using Eq. 75, we define the variational set ζ̃k (ζ̃k = (λ̃1k, ..., λ̃V k, λ̃k, η̃k)) as
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the parameter for the variational BL distribution on topic φk. Following [13], the updates
on the parameter ζ̃k involves a gradient update given as:

ζ̃k := (1− τt)ζ̃k + τt
ˆ̃ζk (115)

This equation can therefore be extended as:⎧⎪⎪⎨⎪⎪⎩
λ̃vk := (1− τt)λ̃vk + τt

ˆ̃λvk for v = 1, ..., V
λ̃k := (1− τt)λ̃k + τt

ˆ̃λk
η̃k := (1− τt)η̃k + τt ˆ̃ηk

(116)

Basically, by observing the generative process defined in section 4.2, the online scheme seems
to compute in each document j, the variational distributions for the topic assignments and
for document distributions over the topics using the VB method. The two equations above
are similar to the oline EM algorithm proposed by [66] that maximizes the lower bound with
respect to the parameter θ in M-step while the E-step provides a stochastic expectation step
that updates the exponential family sufficient statistics using the online average framework
as shown below:

℘ := (1− τt)℘+ τt℘̂(Ωn+1; θ) (117)

such that Ωn+1 is a new data point, θ being the current parameter, and ℘̂(Ωn+1; θ) is the
estimate of the sufficient statistics based on the values of Ωn+1 and θ. Authors in [1, 65, 66]
provided a platform to perform online variational inference in the collapsed space due to
the flexibilities in that space such as computational speed, accuracy in inferences, and
efficiency (convergence). Therefore, this section will deal with the stochastic variational
inference using the collapsed representation already presented in the batch CVB-LBLA in
the previous sections.

As the amount of data being processed in online fashion can be extremely large and
close to infinity, it is clear that the fundamental goal in streaming is to avoid storing all
previous data in contrast to the batch method. As a result, iteratively, online setting only
stores current data or mini-batch and their associated topic assignments while the rest of
the data are neglected. The time complexity of the CGS in one iteration is in the order
of O(K|Υ|) where |Υ| is the size of the mini-batch following the framework in [13]. The
way the algorithm is able to slowly prune out the previous data (as if it was forgetting the
history in the data) is through the use of the decay factor τt as seen from Eqs. 115 to
117. For instance, as the CGS stores the sufficient statistic N̂kv which emphasizes on the
topic-word counts, the optimized online learning framework insures that the count τtN̂kv

helps the model forgetting the history, such that the posterior distribution of the previous
data becomes weaker in every iteration.

One of the problems in the batch is that every token is associated with a variational
distribution ψij which in overall affects memory space [13]. In online setting though, the
scheme is designed in a way that does not allow to substract current value of ψij as usually
observed in Eq. 108 with the collapsed Gibbs sampler. This is because the true online
algorithm does not store the values of ψ, but only estimates their update versions. Most
importantly, for large scale processing, removing just a current value of ψij compared to the
remaining in the corpus does not have any significant impact on the overall update equation
(Eq. 108) as N−ij ≊ N ij . Though, the collapsed variational Bayesian inference (CVB) does
maintain variational distributions ψij over its K topics for each word i and document j.
As the optimization of the lower bound with respect to the variational distribution ψij is

66



not tractable, it has been shown a scheme in [12] where approximating the updates does
work better in practice. It does outperform the VB in prediction. Then, authors in [4]
presented the simpler version (CVB0) of the CVB performing faster than the CVB itself
while still maintaining the accuracy of the CVB. The CVB0 is shown in Eq. 108 and
according to [4], it is the fastest technique for LDA inference for single core batch inference
in terms of convergence rate. The CVB algorithm has update that is deterministic [40]
since it carries all the advantages of the VB. It shows the algorithm iteratively updating
each ψij where CVB0 statistics are estimated as: Nk

Z ≜
∑
ij ψijk ; N jk

θ ≜
∑
i ψijk ; and

Nwk
φ ≜

∑
ij:wij=w ψijk. Though, a disadvantage of the CVB0 is the extremely large memory

required to store the variational distribution over each token in the corpus. This leads to
the stochastic CVB0 or SCVB0 as a solution for memory space problem. This inference
can be obtained by constructing the stochastic SCVB-LBLA, our online model.

3.3.6.1 The BL-based SCVB0

In our model, we are implementing an online or stochastic collapsed variational Bayesian
inference for the latent Beta-Liouville allocation (SCVB-LBLA) model following the online
topic modeling framework that has been developped in [1, 66, 13]. As presented in the
previous sections, these authors laid out the foundations for online learning using the
collapsed represenation in the original LDA model. As a result, we are proposing an
extension to their work using the new LBLA model in the collapsed space since we are
highly motivated by the flexibilities of the Beta-Liouville prior.

Following the stochastic method in [13], for a uniform and random draw of a token in the
corpus, using the variational sampling distribution ∆, some expectations of the sufficient
statistics could be estimated such as: E∆[N.k.] = Λψij where Λ is the number of words in
the corpus while E∆[N.kxij ] = ΛΨ(ij) where Ψ(ij) is the V ×K matrix, and E∆[Nj..] = Λjψij .
Using the compact representation (Eq. 118) of the sufficient statistics in [13], we can really
see and appreciate the contribution of the CVB-LBLA and the SCVB-LBLA by observing
Eqs. 108 and 118. It shows the extra terms in the updates that are document and topic
specific to the SCVB-LBLA and its batch CVB-LBLA only. This makes the difference
between the LDA and our proposed model.⎧⎪⎪⎨⎪⎪⎩

E∆[Nj..] = E∆[N j
θ ]

E∆[Nkxij
] = E∆[Nφ]

E∆[N.k.] = E∆[NZ ]
(118)

For convenience, the exponential term in the update equation (Eq. 108) has been neglected
without affecting the estimates as suggested in [13]. Importantly, the topic and word
parameters are still drawn for the BL. As the variational distributions ψ cannot be
maintained, it is difficult to directly perform the sampling process. However, using a current
guess of the CVB0 statistics, an update of a word variational distribution could be provided
to allow observation of its new value. In this iterative procedure, as the values of ψij changes
everytime, the traditional simple average is no longer possible. The scheme ultimately uses
the online average of the statistics following the work proposed in [66] as illustrated in Eq.
117. Therefore, since ψ are not stored, and in practice it is too expensive to update the
entire expected Nφ (sufficient statistics) for every token, a solution is the use of minibatches
and minibatch updates in order to maintain the constant memory space requirement for
the online technique. The expected Nkxij

after observing a mnibatch Υ is the average of
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the per-token estimates. This leads to the following update in Nkxij
and N.k. using Eqs.

119 to 123:

Algorithm 4 summary of the batch based CVB-LBLA Inference
1: procedure
2: Input: X , (ε, c) = (αc1, ..., αcK , αc, βc), iterMax, ζ = (λ1, ..., λV , λ, η), K, V , N
3: Initialize z, Njk., N.kxij , N.k.

4: for iter = 1 to iterMax do
5: for i = 1 to N in document j in class c do
6: zij ∼ ∆(zij = k|z−ij ,X , c, ε, ζ) using Eq.108
7: Update the counts N.k., Njk., and N.kxij

8: end for
9: end for

10: Output: Parameters θ̃jks and φ̃kws using Eq.147 and 148
11: end procedure

In the local update (document parameters), we have:

Nj.. := (1− τtθ)Nj.. + τtθN̂j.. (119)

But in a uniform draw of a token, the equation becomes:

Nj.. := (1− τtθ)Nj.. + τtθΛjψ̂ij (120)

Concerning the global update (corpus parameters), we obtain:

Nkxij
:= (1− τtφ)Nkxij

+ τtφN̂kxij
(121)

Nk(V+1) := (1− τtφ)Nk(V+1) + τtφN̂k(V+1) (122)

N.k. := (1− τtφ)N.k. + τtφN̂.k. (123)

where N̂kxij
= Λ

|Υm|
∑
ij∈Υ Ψ(ij), N̂.k. = Λ

|Υm|
∑
ij∈Υ ψij , and N̂k(V+1) = Λ

|Υm|
∑
ij∈Υ Ψ(V+1)

such that |Υm| is the size of the mth minibatch in the database.
The SCVB-LBLA’s online inference scheme that takes advantage of the online average

framework is summarized in Algorithm 5.

3.4 Experimental results
In the following experiments, we have implemented several challenging applications
using the stochastic model SCVB-LBLA. We mainly compared our new approach to its
batch-based competitors and some other online schemes such as the SCVB-LDA. These
applications include text analysis, images and videos recognition and categorization. In
this framework, the testing data are set in online fashion where the samples (minibatches
in this case) arrive sequentially, one at a time. This is in contrast to the batch learning
methods (CVB-LBLA and CVB-LDA) that process all the available data at the same time.

Following the bag of visual words scheme, local features provide the representation
of both the training and the testing sets using the count data (frequency counts). This
representation is needed for models such as the SCVB-LBLA since they are usually effective
with count data. To speed up computations, the exhaustive search for the optimal number
of topics, and vocabulary size following the work in [67] is a little relaxed by fixing the size
of the vocabulary while varying only the topics.
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Algorithm 5 summary of the stochastic SCVB-LBLA Inference
1: procedure
2: •Initializations: N.kxij , Nj.., N.k. :=

∑
wN

w
.kxij

, τtθ , τtφ , iterMax, burnInIter
3:
4: for iter = 1 to iterMax do
5: for m = 1 to ΥM (for each Minibatch Υm) do

⋄ N̂.kxij := 0 , N̂.k. := 0
6:
7: for j = 1 to |Υm| (for each document j in Υm) do
8:
9: if iter < burnInIter (”Burn− in”process) then

10: • Update ψ̂ij using Eq.108
11: • Update Nj.. using Eq.119
12:
13: end if
14: if iter ≥ burnInIter (for each token i) then
15: ⋄ Update ψ̂ij using Eq.108
16: ⋄ Update Nj.. using Eq.119
17: ⋄ Compute N̂xij

.kxij
:= N̂

xij
φ + Λ

|Υm| ψ̂ij

18: ⋄ Compute N̂xij
.k. := N̂

xij
.k. + Λ

|Υm| ψ̂ij

19: ⋄ Compute N̂ (V+1)
.kxij

:= N̂
(V+1)
.kxij

+ Λ
|Υm| ψ̂ij

20:
21: end if
22: ⋄ Update N.kxij in Eq.121
23: ⋄ Update N.k. in Eq.123
24: ⋄ Update N (V+1)

.kxij
in Eq.122

25:
26: end for
27: end for
28: end for
29: end procedure

Natural Scenes
Images

Face expressions Cohn
Kanade
data

Action Recognition in
videos

CVB-LDA 64.13% 65.51% 65.12% 64.86%
SCVB-LDA 68.56% 63.41% 60.96% 62.65%
SCVB-LBLA 76.8% 74.29% 77.14% 72%
CVB-LBLA 70.34% 65.8% 63.61% 66.25%

Table 3.2: Comparison between the new SCVB-LBLA model and the other schemes within
the BoW framework
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3.1: An object from a bicycle’s class at different 2D views for a 3D modeling

3.4.1 Online Image categorization for Natural scenes dataset

3.4.1.1 Methodology

In this experiment, we used the well-known grayscale natural scenes dataset [48] in online
fashion to recursively update the class distribution as we grouped the corpus documents or
images into a set of minibatches. Using Fig. 2.3 and Table 3.3, this challenging dataset
has 15 categories that include suburb, living room, coast, forest, highway, mountain, street,
office, store, bedroom, inside city, tall building, open country, kitchen, and industrial. In
each category, the data is divided into a testing set that contains 100 samples while the
remaining constitutes the training set. The minibatch contains around 10 images. In
each class, the BoW representation of the corpus (Fig. 3.12) leads to a vector of counts
in each document (image) after the codebook formation using the framework in [2] with
the SIFT (Scale Invariant Feature Transform) feature [71]. The training set is used to
implement the SCVB-LBLA model with asymmetric BL priors. Using the minibatch, the
model’s parameters estimation provides the predictive model. And with these predictive
distributions, the empirical likelihood framework is constructed to evaluate the topics. It
then leads to the class likelihood estimation which helps predicting the class label of unseen
images or documents in the minibatch. As a result, the category of an unseen image is
chosen by the class with the highest class posterior distribution that is equivalent to the
class conditional probability for a uniform class prior in our case. For the online average,
we used a step size or learning rate (τt) of 0.1 for the document-topic update and for the
word-topic topic update.

The SCVB-LBLA showed an overall classification accuracy of 76.8% (Fig. 3.2) with a
very short (fast) runtime of 7 min (minutes). The optimal number of topics is K = 95.
These results could be explained by the advantages provided by the collapsed representation
as now the model has ability to estimate with high efficiency the posterior distribution due
to the stability of lower bound in the collapsed space. It has been shown in the literature
[12, 13] that the collapsed space provides a better approximation than the uncollapsed space.
These results also demonstrate the flexibility of the BL prior (general covariance structure
as in Fig. 3.3) compared to the traditional Dirichlet distribution that is very limited for its
inability to perform in case of positively correlated datasets.
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Categories Size
suburb 241
living room 289
cost 360
forest 328
highway 260
mountain 374
street 292
office 215
store 315
Bedroom 216
Inside City 308
Tall buidling 356
Open country 410
Kitchen 210
Industrial 311

Table 3.3: size of each image category.
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Figure 3.2: Confusion matrix for the natural scenes classification
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Figure 3.3: Natural scene images correlation map.

3.4.2 Online Facial Expression recognition and categorization

3.4.2.1 JAFFE dataset

Driven by social media, facial expressions modeling and sentiment analysis are hot topics
today in the field of Artificial Intelligence [72, 49, 50]).

Concerning facial expressions, the modeling focuses on the intrinsic characteristics of
the facial textures (Fig. 3.6). In this particular application, we used the JAFFE (Japanese
Female Facial Expression) dataset (Figs. 3.4 and 3.5). It has 213 images collected from 10
Japanese females showing 7 facial expressions [73, 74, 75] such as anger, sadness, surprise,
happiness, fear, disgust, and neutral. The first task is to group these females according to
these seven expressions representing therefore our different classes. Following the method
proposed in [72, 76], we preprocessed (cropping) each image to obtain 189 × 100. This is
because each original image has size of 256× 256. Therefore, this crop does allow to focus
more on the facial characteristics as we discard a lot of the background image to guarantee
better feature representation. So, we divided each image into 90 (9× 10) blocks or regions
where each region is 14× 15 pixels. Then, these regions textures are represented using the
59-bin LBP operator in the (8, 2) neighborhood as it provides 8 samples (neighbors) on a
circle of radius 2) following the framework in [51, 59]). It leads to a histogram of length
(90× 59) = 5310. As the vector is very long, to avoid overfitting problem, we used a pLSA
model from the framework presented in [77] for dimensionality reduction at different sizes
such as K = 48, 64, 80, and 128. We finally retained the most relevant 128 elements of
proportions from the original 5310−dimensional vector. The training set being represented
using the LBP feature vectors, we trained our SCVB-LBLA model where each minibatch
contained around 5 images.

The confusion matrix in Fig. 3.7 shows a classification accuracy rate of 74.29% which
outperforms its competitors (see Table 3.2). The minibatch online scheme is very fast with
an optimal number of topics around K = 52. The model was able to perform the training
and the testing tasks in less than 15 min. The CVB-LDA and CVB-LBLA were both slow
compared to the SCVB-LBLA. This again shows the flexibility of the BL prior as it has a
full covariance structure and less parameters than the GD that help in fast computation. In
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addition, the LBP descriptor was robust as it provided the relevant features for an accurate
inference coupled with a stable lower bound that resulted in a better performance in overall.

NeutralSurprise Anger

Happiness SadnessFear

Disgust

Figure 3.4: Facial expressions and emotions in the JAFFE dataset

Figure 3.5: Women showing a "surprised" facial expression

3.4.2.2 Cohn-Kanade dataset

Cohn-Kanade database [78, 79] contains facial expressions of some males and females, 97
individuals in total. This is a collection of 486 images sequences of about 1.70 GB (Fig.
3.8). The resolution of each image is 640 × 490. So, in the preprocessing, following the
same scheme for the JAFFE dataset, we cropped the original images again leaving only
the relevant parts of facial characteristics. We obtained a small image of size 200 × 100
which led to a 50 blocks from a 20 × 20 pixels per block. Using the 59-bin LBP operator
we got an histogram of size 59× 50 = 2950 from which we finally obtained the reduced 128
dimensional vector from the pLSA algorithm [77].
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Figure 3.6: Facial Expression: Key Regions of Interest and Extraction
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Figure 3.7: Confusion matrix from the JAFFE Facial expressions classification

Similar to the JAFFE dataset, the Cohn-Kanade data is also classified using emotions
such as Anger, Disgust, fear, Joy, Sadness, Surprise, and Neutral. The minibatches from the
BoW allow to perform the online scheme. We obtained a classification accuracy of 77.14%
(Fig. 3.9) with a time frame of 20 min. This is a very challenging dataset. The batch
version of our model (CVB-LBLA) was very slow on this data including the CVB-LDA. It
demonstrates the advantage of the online framework where the model does not require to
access all the documents, but still can provide very accurate updates. Finally, the use of a
flexible prior which can perform in full topic correlation framework has been beneficial to
the model’s performance (Fig. 3.10) that reaches an accuracy of 77.14% at K = 90 in Fig.
3.11.
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Figure 3.8: Facial emotions in the Cohn Kanade dataset

3.4.3 Online Action recognition in videos

In this experiment, we implemented the action recognition in videos using the KTH dataset
that contains 2391 video sequences at 25 frames [54, 55]. We used the optical flow algorithm
to collect relevant features for the BoW representation of the corpus data. The dataset is
mainly comprised of 25 individuals in 4 scenarios performing 6 types of human actions such
as running, walking, jogging, hand waving, boxing, and hand clapping as shown in Table
3.6. Concerning this table, each column represents a human action in these 4 different
scenarios. For processing purpose, the sequences were downsampled into a resolution of 160
by 120 pixels with a length of 4 seconds. In our experiment, 60% of the dataset were used
for training while the remaining constitutes the testing set. Approximately 100 frames were
collected from each video sequence in each class with a minibatch size of 10 per class.

The BoW framework allows the transformation of the features collected from the optical
flow scheme ([56]) into frequency counts following the method in [35]. These count data
are then used to construct the stochastic SCVB-LBLA to learn the minibatches in online
fashion. The model provided an overall classification accuracy of 72% (Fig. 3.13) with
a runtime around 18 min; which suggested the SCVB-LBLA was robust and faster than
the CVB-LBLA and CVB-LDA because when we implemented these two batch models
using the same dataset, their runtime was considerably higher. The optimal number of
topics K = 150. In general, this is a computationally expensive learning that could be
impossible to obtain satisfying results without an online framework built with a flexible
prior in a proper modeling space (collapsed space) that perform in a topic correlation (Fig.
3.18) environment for possible model selection as seen in Fig. 3.11 (for the Cohn-Kanade
dataset).

3.4.4 Online text processing

In this application, three datasets have been used: First, the KOS (www.dailykos.com)
which has in total J = 3430 documents for a vocabulary size of W = 6909. The total
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Figure 3.9: Confusion matrix from Cohn-Kanade Facial expressions classification

number of words in the corpus is N = 467, 714. So on average, the dataset has 136 words per
document. The second one is the NIPS (books.nips.cc) dataset with J = 1675 documents,
a vocabulary size of size W = 12419, and a total words of N = 2, 166, 029 in the corpus. It
has on average 1293 words per document. These two datasets are used following the work
in [12]. Then finally, we have PubMed Central dataset which is a corpus of 320 millions
from 165, 000 articles (documents) with a vocabulary size of around 38, 500 words. It is
presented in [13].

Different from the previous applications that use images in a classification framework,
now we are only interested in analyzing text documents using the online model to show its
flexibility with extremely large datasets that could even challenge batch models for storage
issues. In Table 3.4, it shows that the SCVB-LBLA outperforms its competitors in every
dataset regardless of the size in terms of processing speed. The minibatches obtained here
were larger due to the size of the corpus. However, the stochastic model is just faster than
the other schemes. The online framework does not need or is not required to access all the
data before providing estimates and updates. The batch in constrast does require the use
of all the available data in order to compute updates. This is therefore translated into the
significantly increase runtime in the batch compared to the online (decrease). The CVB-
LBLA’s performance is getting slower and slower as the data increase in size. In addition, in
terms of convergence, the SCVB-LBLA and the SCVB-LDA outperform the batch models
such as the CVB-LDA and the CVB-LBLA as shown from Figs. 3.14 to 3.17. Though, as
we notice in these figures, the SCVB-LBLA is the fastest.

Fig. 3.13 shows the performance of the model in identifying and classifying actions
in a video sequence. Fig. 3.14 illustrates the performance of the new approach in terms

76



Disgust

Anger

Joy

Fear

Sadness

Surprise

Neutral

D
is

g
u

s
t

A
n

g
e

r

J
o

y

F
e

a
r

S
a

d
n

e
s
s

S
u

rp
ri
s
e

N
e

u
tr

a
l

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 3.10: Cohn-Kanade dataset’s correlation map

of time complexity and its easy access to convergence: as seen, the number of iterations
to build the model is smaller in our proposed approach, which means that our method
is faster than its competitors. In other words, it requires very few iterations to reach
convergence in the new scheme. The batch-based techniques (CVB-LDA and CVB-LBLA)
are slower to reach convergence than the stochastic approaches (SCVB-LDA and SCVB-
LBLA). And the SCVB-LBLA remains the fastest technique. Similar observations and
conclusions could be made from analyzing Figs. 3.15 to 3.17 using a variety of datasets
such as texts (NIPS data), images (natural scenes), and videos (KTH datasets). It shows
again that the stochastic approach outperforms the batch method. Still, the SCVB-LBLA
is the dominant performer compared to its competitors. Fig. 3.18, through the correlation
map, illustrates the dependency between distinct random variables (classes) in our document
classification problem. It also shows the flexibilities of the BL prior in handling negatively
and positively correlated datasets.

Finally, Table 3.5 provided the robustness of our new approach compared to some recent
competitors under the same dataset (the natural scene categorization dataset). The table
also illustrates the major characteristics of each model. Coupled with the BL priors, the
proposed model with its flexibility and efficiency was able to handle all the 15 categories in
the dataset. The batch method proposed in [2] performed on 13 categories while the online
framework in [64] used 7 classes. Nevertheless our proposed approach has provided a better
accuracy when considering the number of categories used by each method. In addition,
the collapsed representation in the SCVB-LBLA has considerably helped in the estimation.
Because the CVB is a combination of the VB (variational Bayes) and the CGS (collapsed
Gibbs sampler), our hybrid yielded deterministically (convergence due to the VB) results
(estimates) that are accurate (owing to the CGS) in online fashion.

Our online scheme through its performance could be seen as the the favored candidate
compared to the batch-based techniques by allowing data to be processed one at a time.
Therefore, the technique facilitates complex data handling while allowing a better storage
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Figure 3.12: Natural scene image Features extraction

management and computational speed.

3.5 Conclusion
In online learning scheme, we implemented a technique that used the BL instead of the
Dirichlet in the collapsed representation (that provided useful properties for stochastic
methods). As the GD (generalized Dirichlet distribution), the BL is a generalization of the
Dirichlet distribution. However, it has less parameters compared to the GD. As a result,
the BL has been seen as a good candidate for models that provide fast computations. The
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Figure 3.13: Confusion matrix of the action classes in video

Text Data CVB-LBLA CVB-LDA SCVB-LDA SCVB-LBLA
NIPS 8 min 17 min 11 min 5 min
KOS 35 min 48 min 20 min 12 min
PubMed
Central
Times

95 min 120 min 75 min 42 min

Table 3.4: Batch CVB-LBLA and the stochastic SCVB-LBLA in terms of the runtime in
minutes for different data sizes

stochastic framework we set has also provided through the performance of our new approach,
stability, accuracy in inferences, and efficiency in convergence. The SCVB-LBLA has an
improved time complexity due to the fact that it operates on minibatches in online fashion.
The scheme is memoryless, and the decay factor (learning rate) truly helps mitigating the
influence of the old data in favor of the new ones as it performs the online average technique
on the sufficient statistics of the model. Consequently, the new technique is able to provide
a solution to the memory space management’s problem often observed in the batch-based
models. All these advantages in the stochastic SCVB-LBLA are due to the flexibility of the
conjugate prior that allows both topic correlation and vocabulary analysis in these datasets.
The general covariance structure in the BL is also suitable for any data modeling within
the BoW framework. This is not the case for the Dirichlet for its limitation in case of
positively correlated datasets. Our method presented in this chapter outperforms the batch
models including the Dirichlet-based online schemes. This ultimately shows the robustness
of the new approach as it is flexible to so many data types including nonstationary datasets.
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Figure 3.14: Convergence Process between the SCVB-LBLA and its competitors using text
documents

Future work could still cover another extension to LDA that combines two different flexible
priors (Beta Liouville and generalized Dirichlet distributions, for instance) in the generative
process using the collapsed representation for both the batch and stochastic frameworks.
We could also investigate on using other powerful feature extraction schemes that could
enhance analysis for better detection, recognition, and classification.

80



0 50 100 150 200 250 300 350 400 450 500

iterations

-3.7

-3.65

-3.6

-3.55

-3.5

-3.45

-3.4

-3.35

lo
g
(P

(W
|z

))

106

CVB-LDA

CVB-LBLA

SCVB-LBLA

Figure 3.15: Convergence Process between the SCVB-LBLA and the batches using NIPS
data
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Figure 3.16: Convergence Process between the SCVB-LBLA and the batches using Natural
scenes image data
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Figure 3.17: Convergence Process between the SCVB-LBLA and the batches using Activity
Recognition data
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Figure 3.18: Action Recognition Dataset’s correlation map
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Model Inferences Classes Conjugate prior Accuracy
Fei Fei et al.
in 2005 in
[2]

LDA
(batch)

VB 13 Dirichlet: the
prior despite its
performance has
been observed to
have problems
in intra class
variation
problems and
for positvely
correlated data

76%

Bakhtiari
and
Bouguila in
2014 in [64]

LBLA (on-
line)

VB 7 Beta-Liouville
(BL), flexible
conjugate prior

64.30%

Our
proposed
work

SCVB-
LBLA
(stochastic)

CVB: this is
the current
state-of-the-
art inference
in topic model,
as it combines
the advantages
of both the
VB and CGS
[12, 13, 67, 80]

15 Beta-Liouville,
flexible conjugate
prior

76.8%

Table 3.5: Our SCVB-LBLA model and other competitors performances using the same
natural scene categorization dataset

boxing hand clapping jogging hand waving Running walking

Table 3.6: KTH Action Recognition Dataset
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Chapter 4

Efficient Integration of Generative
Topic Models Into Discriminative
Classifiers Using Robust
Probabilistic Kernels

We propose an alternative to the generative classifier that usually models both the class
conditionals and class priors separately, and then uses the Bayes theorem to compute the
posterior distribution of classes given the training set as a decision boundary. Because SVM
(support vector machine) is not a probabilistic framework, it is really difficult to implement a
direct posterior distribution-based discriminative classifier. As SVM lacks in full Bayesian
analysis, we propose a hybrid (generative-discriminative) technique where the generative
topic features from a Bayesian learning are fed to the SVM. The standard LDA (latent
Dirichlet allocation) topic model with its Dirichlet (Dir) prior could be defined as Dir-Dir
topic model to characterize the Dirichlet placed on the document and corpus parameters.
With very flexible conjugate priors to the multinomials such as GD (generalized-Dirichlet)
and BL (Beta-Liouville) in our proposed approach, we define two new topic models: the
BL-GD and GD-BL. We take advantage of the geometric interpretation of our generative
topic (latent) models that associate a K-dimensional manifold (K is the size of the topics)
embedded into a V -dimensional feature space (word simplex) where V is the vocabulary size.
Under this structure, the low dimensional topic simplex (the subspace) defines a document
as a single point on its manifold and associates each document with a single probability.
The SVM, with its kernel trick, performs on these documents probabilities in classification
where it utilizes the maximum marging learning approach as a decision boundary. The key
note is that points or documents that are close to each other on the manifold must belong
to the same class. Experimental results with text documents and images show the merits
of the proposed framework.

4.1 Introduction
Machine learning and AI (artificial intelligence) have been responsible for a wide variety of
applications such as object detection and recognition, information retrieval, and natural
language understanding and processing. These are very hot topics in the research
community. Though, object categorization has always received a particular attention from
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researchers in the area of computer vision due to the emergence of multimedia datasets
(texts, images, videos, sounds, etc) as they are increasingly becoming very complex and
difficult to handle. Building models that could fully represent or describe the intrinsic
characteristics in these collections of data while allowing easy classification has always been
one of the top objectives and challenging tasks in machine learning. In general, object
classification can be divided in two main groups in the literature: the generative approach
and the discriminative scheme [81].

These two techniques can be formulated as follows: using for instance (for now) the
variable Υ as the class label and χ as the observed data in class Υ, the discriminative
approach will directly model the posterior distribution p(Υ/χ) or estimate a function h such
that h(χ) = Υ, from the observed data [82, 38, 81]. On the other hand, generative techniques
will model both the prior distribution p(Υ) and the class conditional (likelihood function)
p(χ/Υ) separately, which is equivalent to modeling the joint distribution p(χ,Υ) before
estimating the posterior p(Υ/χ) of the class given the training set using Bayes theorem
as a decision boundary. [67, 80, 81, 38]. A real life analogy to these definitions would
be to determine for instance, the type of music someone is currently listening (song). In
this scenario, the generative approach will obviously learn about each music type (such
as classical, jazz, country, electronic, etc.) before indicating to which type of music this
particular song belongs. A discriminative method takes a much simpler and faster approach:
it does not learn any of these music types. It will only focus on showing differences
between the types of musics (similarities or dissimilarities). Consequently, discriminative
techniques do not learn the very details about models of different classes while generative
approaches do. Discriminative methods go directly to the point and often do not require
lot of computational ressources as in the case of generative schemes. This simplicity and
robustness (superior performance) in the discriminative approaches have often attracted
many researchers [11, 82, 38, 81] since their asymptotic error is even lower than the
one found in generative approaches [82]. However, generative schemes are still being
implemented in many machine learning environments for their usefullness and popularity
[11, 34, 7, 67, 80, 83, 84, 85, 86, 87, 23, 64]. This is because generative approaches (while
requiring prior information [88]) learn about the additional details about their models which
can be useful in a case of occlusion and missing data. Discriminative techniques on the
other hand do not have such flexibility when facing missing data or occlusions. Generative
techniques can compute marginals from the joint distributions. This is useful in applications
such as outlier detection or novelty detection where the model detects efficiently new data
that carry low probability and therefore very difficult to predict accurately [89]. Importantly,
during the learning process for instance, generative approaches have ability to handle many
(thousands) object categories better than discriminative classifiers [81]. Moreover, following
the work in [82], generative schemes have also proved to outperform discriminative methods
in a binary classification problem with small number of training samples. For instance, the
SVM despite its discriminative power in classification is not a probabilistic approach, and it
does not provide posterior distributions. Posterior distributions are important in Bayesian
analysis because they provide the tool to make optimal decisions in machine learning (for
instance when combining models, mimimizing risk, determining a rejection criteria that
minimizes misclassification rate, etc. [89]). Therefore, their abscence makes it difficult
to implement a Bayesian learning in SVM. In contrast, generative schemes benefit from
a Bayesian analysis. These characteristics illustrate the strengths and capabilities of each
approach. As they carry complementary advantages, it has been suggested to merge the
two methods, so that their integration guarantees improvement in performance in automatic
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object classification. It led to the emergence of hybrid (generative-discriminative) models
[11, 90, 91, 92]. Particularly, for SVM, as today’s machine learning techniques carry a strong
emphasis on Bayesian paradigm, combining generative models with the SVM classifier
remains an essentiel step to allow this classifier to implicitly take advantage of the Bayesian
learning. This has been the work of researchers such as [11] who successfully showed
the flexibility of the hybrid generative-discriminative with mixtures models where the
discriminative classifier is the SVM. The SVM heavily relies on efficient kernel formulation
in order to provide robust classification. With the high complexity in the datasets and
models, standard kernels such as linear, polynomial, Gaussian RBF (radial basis function)
are very restrictive in terms of performance. Furthermore, despite the flexibility of the
well-known Fisher kernel [93], it often lacks in preserving the nonlinearity induced by the
generative model [94]. This is an example of the necessity to utilize appropriate kernels for
better results in the hybrid, generative-discriminative models [11]. The introduction of the
Fisher kernel has been immediately followed by the work of other researchers such as [95]
and [96] who were able to combine generative features to SVM using the Kullback-Leibler
kernel and the TOP kernel derived from Tangent vectors Of Posterior log-odds (TOP),
respectively.

It is also noteworthy that recent development in the generative architecture has
witnessed the emergence of topic models [97, 98, 99, 100, 101, 102] such as LDA (latent
Dirichlet Allocation) [3, 2]. Originally implemented for text document modeling and
analysis within the BoW (bag of words), the LDA topic model is currently dominating the
area of computer vision with interesting applications related to image categorization [2],
sentiment and behaviour analysis [103], text analysis through the social CQA (Community
Answering Questions) platform [104], videos analysis [80], and 3D object modeling [41] for
retrieval systems.

One of the successes of topic modeling is the introduction of intermediate representations
within the bag of words called topics. They are low dimensional subspace representations
such that documents are now described as mixtures of topics while topics are defined
as distributions over the vocabulary words. This provides a hierarchical description
of documents with the observed data. Though, the limitation of the Dirichlet-based
topic models due to the Dirichlet (Dir) prior [23, 64, 80, 67] prompted the use of other
flexible priors such as GD and BL. These conjugate priors led to some improvement in
generative topic models as they provide robust inferences along with efficient generative
processes [23, 64, 80, 67, 18]. In addition, the collapsed representation proposed in [13] for
batch processing has shown improvement in the generative topic models implementation.
However, little work has been done in the literature to connect the generative topic model
to the SVM classifier to take advantage of its superior discriminative property based on
maximum margin learning as a decision boundary. In the generative stage, the topic features
must be generated and then in the discriminative stage, the topics are then fed to the SVM
which performs the classification. This constitutes our main objective. The generative stage
which learns the topics requires an efficient inference capable of delivering heterogeneous
topic features.

Though, many probabilistic topic models usually implement standard variational Bayes
approaches. Variational Bayes [105, 106, 23, 64, 35], despite their deterministic nature
are very limited when it comes to characterize dependency betwen topic components,
for instance to allow a better compression of the topic features, which is essential for
the performance of our SVM classifier. In the generative stage, our proposed approach
ultimately implements two robust generative topic models using asymmetric BL and GD in
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the collapsed space of latent variables. The superiority of the collapsed variational Bayes
(CVB) inference in topic modeling is enhanced by the use of these two specific conjugate
priors to the multinomials. Normally, using these two priors leads to four topic models: the
BL-BL topic model, the GD-GD-topic model, the GD-BL topic model, and finally the BL-
GD topic model. The first two topic models here (GD-GD and BL-BL) have been already
implemented in our previous work within the CVB inference [67, 80, 107] and they represent
the direct extensions to the Dir based-CVB-LDA [12]. The last two topic models (GD-BL
and BL-GD) are the ones that are subjects of implementation in this chapter. Importantly,
they also carry the CVB inference; and they represent the generative stage in the formation
of our hybrid (generative-discriminative) model. As the generative topic features must be
fed into the SVM classifier using powerful kernel functions that operate in distribution
space, we therefore provide to the SVM, a collection of nonlinear probabilistic kernels (such
as Jensen-Shannon kernel, symmetric Kullback-Leibler divergence kernel, Bhattacharyyaa
kernel, Renyi kernel, etc.) to cope with data processing in distribution space while allowing
an improved classification rate as we induce the space with the CGS (collapsed Gibbs
sampler) that operates within the variational Bayesian inference[12]. It samples from the
variational distribution in the collapsed space. The CVB corrects the bias in VB due to its
CGS and the VB fixes the deterministic limitation of CGS [12]. Due to CVB, our generative
topic features are robust, accurate and efficient [12, 13, 67, 80]. The contribution in our
proposed hybrid framework is as it follows:

• With CVB inference using asymmetric GD and BL priors simultaneously, we obtained
the BL-GD and GD-BL topic models that produce heterogeneous topic features in the
generative stage

• SVM is not a probabilistic model; however, we successfully use the kernel trick
formulation to make it operate on documents represented as topic features which
are probability distributions; SVM now assigns a class label to a previously unseen
document based on its topic distribution using its maximum margin framework.

Experimental results in image and text document classification show the efficiency of the
proposed approach in comparison to its major competitors.

This chapter is structured as follows: section 4.2 illustrates the background and related
work. Section 4.3 presents the new approach while section 4.4 covers the experiments and
results in several applications. And finally, section 4.5 emphasizes on some future work and
provides a conclusion.

4.2 Related work and background
In general, low performance in traditional machine learning techniques in applications such
as object categorization [108, 109, 100] have led to the emergence of hybrid models especially
generative-discriminative methods. This type of hybrid framework is often a combination
of two stages: the generative stage which produces the features, and the discriminative
stage which performs the classification using the features produced by the generative stage
[11]. It is noteworthy that the complexity and characteristics in data representation often
dictate the model to implement. For instance, in the past, Gaussian data dominated model
learning; however, recently, the emergence of mmultimedia data causes many processing
systems to work with count data especially text documents [3, 2, 13, 80, 67, 34, 50, 11].
Using the same analogy to modeling techniques, we can observe that in machine learning
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literature, generative models such as GMM (Gaussian Mixture Models) and HMM (Hidden
Markov Models) were very specific to Gaussian data. Despite their strong assumption on
parameters (as parametric distributions), these models have often received a lot of attention
in the research community because of their simplicity in learning and estimation; most
importantly as their functionalities were very well understood in data science [110]. So,
the recent proliferation of count data led to the introduction of other generative models
such as Beta-Liouville mixtures, generalized Dirichlet mixtures [7, 80, 67], Dirichlet process
mixtures [39, 34, 62], and finally topic models considered as a new class of generative
approaches [3, 2, 18, 64, 35, 67, 80].

Two main groups define topic models [98, 111] in the literature. We have probabilistic
models (PLSA (probabilistic latent semantic analysis) and LDA) and non-probabilistic
topic models such as latent semantic analysis (LSA), matrix factorization, and non-negative
matrix factorization (NNMF) [112, 97]. The early success of probabilistic models especially
LDA has led to other extensions to enhance the flexibility of LDA. They represent LDA-
based topic models. Methods such as Patchinko Allocation topic model [20], correlated
topic model [113, 114, 8], supervised topic model [115, 92, 116, 117, 118], dynamic topic
model [119, 101, 120, 121], hierarchical topic model [122], spherical topic model [123], all
characterize these alternatives provided to the LDA architecture. Currently, within the
framework of LDA-based topic models, the advancement of social media platforms [124]
and online services such as Q&A (questions and answers)[104] communities are having
some serious impacts on extensions such as dynamic topic model [125, 126, 124, 101, 120],
correlated topic model [114, 113], supervised topic model, and online topic model schemes
[127, 128, 129, 130, 107]. Current topic models also provide improvement in semantic
analysis [102, 109, 131, 132, 101] to enhance coherence in the topics estimated and
the relationship between documents [133]. Some current hot topics in research (within
topic modeling framework) include social network analysis, bioinformatics [134], emotion,
sentiment analysis [125, 135, 126], and information retrieval [136, 41]. It is important to
notice that the generative setting, through the BoW representation including its derivates
and topic models, have provided tremendeous success in computer vision for object learning
and categorization [2, 137, 138, 139, 67, 80]. Typical to generative techniques, probabilistic
topic models use extensively prior information with distributions such as Dirichlet, Beta-
Liouville, and generalized Dirichlet [81, 3, 12, 36, 140, 34, 7].

Particularly, the immediate success of the well-known topic models such as PLSI
(probabilistic latent semantic indexing) or PLSA(probability latent semantic analysis)
[33] and LDA in text document processing and analysis has been well received in the
research community; especially, with the tremendous contributions of LDA in both text
and visual document annotation and categorization [141]. As a parametric model and
a generarative probabilistic technique initially implemented for topic discovery in large
document collections [142], LDA [3] characterizes documents as mixtures of topics while
the topics are themselves mixtures over the vocabulary words. By observing the LDA
architecture, we can conclude that a very important attribute of topic models (PLSI [33]
and HDP (hierarchical Dirichlet process) [14]) is their ability to operate on distribution space
where their topic structures (latent variables) are defined as distributions summarizing the
characteristics of the dosuments. They produce multinomial distributions over the topics
given the data.

There has been a huge interest in providing extensions within the generative topic model
framework by utilizing the flexibility of operating in distribution space. For instance, the
work of [143] successfully builds a nonparametric topic model by replacing the document
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multinomial mixture model in LDA with the kernel density estimator. It is a way of solving
the discretization problems related to the clustering and quantization processes during the
codebook formation in topic model. It provides a framework that implicitly works on
continuous feature space rather than discrete features space in topic modeling. Furthermore,
authors in [41] propose a multitopic model with a model selection criteria that solves the
problem of predefining a fixed number of topics for 3D object retrieval using the Kullback-
Leibler divergence between 3D objects distributions within the BoW. Therefore, improving
the characteristics of generative topic models coupled with the possibilities offered by
working with distributions became subjects of discussions in the research community as well
for tasks such as classification. The motivations include the possibility of carrying potential
properties of generative topic models into discriminative classifiers to boost classification
performance. This is because a recent development in discriminative setting through kernels
formulation also allows SVM to perform with input features that are fully represented as
distributions [144]. As a result, due to the success of LDA, recent works in machine learning
and computer vision are able to provide extensions that combine LDA with discriminative
classifiers [144, 145, 141]. For instance, authors in [144] provide a way of extracting latent
features from probabilistic topic models in distribution space. The features are then used
by the SVM for classification. Their topic model (LDA) is implemented within a Bayesian
nonparametric setting using HDP (hierarchical Dirichlet process) for model selection. It
leads to a topic model kernel that is robust for classification with the SVM. The work in [145]
implements kernel topic models where it provides an extension to topic models by replacing
the document mixture weights with Gaussian distributions leading to a Bayesian inference
based on latent Gaussian. As a Gaussian process latent variable model, the technique is
a combination of Gaussian process regression and LDA topic model in a nonparametric
setting. In addition, authors in [141] were able to successfully perform classification on high
spatial resolution remote sensing images using the LDA topic model with a kernel-based
SVM that utilizes a combination of RBF or Gaussian kernels. In [67, 80], the authors
provide alternatives to the LDA topic model [3] and LGDA (latent generalized Dirichlet
allocation) [23] in a classification framework where they combine unsupervised learning (for
the topics estimation) to a supervised technique by implementing generative classifiers for
the topics similar to the work in [2]. An online version of the Naive Bayes classifier has been
proposed within topic modeling environment by the same authors in [107]. In supervised
learning, there have been extensive works using hybrid (generative-discriminative) models.
Hybrids in general are able to demonstrate that the performance in discriminative models
using SVM always depends on the characteristic of the generative features (data) and the
choice of the kernels used [81, 110]. Standard kernels such as Gaussian, linear, polynomial
were heavily utilized in the past in classification problems with success. This is the
case of hybrids that implement for instance GMM or HMM into discriminative classifiers
(SVM) using standard kernels [110] with excellent results in object categorization. The
complexity in today’s data and models characteristics are requesting a new generation of
kernels that can cope with the challenge added to the fact that there is a huge interest
in working with distributions nowadays. This automatically leads to the introduction of
probabilistic kernels. Their flexibility allows a better generalization of the SVM. The SMM
(support measure machine)[146] and latent SMM [147] are true examples that illustrate
this generalization capabilities of the SVM: they currently represent one of the state-of-
the-art techniques for object classification using distributions within the BoW framework
in discriminative settings. However, originally, the Fisher kernels proposed by Jaakola and
Haussler [93] catalyzed the emergence of kernels for probabilistic generative models used in
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discriminative classifiers today. Another kernel is the TOP kernel derived from the Tangent
vectors Of Posterior log-odds. These two kernels (Fisher and TOP) were successfully used
in DNA (Deoxyribonucleic acid) and protein sequence analysis (classification) [96, 93].

Other recent hybrids as they exhibit the flexibility of their generative models (based on
Beta-Liouville and generalized Dirichlet mixtures) in discriminative classifiers (SVM) have
reported similar success in image categorization [11, 44] while using probabilistic kernels.
Despite the major contributions shown by previous and some recent schemes, they still
carry some limitations. For instance, as we emphasize on topic models in this chapter, the
Dirichlet conjugate prior often affects LDA’s performance for positively correlated data.
This is because it has a very restricted covariance structure compared to GD and BL
that are more flexible [23, 35, 80, 67]. Many topic models in the literature are LDA-
based. This could have a negative impact on the generative process and inferences [67, 80]
in Dirichlet-based topic models such as LDA. In addition, the possibility of using topic
models in discriminative classifiers has created many extensions within the nonparametric
setting to account for efficient model selection and processing. However, working with
nonparametric models could be very challenging as they require operation or modeling in
infinite dimensional spaces. For instance, in [145], the kernel topic model implemented is
a Gaussian process latent variable model based on LDA. It has a very complex inference
as the framework is not analytically tractable. Similar challenges are noticed in inferences
in the work of [144] with the implementation of the HDP in LDA model as it sets the
number of latent factors or topics into infinite. Furthermore, the SMM and latent SMM
[146, 147] have also provided insights on the possibilty of using the concept of distributions
within the discriminative platform itself. They have good mathematical foundations and
formulations about the space that could allow such implementations as they apply their work
in the RKHS (reproducing kernel Hilbert space) that is equipped with an embedding kernel
and inner product; however, these techniques in overall could be very complex and require
knowledge of vector spaces such as Hilbert spaces which are generalizations of the Euclidean
space in finite or infinite dimension. These methods are not hybrids of the type generative-
discriminative. They are dedicated discriminative classifiers working indirectly (implicitly)
on distributions by using standard kernels in the RKHS [146, 147] where the probability
distributions are represented as mean embeddings [146]. Because these methods operate on
standard kernels, nonlinear probabilistic kernels such as symmetric KL (Kullback-Leibler)
divergence could not be defined directly on the RKHS because of the inner product operation
on the Hilbert space.

As we consider all the different characteristics within previous methods that include
generative models, (especially topic models), discriminative approaches using SVM, kernels,
and hybrid (generative-discriminative) techniques, we propose, in this chapter, an extension
in topic modeling framework using finite mixtures, similar to LDA. We especially implement
a new approach (hybrid method) that integrates the flexibility of our generative topic model
into a powerful discriminative classifier (SVM). It is equipped with well-defined nonlinear
probabilistic kernels that allow analysis in distribution space using empirical likelihood (EL)
framework for generative topic models in SVM. Within our proposed approach, the use of
EL provides distribution estimations. Importantly, with a combination of two different
priors (asymmetric GD and BL) used simultaneously within the same generative process,
our proposed method introduces a collapsed representation through the collapsed variational
Bayesian inference that allows estimation of exact posteriors and easy access to convergence.
Most previous generative topic models are either variational-based inference [148] techniques
(provide convergence, but posterior estimations are often not exact [105, 106, 12]) or
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collapsed Gibbs sampling-based methods (posterior distributions estimations are exact;
however, they suffer from convergence [12]). In contrast, our proposed generative topic
model is obtained from a combination of two inferences: VB and CGS. It follows the work
in [12] which introduced the CVB (collapsed variational Bayesian inference) for LDA. It is
one of the state-of-the-art inferences in topic modeling. Though, because of the limitations
of the Dirichlet distribution in LDA [23, 64, 35], we provide alternatives with the use of
Beta-Liouville and generalized Dirichlet conjugate priors.

The generative topic model in our proposed approach, because, based on LDA,
automatically introduces hierarchies in the observed data with the use of topics as
intermediate representations. So, the topic representation in our proposed method
could be for instance an alternative to generative models using Beta-Liouville mixtures
and generalized Dirichlet mixtures [7]. Using our proposed framework with nonlinear
probabilistic kernels, we obtain a system that finally gives us tools to represent any object
or document as a distribution parameterized by two mean variables: the document-topic
parameter and the topic-word parameter.
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Figure 4.1: Generative stage using topic (latent) graphical model. The shaded circle denotes
observed variables x and the class c

.

4.3 Proposed Approach
We implement a classification framework where the classifier, the SVM, gets its features
from our generative topic models which simultaneously use asymmetric BL and GD
as conjugate priors to the multinomial distributions. Documents (images, texts) are
first represented as distributions using characteristics of our generative topic models,
and then they are presented to the support vector machine for classification. This
setting ultimately constitutes our generative-discriminative method that utilizes nonlinear
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probabilistic kernels. The generative topic models implemented in this chapter follow the
graphical representation previously proposed in [80, 67, 2, 107] for object classification
using intermediate representations such as topics [2] as shown in Fig. 4.1. Based on the
LDA architecture [3], the extensions (generative topic models) we are also providing in this
chapter are a result of sampling documents and corpus parameters using asymmetric GD
and BL priors, simultaneously. In this scenario, the proposed generative process uniquely
offers the possibility to either 1) draw the documents parameters from the BL while the
corpus parameters are sampled from GD or 2) sample the documents parameters from
GD while the corpus parameters are drawn from the BL distribution. This leads to the
implementation of two topic models in our proposed generative framework.

4.3.0.1 Research objectives

Many techniques related to classification using the hybrids, generative topic models-
discriminative methods do not always fulfill the following requirements: 1) The flexibility
and the structure (symmetric or asymmetric) of the prior 2) the robustness of the generative
process including inference techniques and 3) the choice of kernels. In a supervised topic
modeling, these characteristics and requirements are intimately related to each other [9].
However, many hybrid techniques using topic models are just partially robust because
they lack some of these essential requirements. In our proposed method, we are mainly
implementing a system of integration that takes into account each of these requirements
where we provide a combination of much capable and flexible priors (than the Dirichlet)
that first helps improving the generative process and inferences.

A much improved inference technique is essential for an accurate parameter estimation
that increases the coherence and robustness of our generative features and kernel functions
formulation. This is the essence of our hybrid model as we formulate a complete framework
where we combine two different and flexible priors (BL and GD) within the collapsed
variational inference that enables robust generative features for our kernel machine. In
addition, the flexibility of our priors and inferences allow us to handle with efficiency inter
and intraclass variation problems due to the ability of our method to deal with correlation
and semantic analysis effectively. And this includes the possibility of working with a variety
of datasets.

Our proposed method in its hybrid setting guarantees the best generative topic model
and the best discriminative method as we also believe that the SVM is the appropriate
candidate in large scale processing compared to the standard Naive Bayes classifier widely
used in classification framework that implements topic models [2].

4.3.0.2 Beta-Liouville and generalized Dirichlet distributions

The generalized Dirichlet (GD) distribution was already introduced and defined in [80, 67,
64]. In this chapter, we also present the Beta-Liouville (BL) distribution (another flexible
conjugate prior with a more versatile covariance structure) [35, 64, 11, 7]. Compared to
LDA [3], both priors (GD and BL) are now replacing the Dirichlet distribution in topic
modeling. We also emphasize on the use of asymmetric priors compared to symmetric ones
as they have a direct impact on the robustness of the generative topic models [9].

In a (K + 1)-dimensional space, the BL distribution with parameters ε =

92



(α1, ..., αK , α, β) also written as BL(ε) could be defined as:

p(P⃗ |ε) =
Γ
(∑K

k=1 αk
)

Γ (α+ β)
Γ (α) Γ (β)

×
K∏
k=1

Pαk−1
k

Γ (αk)

(
K∑
k=1

Pk

)α−
∑K

k=1 αk
(

1−
K∑
k=1

Pk

)β−1

(124)

where P⃗ = (P1, ..., PK) is a K-dimensional random variable. Using the notion of conjugate
prior to the multinomial, if P⃗ = (P1, ..., PK) follows a Beta-Liouville distribution with
parameter θ while the vector of counts X⃗i = (X1, ..., XD+1) is drawn from a multinomial
distribution with parameter P⃗ , then the posterior distribution p(P⃗ |ε, X⃗i) is also a Beta-
Liouville. It therefore leads to the following updates in the posterior distribution p(P⃗ |ε, X⃗i).⎧⎪⎪⎨⎪⎪⎩

α′
k = αk +Xk

α′ = α+
∑K
k=1Xk

β′ = β +XK+1

(125)

As previously mentioned, the implementation of our proposed approach using two
conjugate and asymmetric priors (BL and GD) simultaneously, leads to two generative
topic models: the first model draws the document parameter from GD while the corpus is
sampled from the BL. In addition, it uses the collapsed variational inference (CVB), that is
one of the state-of-the-art inference techniques in topic modeling [80, 67, 12]. We call it the
CVB-GD-BL-based topic model or topic model I. On the other hand, similarly, the second
method uses BL for the document parameter and GD for the corpus parameter within the
CVB inference leading to CVB-BL-GD-based topic model. This is topic model II.

4.3.0.3 Generative Processes

LDA is recognized as the simplest topic model where each document is is a mixture of
K topics in different proportions. Documents while being maintaing K topics in different
proportions must belong to same class. This to characterize the observe data. Though in
our proposed approach, we the BL and GD priors replace the Dir distribution. For instance,
in the GD-BLtopic model, the generative process is now expressed as follows:
1-We draw topics from φk ∈ BL(ζ) for k ∈ {1, 2, 3, ...,K} where ζ = (λkv, ..., λkV , λ, η)
2-We draw each document j ∈ {1, ..., D}

(a) Draw topic proportions θc ∼ GD(ε)
where ε = (αc1, βc1, ..., αcK , βcK) and c ∈ {1, 2, ..., C}
(b) For each word x ∈ {1, ..., N}

i) Draw topic assignments
zjn ∼ Multinomial (θcd)

ii) Draw word
xjn|zjn, φk ∼ Multinomial (φkzjn)

We could therefore provide a generative of the BL-GD-topic model as well following the
same scheme.

4.3.1 CVB-GD-BL-based topic model

Using concepts such as patches for images [80, 67] (similar to words for text analysis)
within the BoW, we implicitly elaborate on document representation as visual features in
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topic modeling framework. In contrast to the standard Naive Bayes classifier for topic
modeling, we simply implement in our proposed approach an improved supervised topic
model that uses SVM in single-label classification problems. One major contribution is that
our proposed method is ultimately done with (a combination of) better priors that provide
much flexible generative processes leading to robust inferences and generative features for
our kernel functions formulation. In this framework, we can use the variable X and W
interchangeably to denote the collection of words or patches (visual words) in a document
or object within the BoW.
4.3.1.1 Bayesian inference using asymmetric GD and BL priors

From the work presented in [80, 67], the generative equation in the fully collapsed space is
given by:

p(X , z|ε, ζ, c) =
∫
θ

∫
φ
p(X , z, θ, φ|ε, ζ)dφdθ (126)

Due to the prior conjugacy between both GD and BL with respect to the multinomial
distribution, Eq. 126 becomes easy to compute as it is now expressed as a product of
Gamma functions. As a result, the generative equation of the proposed model in the
collapsed space of latent variables is:

p(X , z|ε, ζ, c) =
D∏
j=1

[
K∏
i=1

Γ (αci + βci)
Γ (αci) Γ (βi)

]

×
[
K∏
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Γ (α′
ci) Γ (β′

ci)
Γ (α′
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ci)
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Γ
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)

Γ (λ+ η)

Γ (λ) Γ (η)
∏V
r=1 Γ (λr)

⎤⎦
×

⎡⎣Γ (λ′) Γ (η′)
∏V
r=1 Γ (λ′

r)
Γ
(∑V

r=1 λ
′
r

)
Γ (λ′ + η′)

⎤⎦ (127)

The equation provided by the joint p(X , z|c, ε, ζ) finally shows some updates due to the
multinomial distributions. In the document-topic update in class c, we have:

α′
ci = αci +N i

j(.) β′
ci = βci +

K+1∑
l=i+1

N l
j(.) (128)

In the topic-word update, it shows:⎧⎪⎪⎨⎪⎪⎩
λ′
r = λr +N i

(.),r
λ′ = λ+

∑V
r=1N

i
(.),r

η′ = η +N i
(.),V+1

(129)

From this point, performing a Bayesian inference in the fully collapsed space is equivalent to
approximating the conditional distribution of the latent variable p(z|X , ε, ζ). By integrating
out the parameters, the collapsed Gibbs sampler’s equation is obtained as an expectation
expression:

p(zij = k|X , ε, ζ, c) =
Ep(z−ij |X ,ε,ζ,c)[p(zij = k|z−ij ,X , ε, ζ, c)] (130)
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such that:

p(zij = k|z−ij ,X , ε, ζ, c) ∝⎡⎣(N−ij
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Normalizing the distribution above leads to a posterior probability defined as:

p(zij = k|z−ij ,X , ε, ζ, c) = A(k)∑K
k′=1A(k′)

(132)

such that:
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⎤⎦ (133)

4.3.1.2 CVB inference with asymmetric priors

In general, the main goal in Bayesian inference is the estimation of models hidden variables
(models parameters and latent variables). This is equivalent to computing the joint posterior
distribution p(z, θ, φ|X , ε, ζ, c). Though, the posterior distribution in topic modeling
framework is often intractable because the denominator of the posterior equation, the
normalizing factor, is not tractable. This normalizing factor is the marginal likelihood.
Therefore, inference techniques such as VB and CGS from MCMC (Markov chain Monte
Carlo) are often used for hidden variables estimations.

The collapsed varitational Bayesian inference implemented in our proposed approach
is essentially a VB in the collapsed space of latent variables induced by the CGS (Eqs.
130 to 133). As usual, performing VB inference is equivalent to introducing a set of
variational distributions (exponentional family) Q̂(z, θ, φ) that minimize the Kullback-
Leibler divergence (KL) between the joint variational distribution Q̂(z, θ, φ) and the true
joint posterior distribution p(z, θ, φ|X , ε, ζ, c). The scheme also introduces a lower bound
(evidence lower bound or ELBO) to the log marginal likelihood log p(X|ε, ζ, c). And
maximizing the ELBO is equivalent to minimizing the KL(Q̂(z, θ, φ)|| p(z, θ, φ|X , ε, ζ, c)).
The lower bound (ELBO) to the log marginal likelihood can be considered as an upper
bound (negative ELBO) to the negative log marginal likelihood. So instead of maximizing
the ELBO, we could minimize the negative ELBO. This negative ELBO is a functional
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acting on the joint variational posterior distribution following the work in [12]. It is called
variational free energy (F̃ (Q̃)) in the joint space and F̂ (Q̂) in the collapsed space).
In CVB, minimizing the variational free energy with respect to Q̂(θ, φ|z) and then with
respect to Q̂(zij |ψ̂ij) leads to F̂ (Q̂(z)) such that:

F̂ (Q̂(z)) ≜ min
Q̂(θ,φ|z)

F̂ (Q̂(z)Q̂(θ, φ|z)) =

EQ̂(z)[− log p(X , z|ε, ζ)]−H (Q̂(z))
(134)

Following the work in [80, 67, 107, 13, 12] and using Eqs. 131, 132, and 133, the minimization
of the functional F̂ (Q̂(z)) in Eq. 134 with respect to the variational distribution ψ̂ijk finally
gives the following CVB update equation using the Gaussian approximation:

ψ̂ijk = Q̂(zij = k) ∝
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×
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such that:
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where:
EQ̂[N−ij

jk. ] =
∑
i′ ̸=i ψ̂i′jk; EQ̂[N−ij

jk. ] =
∑
i′ ̸=i ψ̂ijk(1 − ψ̂i′jk) in a class. The superscript −ij

means all the words except the word ij. It is important to notice that this update equation in
CVB is the result from implementing a topic model (CVB-GD-BL-based topic model) where
the document and corpus parameters are drawn from asymmetric GD and BL, respectively.

4.3.1.3 Predictive distributions from the CVB-based topic model

After the sampling process reaches a stationary distribution (convergence), the model
parameters that have been initially marginalized out in the fully collapsed space are now
estimated. For large samples [13, 12], the document predictive distribution in our proposed
CVB-GD-BL topic model is therefore given by:

θ̂cjk =

(
αck + EQ̂[Njk.]

) (
βck +

∑K+1
l=k+1 EQ̂[Njl.]

)
(
αck + βck +

∑K+1
l=k EQ̂[Njl.]

) (137)

Conditional on the topic k, the predictive distribution of the words φkv is:

φ̂kv =

⎛⎝(λ+ EQ̂[N.k.])(λv + EQ̂[N.kxij ])
(λ+ η +

∑V+1
r=1 EQ̂[N.krij ])

⎞⎠⎛⎝ (η + EQ̂[N.k(V+1)ij ])
(EQ̂[N.k.] +

∑V
r=1 λr)

⎞⎠ (138)
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Following estimation of the predictive distributions (model parameters), the empirical log
likelihood could be computed since it is defined as:

p(Xj |θcj , φ, ε, ζ) =
∏
ij

∑
k

θ̂cjkφ̂kx (139)

following the work in [42], [12], [18] such that the following expected counts, EQ̂[Nj..],
EQ̂[N.k.], EQ̂[N.k(V+1)ij ], EQ̂[Njk.], EQ̂[N.kxij ], and EQ̂[N.krij ] of the unseen document are
obtained from the CVB-GD-BL sampling process. The parameters of the unseen document
are then used to predict its likelihood. The EL implemented in this chapter ultimately
follows the work in [18, 12, 80].

4.3.2 The CVB-BL-GD-based topic model

Using the framework in [80, 67, 107, 12] and the derivations obtained from subsection 4.3.1
in this chapter, the generative equation in the collapsed space (for M documents and K
topics) in our second proposed topic model is:

p(X , z|ε, ζ, c) =
M∏
j=1

⎡⎣Γ
(∑K

i=1 αci
)

Γ (αc + βc)

Γ (α) Γ (βc)
∏K
i=1 Γ (αci)

⎤⎦
×

⎡⎣Γ (α′
c) Γ

(
β

′
c

)∏K
i=1 Γ (α′

i)

Γ
(∑K

i=1 α
′
i

)
Γ (α′

c + β′
c)

⎤⎦
×

M∏
j=1

[
K∏
i=1

Γ (λr + ηr)
Γ (λr) Γ (ηr)

K∏
i=1

Γ (λ′
r) Γ (η′

r)
Γ (λ′

r + η′
r)

]
(140)

where the document-topic update in a class is:⎧⎪⎪⎨⎪⎪⎩
α′
ci = αci +N i

j,(.)
α′
c = αc +

∑K
i=1N

i
j,(.)

β′
c = βc +NK+1

j,(.)

(141)

The topic-word update is:

λ′
r = λr +N i

(.),r η′
r = ηr +

V+1∑
d=v+1

N i
(.)d (142)

In the collapsed space, as we integrate out the parameters, the collapsed Gibbs sampler’s
equation is computed as follows:

p(zij = k|z−ij ,X , ε, ζ, c) ∝ [(αck +Njk.)]

×
[

(λv +N.kvij )(ηv +
∑V+1
d=v+1N.kdij )

(λv + ηv +
∑V+1
d=v N.kdij )

]
(143)

So, normalizing the distribution above provides a posterior probability defined as:

p(zij = k|z−ij ,X , ε, ζ) = A(k)∑K
k′=1A(k′)

(144)
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such that:

A(k) = (αck +Njk.)
(λv +N.kvij )(ηv +

∑V+1
d=v+1N.kdij )

(λv + ηv +
∑V+1
d=v N.kdij )

(145)

Following similar steps in subsection 4.3.1, we reach the final variational update for the
CVB-based framework in the second generative topic model where we use the BL and GD
for document and corpus parameters, respectively:

ψ̂ijk = Q̂(zij = k) ∝ {[(
αck + EQ̂[N−ij

jk. ]
)]

×

⎡⎣
(
λν + EQ̂[N−ij

.kνij
]
) (
ην +

∑V+1
d=ν+1 EQ̂[N−ij

.kdij
]
)

(
λν + ην +

∑V+1
d=ν EQ̂[N−ij

.kdij
]
)

⎤⎦
× exp

⎛⎝− V arQ̂

(
N−ij
jk.

)
2(αk + EQ̂[N−ij

jk. ])2

⎞⎠
× exp

⎛⎝− V arQ̂

(
N−ij
.kνij

)
2(λν + EQ̂[N−ij

.kνij
])2

⎞⎠
× exp

⎛⎜⎝− V arQ̂

(∑V+1
d=ν+1N

−ij
.kdij

)
2
(
ην +

∑V+1
d=ν+1 EQ̂[N−ij

.kdij
]
)2

⎞⎟⎠
× exp

⎛⎜⎝ V arQ̂

(∑V+1
d=ν N

−ij
.kdij

)
2
(
λν + ην +

∑V+1
d=ν EQ̂[N−ij

.kdij
]
)2

⎞⎟⎠
⎫⎪⎬⎪⎭ (146)

The parameters estimates for the topic model is as follows:

θ̂cjk =

(
αck + EQ̂[Njk.]

)
(
EQ̂[Nj..] +

∑K
i=1 αci

) (147)

The predictive distribution of the words φkw is:

φ̂kv =

(
λv + EQ̂[N.kvij ]

) (
ηv +

∑V+1
d=v+1 EQ̂[N.kdij ]

)
(
λv + ηv +

∑V+1
d=v EQ̂[N.kdij ]

) (148)

4.3.3 Discriminative framework: SVM, kernels, and discrete distribu-
tions

A probability kernel is defined as the mapping K : P ×P → R with P defined as the
space of probability distributions [149].

For instance, let Xi = {xi1, xi2, ..., xiM} and Xj = {xj1, xj2, ..., xjM} be two sequences
of vectors for two multimedia objects Xi and Xj , respectively. Then, each object is
associated with its probablility density function p(x|Ωi) and q(x|Ωj), respectively. These
are parametric distributions such that Ωi is the parameter for object Xi while Ωj is
the parameter for object Xj . When implementing topic models especially in computer
vision, the bag of visual words scheme leads to the discretization of the continuous visual
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features space as we perform clustering and quantization methods for the elaboration of
the codebook [143, 144]. This discretization causes the reformulation of the kernels using
discrete distributions instead of PDFs (probability density functions).

For our generative topic model framework in the collapsed space, we recover the
parameters through sampling process of the topic assignments z. Let Ω be defined as
Ω = {θc, φ} such that θc is 1 × K vector (document-topic parameter) and φ is a K × V
(word-topic) parameter for the corpus such that its entries are φkv from φ = {φkv}. Let
Ω̂ be the estimate of Ω such that Ω̂ = {θ̂c, φ̂}. With Ω̂, we can efficiently represent
the PMF (probability mass function) of each document Xj . In other words the SVM
carries the generative predictive distributions for each document obtained by marginalizing
out the topic model parameters. With documents in the generative stage equipped with
probabilities (Eq. 139), we can define the different probabilistic kernels in the following
section. Let P and Q be two distributions defined on the space ∆ such that p(x) and q(x)
represent the densities of P and Q, respectively. For our supervised topic model framework
using SVM, we replace the kernel formulation in the standard (original) feature space by
the one in the distribution space that accounts for topic generative features as shown in:

K (Xi,Xj)⇒ K (P,Q) (149)

There have been many ways of characterizing the generative structure (features) in topic
models. For instance authors in [41] in 3D object retrieval system use the LDA document
topic proportions θ and the KL divergence to compute the distance between two 3D objects.
In their work, the topic proportions θ represent an object. However, in [127], authors
implement the Jensen-Shannon divergence by considering the topics φk themseleves to
evaluate the change in topics between two successive time slices. Similar choice is suggested
in [130] where authors define the topic as a vector of probabilities over the space of words
and then formulate the KL divergence between two topic distributions to assess their
dissimilarity.

As topic mixtures are parameterized by θc while the topics themselves are parameterized
by φ, we decide in our proposed approach to parameterize each document with both θc and
φ. This representation is in line with the definition of a document in topic modeling which
is described as a mixture over topics where each topic is a mixture over the vocabulary.
Therefore, each discrete document multinomial distribution fed to the SVM could be
described by Eq. 139 as a PMF parameterized by θcj and φ .

4.3.3.1 The Kullback-Leibler kernel

Based on information divergence measures (where the measure here is the KL divergence),
this probabilistic kernel computes the dissimilarity between two probability density
functions p(x|Ωi) and q(x|Ωj) defined on the support (space) ∆:

DKL(P,Q) =
∫

∆
p(x|Ωi) log

(
p(x|Ωi)
q(x|Ωj)

)
dx (150)

The KL divergence between P and Q (KL(P ||Q)) could be seen as the additional amount
of bits needed to encode samples from P distribution using a Q distribution-based code
[130, 89].
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From the KL divergence measure, we can evaluate the symmetric KL divergence as:

DSKL(P,Q) =
∫

∆
p(x|Ωi) log

(
p(x|Ωi)
q(x|Ωj)

)
dx

+
∫

∆
q(x|Ωj) log

(
q(x|Ωj)
p(x|Ωi)

)
dx (151)

For discrete probability distributions P (x) and Q(x), we can reformulate DKL(P,Q) over
the support ∆ as:

DSKL(P,Q) =
∑
x∈∆

P (x) log
(
P (x)
Q(x)

)
+
∑
x∈∆

Q(x) log
(
Q(x)
P (x)

)
(152)

Once the symmetric KL divergence measure is defined, the KL kernel [110] is estimated by
exponentiating the symmetric KL divergence.

K (Xi, Xj)⇒ K (P,Q))⇒ exp (DSKL(P,Q)) (153)

4.3.3.2 The Jensen-Shannon kernel

It is based on Jensen-Shannon (JS) divergence [150] as it measures the similarity between
two distributions. The JS divergence between distributions P and Q is defined as:

JS(P ||Q) = H [υP + (1− υ)Q]− υH [P ]− (1− υ)H [Q] (154)

with υ a parameter and H [P ] the Shannon entropy of P over the space ∆ is H [P ] =
−
∫

∆ p(x|Ωi) log p(x|Ωi)dx such that p is the density of distribution P . A discrete
formulation of the Shannon entropy is:

H [P ] = −
∑
x∈∆

P (x) logP (x) (155)

The Jensen-Shannon kernel is obtained by exponentiating the JS divergence.

KJS(P,Q) = exp(−aJS(P ||Q)) (156)

The JS could also be formulated using the KL by setting g(x) = 1
2p(x)+ 1

2q(x) with υ = 1/2

JS(P ||Q) = 1
2KL(P ||G) + 1

2KL(Q||G) (157)

4.3.3.3 The Bhattacharyya kernel

It is a member of the probability product kernel (PPK) family [151] that is defined as:

Kρ(P,Q) =
∑
x∈∆

P (x)ρQ(x)ρ (158)

such that ρ is a parameter. Following the formulation in Eq. 158, we can define the
Bhattacharyya kernel [152] as a PPK at ρ = 1

2 :

K 1
2
(P,Q) =

∑
x∈∆

√
P (x)

√
Q(x) (159)
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However, when ρ = 1, the PPK becomes the expected likelihood kernel, also called the
correlation kernel as it measures the corelation between two distributions such that:

K1(P,Q) =
∑
x∈∆

P (x)Q(x) (160)

Because it is related to traditional linear kernels, the correlation kernel is called probabilistic
linear kernel [149].

4.3.3.4 The Renyi kernel

Straight from the Shannon entropy theory, the Renyi kernel is based on the Renyi divergence
measure of order σ:

Dσ(P ||Q) = 1
σ − 1 log

∑
x∈∆

P (x)σQ(x)1−σ (161)

where σ > 0 and σ ̸= 0
By exponentiating the symmetric Renyi divergence, it leads to the Renyi kernel that is
defined as: KR(P,Q) = exp{−a(Dσ(p(x|Ωi)||q(x|Ωj)) +Dσ(q(x|Ωj)||p(x|Ωi))}
where a > 0.

KR(P,Q) =

⎡⎣log
∑
x∈∆

P (x)σQ(x)1−σ

⎤⎦⎡⎣log
∑
x∈∆

Q(x)σP (x)1−σ

⎤⎦ a
1−σ

(162)

The Renyi divergence is a generalization of the KL divergence, and both are identical when σ
→ 1. In addition, the Renyi kernel becomes a PPK when a = 1−σ

2 . It also a Bhattacharyya
kernel for σ = 1

2 .

4.3.4 Time and memory complexities

The time and memory complexity have been presented in many topic model publications
[95, 153, 18, 12, 80, 89]. Though the work of [153] provided the most extensive details about
time and memory complexities when processing large collections under LDA. Following the
work in [153] For D documents containing each N words from a vocabulary of size V , in
a particular class c, we obtain a D × V matrix where NN0 is the total number of nonzero
elements in this document-word (sparse) matrix. During the formation of K topics, it
involves placing a K + 1-dimensional variational distribution on every word leading to
a K × NN0 matrix. The parameter estimation provided the predictive document-topic
distribution θcj of size K × D and the topic-word predictive distribution of size K × V .
CVB-LDA carries K×NN0 matrix along with two copies ˆtheta and φ̂ one for the inference
and the second one for the correction factor using the variance. This leads to a time
complexity of O(ξ× 2×K ×NN0) where ξ is the extra cost for the exponential correction
factor. The brute space complexity is around O(K × 2× (V +D) +NN0)

In SVM, we carry M documents of size 1 × K for each class. Let’s call M the
documents/topics pairs during the training stage. The time complexity of SVM is O(M3)
while the memory complexity is O(M2) where M ≤ D Though due to the flexibility of
GD and BL in pruning out irrelavant topics, we usually obtain K ′ ≤ K, K ′′ ≤ K and
V ′ ≤ V , V ′′ ≤ V under BL and GD. Therefore the memory and time complexities are
improved. For instance in CVB-GD-BL(topic Model I ), we have its memnory complexity
as O(ξ × 2 × (K ′ × NN0) O(K ′ × 2 × (V ′ + D) + NN0). We could obtain the memory
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Table 4.1: Models time complexities

Models Time complexity

L O(ξ × 2×K ×NN0)
S O(M3)
L+S O(ξ × 2×K ×NN0) + O(M3)
I O(ξ × 2× (K ′′)×NN0)
II O(ξ × 2× (K ′′)×NN0)
I + S O(ξ × 2× (K ′)×NN0) + O(M3)
II + S O(ξ × 2× (K ′′)×NN0) + O(M3)

Table 4.2: Models memory complexities

Models Memory complexity

L O(K × 2× (V +D) +NN0)
S O(M2)
L+S O(K × 2× (V +D) +NN0) + O(M3)
I O(K ′ × 2× (V ′ +D) +NN0)
II O(K ′′ × 2× (V ′′ +D) +NN0)
I + S O(K ′ × 2× (V ′ +D) +NN0) + O(M2)
II + S O(K ′′ × 2× (V ′′ +D) +NN0) + O(M2)

and time complexities of topic topic Model II just by using K” and V ′′ which the reduced
versions of the vocabulary and topics.
LDA does not have ability for to retain the most relevant topics due to its Dirichlet prior.
It leads to O(ξ × 2×K ×NN0) O(K × 2× (V +D) + NN0) for LDA as shown in [153].
Here are the tables (above) that recapitulate time and memory complexities of the proposed
approach compared to the standard LDA. In Tables 4.1 and 4.2, L=LDA, S=SVM, I= topic
Model I, and II=topic Model II.

We can see that under the time and memory complexities, the LDA is slower and uses a
lot of memory than our proposed models. we can also observe that the proposed techniques
perform almost equally with their reduced number of topics and vocabulary.

In the worst case, our GD-BL and BL-GD topic models will have the same time
complexity as LDA. However, those are very flexible topic models that execute many tasks at
the same time including semantic analysis between word and between topics. This suggests
they execute each task faster than LDA. LDA does not perform in topic correlation. So it
is slower than our proposed models [80]. Tables 4.1 and 4.2 show how the topic correlation
analysis improve the time and memory complexities.

4.4 Experimental results
We show the robustness of our proposed approach by selecting some real world and
challenging applications in image and text classification. Our framework provides the
generative topic models which are then used in SVM. The SVM operates on a series of
kernels (in distribution space) such as Bhattacharyya kernel (BK), symmetric Kullback-
Leibler divergence kernel (KLDK), the Renyi kernel (RK), the Jensen-Shannon kernel
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(JSK), and the Expected likelihood kernel (ELK). In our SVM implementation in this
chapter, as we are dealing with a multiclass problem, we select the one-versus-all technique
for the training set modeling: that is, the class with the largest positive score will ultimately
win the class label. In addition, an 8 fold-cross validation scheme has been implemented to
account for the estimation of the design parameters within the SVM.

Using the collapsed Gibbs sampling method and the empirical likelihood scheme, each
document distribution is evaluated over the finite set of topics. As we are demonstrating
the performance of our proposed approach compared to previous topic models illustrated in
Table 4.5 using probabilistic kernels, we also include cases where we compare our proposed
topics models to SVMs operating in the original feature space using standard kernels such
as linear and RBF. Consequently, we include the performance of our proposed topic models
with a linear kernel-based SVM for the text document dataset.

4.4.1 Implementation

This implementation concerns the generative stage where we construct the topic
distributions to be utilized by the SVM. Here, we are using the collapsed Gibbs sampling
method in variational Bayes inference. The variational update equation is similar to
the update equation in the standard CGS. The difference is that here we sample from
the variational distribution instead of sampling from the true posterior distribution.
Immediately, to deal withn the digamma functions, we can reset the variational update
equation using [4] work.

The main idea is to compute the variational model parameters θcj and φk using the
CVB algorithm which implements this variant of CGS. To do this, we set a number of
iterations such that at each iteration we sample a topic for each of the N words in the
corpus. We use the variational expected count variables (the variational statistics). We
use these statistics to estimate the topic model parameters at the generative stage. The
framework requires an intitial setting the variational expected count variables along with
the model hyperparameters. We usually set them randomly. Though, many times for the
BL hyperparameters, we could also provide initializations in this way: within a class, at
the document level we choose αjk = 1

k where k ∈{1, 2, ...,K}. We also set αj such that
αj ≤

∑K
k=1 αjk or αj ≥

∑K
k=1 αjk. Then we choose βj within the same scale as αj . At the

corpus level for BL, we repeat the same process by setting values for λkv with v ∈ {1, 2, ..., V }
and λ and η For the GD hyperparameters at the document level αjk = t

i with i ∈ {1, 2, ...,K}
and βji = 1

K+i with i ∈ {1, 2, ...,K}. At the corpus level we also repeat the same process
with λiv and ηiv with v ∈ {1, 2, ..., V }. We initialize the number of topics along with the
maximum number of iterations. We also randomly initialize the topic assignment associated
to each word in the class in the latent z (N-dimensional random variable) associated to each
document j. The main expected counts in the sampling process include Eq[Njk] the number
of words assigned to topic k in document j, Eq[Nj(K+1)] the total number of words in topic
K+1 in document j, Eq[Nkv] the number of times the vth word in the vocabulary is assigned
to topic k, Eq[Nk(V+1)] the number of times the (V +1)th word in the vocabulary is assigned
to topic k, Eq[Nk] the the number of times any word is assigned to a topic k Eq[Nj(K+1)] the
total number of words in topic K + 1 in document j. In the document which is a collection
of vocabulary words w organized as count data, we associate each word to its initial count
(frequency count). In CVB-based CGS algorithm, as shown in Eqs. 135 and 146, we remove
the current topic assignment from these update equations by decreasing the count associated
to the current assignment. We compute the probability of each topic assignment using Eqs.
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135 and 146 leading to a discrete distribution, a K-dimensional variational distribution
associated to every word. We sample from this distribution of latent topic assignments and
choose a topic that is returned to vector z where it updates the counts. In other words,
the appropriate counts are increased. At the covergence, we collect the latent variables
z, the variational statistics which allow us to compute the predictive distributions for the
document paramter (document-topic), θcj and corpus (topic-work) parameter φk.

4.4.2 Text document classification

4.4.2.1 Preprocessing and methodology

In this chapter, we choose a challenging text classification problem using our proposed
hybrid technique. For this work, we selected the Yahoo! Answers topic classification dataset.
This dataset has been constructed from the original Yahoo! Answers corpus which is a vast
collection of text documents containing around 4, 483, 032 questions and their corresponding
answers (in .csv format). This current dataset has been used in a text classification problem
by Zhang et al. in [154]. In fact, the Yahoo! Answers topic classification dataset has 10
main categories (Table 4.3) where the total training set is about 1, 400, 000 samples (140, 000
samples per category). The testing set contains 60, 000 samples (6000 samples per category).
The dataset has a 4 column text layout where the first column carries the class labels of
each text document. The second and third columns provide questions while the last column
shows the best answers to those questions. In our case, in this particular text classification
problem, we are interested in documents containing answers and their corresponding classes
from the corpus layout.

Though, in this experiment, we did not use the whole dataset as we utilized only a
subset of the data that consists of 6000 samples per category, so 60000 samples in total.
This is mainly due to poor initializations which were slowing down the sampling process.
We reduced the size to speed up the sampling process.

As usual for text document data, the collections are initially unstructured or noisy
as they carry a lot of unwanted materials. Consequently, in the preprocessing stage, we
cleaned up the data by removing irrelevant items such as stop words and punctuations
through MATLAB. In each class, 90% of the dataset have been assigned to the training set
while the remaining is the testing set. The training set obtained is then used to construct
the bag of words from the tokenized documents. Further preprocessing steps have been
implemented to remove infrequent words in BoW model (for instance, words that appear
less than two times in documents). In addition, empty documents have been also removed
from the training data. The characteristics of the training set following the BoW framework
is summarized in Table 4.4 which shows the frequency count data represented in a matrix
form, the total number of documents, the vocabulary size, and the total number of words
in the corpus.

The frequency count data (training set) is then used by our algorithm where we learn
documents topics first: this is the generative stage. It is important to mention that our
text data using the BoW framework is really sparse due to the large size of the vocabulary.
We proceeded with a sparse-based data representation for efficient storage management in
this batch processing.

For the generative framework, we finally obtain the optimal number of topics at K = 60.
Once our generative topic model is built, we represent each document as a topic distribution.
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We, in fact, constructed two generative topic models: the topic model I or CVB-GD-BL-
based topic model and topic model II or CVB-BL-GD-based topic model, all presented
in section 4.3. With these topic models, we estimated the predictive distributions that
allow us to express the document distributions using Eq. 139. The topic distribution are
then used by the SVM classifier to perform document categorization with probabilistic
kernels. The representation of each document as probability distribution is fully detailed
in subsection 4.3.3 in this chapter. Importantly, there are no clustering and quantization
steps for text documents during the BoW formation. These steps only occur when dealing
with images in feature representation. Text documents naturally decompose into bag
of words. This ultimately summarizes our generative-discriminative approach for text
document classification.

4.4.2.2 Results

Initially, the BoW representation of the data shows a very sparse data, and the first samples
used for modeling did not yield good approximates. It means there is a need to provide
more discriminative features that facilitate classification. As we increase the size of the
documents and the number of latent factors or topics as shown in Figs. 4.2, 4.3, and 4.4,
we saw an immediate improvement in the estimates for the topics and the distribution over
the topics. The improvement in the estimates not only shows the characteristics of each
document, but also exhibits differences between these documents by observing the topic
and distribution structures.

The experimental results from our proposed approach with this text dataset using the
different probabilistic kernels utilized in this chapter are summarized in Table 4.5. These
results show that our two generative (topic) models implemented, (topic model I and
topic model II ) have provided satisfactory performance with SVM framework compared
to their major competitors (such as LDA, CVB-LDA, CVB-LGDA, and LGDA) in this
text document classification. So, the hybrids obtained from the proposed topic models
outperformed their competitors under these probabilistic kernels.

All the hybrids in this text document classification have successfully provided good
results with the expected likelihood kernel (ELK) which is a linear probabilistic kernel.
Under the ELK-based SVM, the topic model II had the highest accuracy (68.53%). In
overall, results from hybrids using topic model II were slightly improved compared to hybrids
from topic model I. In this experiment, the linear kernel was able to outperform nonlinear
kernels in text document classification. We think that linear probabilistic kernels could
be seen as alternatives to nonlinear probabilistic kernels in text document classification.
Though, the JSK-based SVM coupled with topic model II remains the best performer
among nonlinear probabilistic kernel models.

This ultimately demonstrates the robustness of probabilistic linear kernels in text
document classification. However, both topic models proposed in our work outpformed
an SVM-based classifier using traditional and standard linear kernel (in the original feature
space). The classification accuracy with topic Model I is 58.43%. It is 56.38% with topic
Model II, and 54.41% with SVM.

Finally, these performances ultimately illustrate the importance of documents
representation in distribution space. And this starts from providing an optimal number
of topics from our generative models from which distributions are built over the topics
structure. The ability to summarize documents (initially represented in 8805 dimensional
feature space in this chapter due to the size of the vocabulary within the BoW as shown in
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Table 4.4) using efficient and very few low dimensional features such as topics is an ideal
framework for memory space management in databases. From documents with initially
8805 features, we obtain at the end K = 70 topics from the generative model to represent
documents new features in distribution space.

Table 4.3: 10 Categories for text documents

Text Document Categories Class label

Society & Culture 1
Science & Mathematics 2
Health 3
Education & Reference 4
Computers & Internet 5
Sports 6
Business & Finance 7
Entertainment & Music 8
Family & Relationship 9
Politics & Government 10

4.4.3 Natural scene categorization dataset

4.4.3.1 Preprocessing

In this experiment, we are performing image classification using our proposed hybrid
framework. We also used the well-known natural scenes dataset that has 15 categories
as shown in [48]. It is a challenging dataset. Here is the list of the classes along with
their size: (Suburb, 241), (Living room, 289), (Coast, 360), (Forest, 328), (Highway, 260),
(Mountain, 374), (Street, 292), (Office, 215), (Store, 315), (Bedroom, 216), (Inside city,
308), (Tall buidling, 356), (Open country, 410), (Kitchen, 210), and (Industrial, 311). The
corpus as illustrated in Fig. 4.5 has in total 4485 images. The dataset is also a collection
that contains different categories (for instance, mountain and highway) as well as similar
categories (for instance, the 4 indoor categories such as office, living room , kitchen, and
bedroom from [2]) to fully characterize the concept of interclass and intraclass variation
problems.

From each category, the dataset is split in two groups: the testing set carries 100 samples
while the training set gets the remaining. This is similar to our previous work with this data
in [80, 67] where we used the BoW method to transform the SIFT (scale invariant feature
transform) descriptors (from image patches) into codebook or vocabulary after clustering

Table 4.4: BoW information for the text document modeling

BoW Characteristics

Total Counts 53087× 8805
Vocabulary [1× 8805 string]
Total Number of Words 8805
Total Number of Documents 53087
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Table 4.5: Hybrid models performances for the text document dataset

% BK KLDK RK JSK ELK

topic model I 61.45 62.16 62.27 63.49 67.51
LDA 45.56 48.67 49.25 50.67 57.89
CVB-LDA 46.12 49.87 57.43 54.89 55.57
CVB-LGDA 50.78 51.65 52.10 53.09 57.16
LGDA 48.36 48.98 49.67 50.18 56.54
topic model II 63.32 63.67 65.74 66.19 68.53
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Figure 4.2: Processing results from increasing documents size and the number of topics

and quantization process [2, 11, 80, 67]. The training set (count data) obtained is then used
to build our generative topic models with asymmetric priors. Following the steps in the
text classification problem in subsection 4.4.2, we characterize each document distribution
using subsection 4.3.3. These documents are then used by our SVM which performs with
probabilistic kernels. It is noteworthy that based on our previous work [80, 67], the optimal
number of topics and vocabulary size are reached at K = 90 and V = 1000, respectively for
the implementation of our generative topic models. This is because of the ability of the GD
and BL in pruning irrelevant topics and vocabulary size. We therefore obtained a model
selection with very reduced number of topics and vocabulary size.

4.4.3.2 Results

We showed earlier the low performance of the hybrids with the expected likelihood kernel
(ELK): 58.43% for topic Model I, 56.38% with topic Model II. This probabilistic linear kernel
was not able to carry enough discriminative information or features that could enhance
performances in this image categorization problem. In general, from our experiment,
nonlinear probabilistic kernels used in this hybrid generative-discriminative setting have
been observed to outperform the ELK. The two topic models in our proposed approach
combined with nonlinear probabilistic kernels-based SVM show robustness of our methods
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Figure 4.3: Three classes from text corpus documents with associated topic structure
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Figure 4.4: Multinomial distributions from 3 text documents of different classes

with a result around 85% in accuracy from topic model II. These two hybrids in our scheme
seem to equally perform well with nonlinear probabilistic kernels especially the JSK. They
both outperform their competitors such as LDA, CVB-LDA, CVB-LGDA, and LGDA.
These results show that nonlinear probabilistic kernels are robust and efficient in image
classification than in text categorization. In this experiment, nonlinear kernels are able to
characterize the intrinsic properties in images than linear probabilistic kernels represented
by the ELK. This justifies the poor performance in the ELK for its inability to adapt
to changes in view and illumination in images for instance since such phenomena induce
nonlinearity in the dataset resulting in changes in document distributions. This instability
in the distributions has a negative impact on linear probabilistic kernel function (ELK).

In addition, the proposed topic models (implemented in this chapter) performances have
been compared to a Gaussian or RBF kernel-based SVM classifier which operates in the
original feature space (75.35% with topic Model I and 76.65% with topic Model II ). The
SVM with RBF kernel using orginal feature instead topic distribution provided an accuracy
of 68.27%. These topic models outperform the RBF-based classifier. The performance of
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Figure 4.5: Examples from the natural scenes image dataset (15 categories).

our method could also be explained by the robustness in the generative topic models for
their ability to characterize effectively the documents as probability distributions with a
better parameterization. For instance, a random selection of 5 documents has been made
whitin the natural scene category dataset. As shown in Figs. 4.6 and 4.7, and similar
to the scenario presented in our text document classification, the first row, in each figure,
illustrates the convergence process while the second row exhibits the word distribution in
the documents. The last row provides the topic structure in each document. Under our
proposed approach, we can see that the documents are different according to their classes.
In Fig. 4.6 for instance, on the second row, documents 1, 2, and 4 have similar topics
and similar distributions over topics. Still on the second row, same observations could
be made about documents 3 and 5. These 5 documents ultimately belong to 2 classes
from their distribution characteristics. This robustness in approximating effectively the
generative topic model facilitates the task for the probabilistic kernel to perform accurately
as it measures similarity between distributions within the discriminative framework. As we
start increasing the size of the dataset, the number of topics, and the size of the vocabulary
during training, we notice improvement in the results with our proposed hybrids. The final
optimal number of topics and size of the vocabulary are obtained at K = 90 and V = 600,
respectively. This constitutes the characteristics of the generative approach that we use to
construct our discriminative classifier.

Table 4.6: Hybrid models performances for the natural scenes dataset

% BK KLDK RK JSK ELK

topic Model I 78.31 79.18 82.17 82.32 70.65
LDA 59.34 65.54 68.67 69.43 55.41
CVB-LDA 65.38 70.3 70.86 71.57 57.85
CVB-LGDA 70.51 69.96 75.71 80.53 68.34
LGDA 68.45 70.43 75.35 77.64 63.50
topic Model II 78.54 78.98 80.78 85.47 74.67
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Figure 4.6: Five image documents in natural category scene dataset
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Figure 4.7: Analysis of 5 image documents in natural scene category dataset

4.4.4 COREL dataset

For this second experiment of image classification using our proposed method, we selected
the COREL database as illutrated in Fig. 4.8 from the Corel Photo Gallery [155] for our
image classification framework. Over thousands images, the collection contains animals,
airplanes, cars, plants, landscape and textures, artistic objects, vehicles, and people. The
database has in fact been summarized into 80 categories in total containing 8000 images
(100 images per class). Each image in the collection has approximately a size of 325× 255,
in JPEG format.

Initially, for feature extraction method, we decided to follow the method implemented in
[110] to collect the low frequency features provided by the DCT (Discrete Cosine Transform)
from the patches obtained by the sliding window process over the images using MATLAB.
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These low frequencies in DCT are specialized in capturing relevant characteristics in images.
As the generative topic model in our implementation was struggling to be successful with
this feature extraction scheme, we decided to use SIFT features similar to the work in
[2, 11, 80, 67] and the one in the previous section in this chapter about natural scene
categorization. In this work, we used all the 80 categories. The SIFT method and BoW
architecture are described in [2, 11, 80, 67] for image representation in feature space.

Once the generative topic models are implemented, we use probabilistic kernels to carry
the document topic features to the SVM for classification. The technique ultimately requires
the representation of each document in the distribution space to facilitate the work for the
probabilistic kernel machine. Then afterwards, we compare the performance of our proposed
approach to its competitors in topic modeling. We also maintain an optimal number of
topics at K = 70 for a vocabulary size of V = 600 for the implementation of the generative
topic models.

The implementation of our method has shown the performance of the hybrids with
nonlinear probabilistic kernels compared to linear probabilistic kernels such as ELK
(expected likelihood kernel). From the results (in terms of accuracy) obtained, we can
observe that these hybrids performances with ELK were less improved compared to the case
of nonlinear kernels such as BK, KLDK, RK, and JSK. This is translated into a low accuracy
value for the ELK. The hybrids provided by our proposed generative approach, (topic model
I and topic model II ), with the probabilistic kernel-based SVM have demonstrated higher
results. The combination topic model I and SVM showed an accuracy of 79.83% with the
JSK. In overall, these two topic models perform equally within the discriminative setting
especially with the JSK.

Similar to the natural scene document modeling case in the previous section, in this
COREL dataset also, we randomly selected 5 documents (Figs. 4.9 and 4.10). Our
proposed topic models were able to show the efficiency of the representation of documents
as distributions. Through these distributions characteristics, the documents were able
to exhibit their differences. Here, each of these documents (by observing the second
row) belongs to a different class as illustrated in Figs. 4.9 and 4.10. Our generative
models implemented have shown better performance when compared to an RBF-based
SVM classifier in the original feature space (topic model I with an accuracy of 72.70% and
topic model II with 70.40%). Implementing the SVM in the original space provided 65.34%
as classification accuracy. By using topics, we were able to provide a lower dimemsional
space that allows a better compression of the data. The low dimensional space is used to
represent the documents.

Table 4.7: Hybrid models performances for COREL dataset

% BK KLDK RK JSK ELK

topic Model I 75.51 76.39 77.98 79.83 67.42
LDA 57.65 60.56 67.43 68.36 55.39
CVB-LDA 60.45 63.78 68.56 69.43 57.54
CVB-LGDA 63.42 65.45 70.12 71.48 58.29
LGDA 62.10 64.33 68.27 70.25 58.87
topic Model II 74.10 74.87 77.21 78.75 70.38
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Figure 4.8: Corel dataset (15 out of 80 categories)
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Figure 4.9: Analysis of image documents in Corel dataset

4.5 Conclusion
In this chapter, we demonstrated the effectiveness of documents or data representation
(generative features) from the proposed topic generative framework coupled with the
implementation of powerful probabilistic kernels-based SVM classifiers that provided good
performance in classification. The use of asymmetric GD and BL conjugate priors
simultaneously (within the same generative process) in our topic modeling framework
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Figure 4.10: Characteristics of image documents in Corel dataset

led to two models: the CVB-GD-BL-based topic model (topic model I ) and the CVB-
BL-GD-based topic model (topic model II ). This ultimately characterizes the generative-
discriminative setting in our proposed approach. The discretization of the continuous visual
feature space due to clustering and quantization schemes for the formation of the visual
codebook led to the reformulation of probabilistic kernels from continuous space to discrete
space as we deal with empirical (discrete) distributions. Using some challenging datasets
in machine learning and computer vision, we are able to extract intrinsic characteristics
from text and image documents for the implementation of our hybrid models. Topic
representation is an effective summarization method to allow topic models to work in finite
dimensional spaces (low dimensional spaces). This automatically presents the advantage of
solving memory space (storage) issues in databases. In other words, the space complexity
is refined and improved within our proposed framework.

The implementation of generative models in the fully collapsed space of latent variables
provided a framework (sampling) that allows the computation of probabilistic kernels
through empirical likelihood scheme. This setting facilitates the representation and
parameterization of our documents (texts and images) as distributions for the kernel
machine. This representation has been beneficial for the modeling of our hybrids as
documents now have ability to carry effectively local information from generative topic
models into discriminative classifiers that operate with distributions. Distributions are
always seen as accurate and compact representations of the data since they can efficiently
hold some useful properties such as semantics within the observed data. This reality is
demonstrated in our experiment as we successfully show that despite the performance
of standard kernels-based SVMs in the original feature space, probabilistic kernels-based
SVMs provide the best performance and results especially when combined with robust
topic models. These characteristics illustrate the effectiveness of our hybrid models and their
performance within a wide variety of datasets showing therefore the ability for our proposed
framework to generalize. The fully collapsed representation was also key to the success of
our generative approach by connecting a hybrid inference (the collapsed variational Bayes,
seen as one of the state-of-the-art inference techniques in topic modeling with its flexibility

114



to combine both the performance of the variational Bayes and the collapsed Gibbs sampler)
to hybrid model (generative-discriminative). The hybrid techniques using CVB-LGDA
and CVB-LDA in this generative-discriminative approach have shown better performances
compared to the LDA-based hybrids in uncollapsed space.

As generalized Dirichlet and Beta-Liouville distributions are more flexible than the
Dirichlet, using these priors in topic modeling presents some advantages in the generative-
discriminative setting. This ultimately justifies the good performance in our proposed
approach as we implement our topic models with these two different priors (asymmetric)
used simultaneously within the same generative process. Compared to previous hybrid
models, our proposed approaches mostly outperform them in our datasets. As a result,
the edge is given to our current proposed methods. With the right probabilistic kernel,
the hybrid methods from topic Models I and II could also perform almost similarly with
the majority of our datasets in a sense that they both provide mostly, robust and coherent
generative topic features to the SVM as shown in the performance results compared to
their competitors. However, within our proposed methods, the hybrid, topic model II/SVM
provides a better performance in terms of time complexity in comparison to the hybrid, topic
model I/SVM. This is mainly due to the intrinsic characteristics of the (asymmetric) Beta-
Liouville conjugate prior for the document parameter’s modeling besides robustness and
flexibility. To its advantage, the distribution (BL) has generally few parameters compared
to the GD. As a result, inferences were observed to be faster with the hybrid topic model
II/SVM as it effectively characterizes or models the document parameter with (asymmetric)
BL while also providing robust generative features to the kernel machine. This is in contrast
to the hybrid topic model I/SVM which samples the document parameter from (asymmetric)
GD, and it is observed to be slower in estimations despite its robust performance. The
relationship between our topic generative features and kernel formulations for SVM also
demonstrate that our nonlinear probabilistic kernels implemented performed well with
images than linear probabilistic kernels such as ELK. Images often provide features that are
too complex to be linearly separated. Changes in view and illumination for instance could
have impacts on image feature characteristics and therefore on the distributions. Nonlinear
probabilistic kernels have ability to adapt to these changes better than linear kernels. On
the other hand, text documents classification tends to be well characterized with linear
probabilistic kernels. Our models were able to exhibit these characteristics through our
datasets showing therefore the robustness of the framework. This explains the importance
of knowledge about the data as it can influence the choice of the kernel functions in the
discriminative framework. Therefore, the strong performance of the JSK (Jensen-Shannon
kernel) on our proposed topic models could be explained by the capability of this nonlinear
probabilistic kernel in handling and characterizing effectively generative features represented
as empirical distributions such as the ones implemented in our topic models.

We witnessed, during implementation that the models require many parameters and
hyperparameters to be initialized. The complexity of the models has been increased, and
initializations affect the results. Importantly, our proposed approach remains an alternative
to nonparametric models in finite dimensional space (with finite mixtures) for classification.
However, as topic models in finite dimensional space always struggle in providing very
efficient and accurate model selection criteria, a future work could be about investigating
on the possibility to implement a nonparametric model due the high complexity in our
datasets. We could also emphasize on inference based on hyperparameter estimation to
reduce problems related to poor initializations.
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Chapter 5

A Two-Level Hierarchical Latent
Beta-Liouville Allocation for Large
Scale Data and Parameters
Streaming

As an extension to the standard symmetric LDA (latent Dirichlet allocation) topic model,
we implement asymmetric Beta-Liouville (BL) as a conjugate prior to the multinomial and
therefore propose the MAP (maximum a posteriori) for LBLA (latent BL allocation) as an
alternative to maximum likelihood estimator (MLE) for models such as PLSI (probabilistic
latent semantic indexing), unigrams, and mixture of unigrams. Since most Bayesian
posteriors, for complex models, are intractable in general, we propose a point estimate (the
mode) that offers a much tractable solution. The MAP hypotheses using point estimates
are much easier than full Bayesian analysis that integrates over the entire parameter
space. We show that the proposed MAP reduces the three-level hierarchical LBLA to
two-level topic mixture as we marginalize out the latent variables. In each document, the
MAP provides a soft assignment and constructs dense EM probabilities over each word
(responsabilities) for accurate estimates. For simplicity, we present a stochastic at word-
level online EM (expectation-maximization) algorithm as an optimization method for MAP-
LBLA estimation whose unnormalized reparameterization is equivalent to a stochastic CVB
(collapsed variational Bayes). This implicit connection between the collapsed space and EM-
based MAP-LBLA shows its flexibility and helps in providing alternative to model selection.
We characterize efficiency in the proposed approach for its ability to simultaneously stream
both large scale data and parameters seamlessly. The performance of the model using
predictive perplexities as evaluation method shows the robustness of the proposed technique
with text document datasets.

5.1 Introduction
In topic modeling literature, the classical maximum likelihood (ML) estimator has been
applied to several classic topic models including PLSA (probabilistic latent semantic
analysis), unigrams, and mixture of unigrams. Because of its frequentist nature,
it is very limited in predictive modeling as it does not consider prior information.
Reduced to multinomial distributions with no prior information, these classic topic models
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fundamentally carry the limitations of multinomials: using only frequencies as ways to
represent probabilities often leads to poor estimates. In a highly sparse dataset, without
any smoothing, frequencies are more likely to assign zero probability for unseen or rare
events. Moreover, and very often, multinomials do not capture efficiently the words
burstiness because of the lack of priors [6], [36, 7]. The integration of prior information
has become fundamental for the flexibility of topic models such as LDA over classical
frequentist approaches. In other words, the limitations of classic frequentist models led
to the emergence of the LDA and its variants. LDA is a latent generative probabilistic
graphical model that assumes that words are generated from a mixture of topics [8]. The
topics are themselves distributions over the vocabulary words. The topic proportions vary
from one document to the other and exhibit how documents are organized, summarized
according to the global topics. LDA allows documents to exhibit multiple topics.

The success of the LDA model has reinforced its use in a wide variety of applications
mainly in text document analysis [92, 156, 135] and computer vision [101, 103, 97].
Compared to LDA, in a unigram model, words in a document are drawn from a single
multinomial distribution (the word simplex). The mixture of unigrams is an augmented
version of the unigram model with a discrete topic (latent) variable. With the mixture of
unigrams, a document is now generated from only a single topic [5]. The PLSA is almost
similar to LDA topic model but with no prior information [4]. It is a relaxation of the
mixture of unigrams assumption as it allows a document to exhibit multiple topics. As
presented earlier, the lack of priors in PLSA makes the model unfit for prediction and often
suffers from overfitting problems. The LDA topic model provides a solution to the PLSI or
PLSA, unigram, and mixture of unigrams by including prior information as it treats topic
proportions as random variables.

Since LDA and its current variants rely extensively on prior information, it is natural
to perform parameter estimation where the logarithm of the priors offers a possibility to
act as a regularizer of ML estimates. This ultimately introduces the flexibility of the MAP
framework. The MAP estimates are point estimates whereas full Bayesian analysis often
characterizes the posterior mean instead of a single estimate (mode) [157]. However, point
estimates are often preferred because posterior means require computationally expensive
methods and often lead to intractable solutions. The MAP framework models directly the
posterior distribution of the parameters.

Due to its prior information, the MAP is robust to outliers. In topic modeling,
these advantages could present a possible MAP technique with standard EM algorithm
in online fashion as alternatives to complex methods such as variational Bayes (VB)[3, 5],
MCMC (Markov Chain Monte Carlo) using CGS (collapsed Gibbs sampling) [158], and EP
(expectation propagation)[159]. Although, the MAP is not invariant to reparameterization
as it requires the Jacobian information to relocate the mode, we can use unnormalized
reparameterization to simply seek for equivalent models that could help in characterizing
efficiently its online framework [13, 153, 4]. We can also observe from the literature
that online LDA topic models such as stochastic CVB (SCVB) [13], online CGS (OGS)
[160], [63], SVB (stochastic variational Bayes) [1, 65], online VB (OVB) [65], generally
implement stochastic optimizations [161] from batch LDA models (VB[3],[5], CVB [12] and
CGS [162, 162, 157, 163]). Furthermore, as these models only focus on large scale data
processing while ignoring parameter streaming, the work in [17] recently implemented an
online LDA topic called fast online EM that accommodates parameter streaming to large
scale data modeling. Modeling dependency between hidden variables has been ignored in
standard variational Bayes that assumes that joint variational distributions variables are all
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independent from each other. In addition, relaxing the mean-field assumption can become
extremely challenging in the latent update equations when using empirical Bayes framework
(the log marginal distribution) to set the lower bound as shown in [12] with its symmetric
LDA.

The first critics to all these methods always point to the use of Dirichlet (Dir) prior in
LDA for inference. LDA assumes that its topic components are all independent when using
the Dir prior. Furthermore, one of the limitations within the multinomial assumption is
that often the poor estimates are results of the fact that events are supposed independent,
which is not always the case [164, 165]. By choosing flexible priors instead, we could
characterize efficiently dependency between events which are translated into dependency
between documents and topic components (topic proportions). LDA is not the right
model when it comes to characterizing dependency since it systematically prohibits such
interpretation because documents simply cannot be dependent under the LDA topic model.
As suggested in [8] using Dir leads to an unrealistic way to explore unstructured collections
of documents because in real life scenario, there is always a high probability of existence of
a topic correlation setting in a large collection. This drawback in LDA promoted the use
of logistic normal distribution as an alternative to the Dirichlet prior in topic correlation
[121, 120, 119, 125, 101, 21, 22, 113, 114]. Another major problem and setback in finite
mixture topic modeling is the lack of effective model selection criteria [5, 9, 17, 41, 80, 8]
especially with LDA which relies on cross-validation solutions. For large scale applications
cross-validation methods are not efficient. Since LDA is too restrictive due to the Dir
distribution while non conjugate priors such as logistic normal distributions often led to very
complex deterministic (VB, CVB, and EP) and MCMC using CGS inferences, we propose
a very simple algorithm that performs a MAP estimate on the LBLA where the conjugate
prior to the multinomial is the asymmetric Beta-Liouville (BL) prior. The flexibility of the
prior allows us to model dependency between documents. In attempt to induce dependence,
the CVB marginalizes out the parameters, while leaving the latent variables; on the other
hand, the proposed MAP-LBLA integrates out the latent variables instead and even reduces
the three-level hierarchical LBLA topic model to just two levels. This ultimately simplifies
computation.

We proposed a stochastic at word-level online EM algorithm for MAP-LBLA as an
alternative to online LDA in [17] to which we provide a refined model selection including
data and parameter streaming for fast inference. Our model outperforms the LDA-
based topic models and shows the robustness of the scheme in producing very accurate
predictive distributions and perplexities. In our method, because implementing a word-level
processing, documents parameters and topics are global parameters. This is in contrast to
the standard stochastic VB (SVB) approach that supports a document-level processing
where the only global parameter is the topic. We show that our stochastic algorithm using
online EM has connections within the collapsed variational Bayesian inferences through
unnormalized reparameterization of the MAP [4, 13]. Under this reparameterization it
is clear that our technique could follow a minibatch of size one as we will show later in
the coming sections. This allows the model to manage the vocabulary size easily. As
we implement a stochastic method that favours small samples at a time in a document,
the MAP can effectively regularize MLE estimates and performs better than frequentist
estimators. To each word accessed, the E-step provides a sample (EM responsibility vector)
from the posterior distribution; but no longer stores it within our stochastic method as in the
batch EM. All these flexibilities make our approach more robust and accurate over extremely
fast methods that could escape many critical steps (during processing) that are required for
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a good modeling. We finally demonstrated that our model while using unnormalized update
equations is flexible due to the asymmetric BL prior that generalizes the Dir distribution.
The main contributions of our proposed parametric topic model are:

• We provide alternative to the MAP-LDA and its variants including stochastic and
online versions. We selected the BL prior to estimate very heterogeneous topics that
enhance predictive models and perplexities.

• The simplicity of inference with the standard EM algorithm over complex methods
such as variationals and EP including MCMC methods such as CGS and CVB allows
to model dependence in exact manner which leads to much accurate parameters
estimates.

• We successfully provide a solution (alternative) to model selection problem within
finite mixture topic model setting which is a very challenging concept due to the lack
of criteria for model selection in topic modeling in general as our model stochastically
favors small samples which are regularized by the prior information within the
proposed MAP framework: our approach uses its equivalent models to efficiently
propose model selection

This chapter is organized as follows: section 5.2 presents the related work and background
while section 5.3 introduces the proposed online EM-based MAP-LBLA approach. Section
5.4 illustrates the experimental results and finally section 5.5 provides future work and
conclusion.

5.2 Related work and background
LDA is a generative probabilistic graphical model that summarizes documents (texts,
images) as mixtures over topics. Topics are distributions over vocabulary words [3]. Under
its generative process, LDA assumes that a word is generated from a mixture of topics
[8]. Many inferences support the LDA architecture and make it the most recognized topic
model in the literature. The main inferences include VB and CVB which describe the
variational approaches while GS (Gibbs sampling) and CGS (collapsed Gibbs sampling)
which are MCMC methods [12]. The CVB and CGS are based on collapsed representation
where the parameters are marginalized out: CVB is variational method in the collapsed
space, therefore a deterministic approach where CGS is an MCMC method or stochastic in
the collapsed space. The CGS provides a hard assignment technique while CVB favors a
soft clustering method resulting in a K-dimensional variational distribution being associated
to each word or token [157]. One of the advantages of the collapsed representation was to
characterize a dependence structure in topic modeling as a way of relaxing the independency
assumption in mean-field variational methods. It also provides a better lower bound to the
log marginal likelihood for accurate predictive distributions showing parameters estimated
in exact way [12]. The VB and GS are inferences in uncollapsed spaces. The work in [68]
has constructed a partially collapsed space where documents proportions are marginalized
out leaving the latent variables and the topics.

The majority of these batch inferences have been extended for online processing leading
to OVB [65], SCVB [13], OGS [160, 63], SVB [1, 65], etc. For a direct modeling of the
parameters, the MAP marginalizes out the latent variables and optimizes an EM lower
bound on the posterior distribution of the parameters in M-step. The E-step follows
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a stochastic expectation that computes unnormalized expected sufficient statistics (for
exponential family distributions) also called EM statistics [13]. In latent topic models,
we can observe that the MAP integrates out the latent variables while the CVB inference
marginalizes out the parameters. Authors in [4] have tried to show the connection between
these inferences for LDA through hyperparameter analysis. MAP reduces the three-
level topic model to two levels and introduces a mixture model setting. Other main
characteristics and challenges of LDA model include the problem of a robust model selection
[5, 9, 17, 41, 80], and correlation between topics [8, 20, 166, 113, 114]. The problem with
these inferences is that the majority are LDA-based approaches. Furthermore, LDA could
not characterize dependence structure because it is one of its intrinsic limitations. Under
the Dirichlet its random variable components are independent, so correlation between topics
could not be emphasized with efficiency within the LDA. The model selection framework
in finite topic modeling is very challenging. For instance, the multitopic technique [41] is
efficient for batch learning but not for online one. Its limitation is due to the relevance
feedback from a user. It means it cannot perform without human intervention. The VI
(variation information) method [9] operates within the uniform probability measure setting
which we believe could not be ideal for the MAP technique because estimate with uniform
priors are equivalent to ML estimates.

The fast online LDA topic model in [17] provided a model selection that uses
accumulated residuals (to select the number of topics and vocabulary size) combined with a
buffering system that facilitates easy transfer of data between the PC (personal computer)
memory and its external storage. Its sorting mechanism based on residuals for model
selection is complicated because both the time and memory (space) complexities rely on
the number of topics K and vocabulary size V . Despite the fact that the updating and
normalization steps of the responsibility vector benefit from time complexity, it is really
difficult to understand how the framework became invariant to the number of topics at
some points when analyzing the time complexity.

Due to these difficulties, we propose an alternative with more improvement: we
implement an online EM method for MAP estimation with LBLA topic model, a
generalization of the LDA. The proposed approach uses a BL prior [11, 64, 107] as an
alternative to the Dir distribution. The BL has ability for topic correlation [107] framework
similar to work in [113, 8, 20]. We emphasized on a word-level stochastic online EM
approach whose unnormalized parameterization connects with stochastic inferences in the
collapsed space. Our proposed method uses its internal structure to reduce the number
of topics and vocabulary size and allows for efficient data and parameter streaming.
Importantly, compared to other methods that use computationally expensive resources
for model selection, our proposed model selection technique does not require too much
computation. Its advantage is that it promotes small samples processing (reasonable
minibatch sizes) which encourages the use of small number of topics and vocabulary sizes.
This reason explains our stochastic method which can implement a minibatch setting of
size one for small samples. It constantly processes and updates, for the global topic matrix
of size K × V , only its vth column using a reduced number of topics. Small samples are
appropriate for our MAP-LBLA method because of the presence of the prior to regularize
or correct estimates.
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Table 5.1: Variables and definitions

Model variables and acronyms Definitions

D Total number of documents
W Total number of words in the corpus
V Minibatch size
Wj Total number of words in a document j
K Total number of topics
V Vocabulary size
(i, j) The ith word or topic assignment in the jth document
k The kth topic
X = {xij} Observed words
Z = {zij} Latent variables
θj = {θjk} Topic proportions
φk = {φkv} Corpus parameters or global topics
BL(ε) Beta-Liouville distribution with parameter ε
θjk/ε ∼ BL(ε) θjk/ε drawn from BL(ε)
φkv/ζ ∼ BL(ζ) φkv/ζ drawn from BL(ζ)
Mult(θjk) Multinomial distribution with parameter (θjk)
zik/θjk ∼Mult(θjk) zik/θjk drawn from Multinomial(θjk)
xi/zik, φkv ∼Mult(φzik) xi/zik, φkv drawn from Multinomial(φzik)
ψijk Responsability of the component k for the word xij in document j
F (ψijk, θ, φ) EM lower bound to the log likelihood
L (ψijk, θ, φ) EM lower bound for MAP (maximum a posteriori)
N−ij Expected Count excluding zij

5.3 Proposed Approach
In this chapter, we propose a standard EM algorithm for MAP estimation of LBLA topic
model. We show that it is an alternative to the CVB algorithm [12]. Moreover, we
show that the complexity of the VB approach (when characterizing dependency between
latent variables and parameters) ultimately led to the implementation of our simple and
standard EM algorithm for MAP estimation: modeling dependence in latent topic models is
a way of characterizing accurate parameter estimation from the work in [12]. However, the
variational method in the collapsed space can be extremely complex despite its flexibility.
We demonstrate that in spite of the simplicity of the proposed EM algorithm for MAP-
LBLA, it is implicitly connected to the CVB inference. Furthermore, we cover the generative
equation of the MAP-LBLA that allows us to formulate through a coordinate ascent
framework the EM-based batch and online algorithms for MAP-LBLA. The accuracy in
the expectations also depends on the proposed unnormalized representation.
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5.3.1 Modeling dependency between hidden variables

One of the central themes in CVB inference is the possibility to reach accurate parameters
estimates by relaxing the independence assumption in mean-field variational methods. This
relaxation introduces dependency between latent variables and models parameters. To be
more specific, from Table 5.1, with the LBLA hyperparameters ε, ζ, and hidden variables
Z, θ, and φ, let’s consider the case where we lower bound the log marginal likelihood
log p(X|ε, ζ) using variational distributions q:

log p(X|ε, ζ) = log
∫
θ

∫
φ

∑
Z

p(X,Z, θ, φ|ε, ζ)dθdφ

= logEq(θ,φ,Z)

(
p(X,Z, θ, φ|ε, ζ)

q(θ, φ, Z)

)
≥ Eq(θ,φ,Z) log

(
p(X,Z, θ, φ|ε, ζ)

q(θ, φ, Z)

)
This is also equivalent to:

log p(X|ε, ζ) ≥ Eq(θ,φ,Z) log(p(X,Z, θ, φ|ε, ζ))− Eq(θ,φ,Z) log(q(θ, φ, Z))

such that:

log p(X|ε, ζ) = F (q, θ, φ, Z) +KL(q(θ, φ, Z)||p(θ, φ, Z|X, ε, ζ)) (163)

where:
log p(X|ε, ζ) ≥ F (q, θ, φ, Z) (164)

In the joint space, the variational distribution q(θ, φ, Z) using the mean-field variational is:

q(θ, φ, Z) = q(θ)q(φ)q(Z) (165)

The variational distribution in (165) characterizes the independence assumption in standard
VB inference. In the collapsed space, the variational distribution in (166) follows
dependency between latent variables and parameters:

q(θ, φ, Z) = q(θ, φ|Z)q(Z) (166)

Using the lower bound, we reach the maximum at q(θ, φ|Z) = p(θ, φ|X,Z) where the
functional F (lower bound) now becomes F (q, Z). From the work in [89, 12], we obtain:

F (q, Z) = Eq(Z) log(p(X,Z|ε, ζ))− Eq(Z) log(q(Z))
and log q(Zj) = Ei ̸=jq(Z) log(p(X,Z|ε, ζ)) + C with C being a constant. It leads to:

q(Zj) = expEi ̸=jq(Z) log(p(X,Z|ε, ζ))∑
z expEi ̸=jq(Z) log(p(X,Z|ε, ζ)) (167)

which is also equivalent to:

q(Zj = k) =
exp{Eq(Z−j) [log p(X,Z−j , Zj = k|ε, ζ)]}∑K
i=1 expEq(Z−j) log(p(X,Z−j , Zj = i|ε, ζ))

(168)

where q(Zj) is the update equation for CVB algorithm as illustrated in [12], [80], and [107].
This update equation is really complex and requires the Gaussian approximation along
with second order Taylor expansion. The CVB when modeling dependence structure makes
the joint variational distributions for the parameters conditioned on the latent variables in
(166).
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5.3.1.1 The space of parameters and MAP-LBLA

We marginalize out the latent variables, leaving the model (LBLA) parameters. This is
a reverse setting of the collapsed representation that integrates out the parameters. A
way of modeling dependency (between hidden variables) in MAP estimation is to make
the multinomial variational distribution conditioned on the parameters as shown in (169).
In this section, we show that using variational methods makes the MAP update equation
extremely complex as well; which ultimately leads to a much simpler method using standard
EM algorithm. We have the following variational joint distribution:

q(θ, φ, Z) = q(θ, φ)q(Z|θ, φ) (169)

Here, we get the maximum when q(Z|θ, φ) = p(Z|θ, φ,X) leading to a lower bound
functional:

F (q, θ, φ) = Eq(θ,φ) log p(X,φ, θ|ε, ζ) − Eq(θ,φ) log q(θ, φ)

log q(Z|φ, θ) = Eq(φ,θ) log p(X,Z, θ, φ|ε, ζ) + C

∝ Eq(φ,θ) [log(p(X,Z|θ, φ)p(θ, φ|ε, ζ))]
∝ Eq(φ,θ) [log(p(X,Z|θ, φ)p(θ|ε)p(φ|ζ))]

We obtain the following update equations for MAP-LBLA:

log q(Z|φ, θ) ∝ Eq(φ,θ) [log p(X|Z,φ) + log p(Z|θ)]
+ Eq(φ,θ) [log p(θ|ε) + log p(φ|ζ)] (170)

log q(φ, θ) = Eq(Z) [log p(X,Z, θ, φ|ε, ζ)] + C

log q(φ, θ) ∝ Eq(Z) [log p(X|Z,φ) + log p(Z|θ)]
+ Eq(Z) [log p(θ|ε) + log p(φ|ζ)] (171)

With the Jensen’s inequality, providing a lower bound to the log marginal likelihood function
p(X|ε, ζ) in [12] makes the variational update equation in (171) for MAP intractable because
of the coupling between the corpus and document parameters. Even the posterior variational
distribution for latent Z in (170) is intractable due to the same coupling. Using the same
Jensen’s inequality approach, we therefore propose a lower bound to the log likelihood
function instead. Then, we derive the MAP lower bound from the log likelihood’s lower
bound by adding the log of the priors distributions to the log likelihood’s lower bound.

5.3.2 Unnormalized parameterization

The stochastic variational inference randomly draws a data point (a word or a document)
and then learns its local parameters to update the global parameters following a natural
gradient update approach [1, 65]. Let’s suppose, for instance, that we are sampling one
document at a time. Following the stochastic variational method at document-level, we
compute the noisy estimate of the natural gradient of the objective function corrresponding

123



to D copies of document j which are then used to update the global parameters. As we
observe, to allow D copies of the objective function (ELBO), we take the corpus-wide terms
[65], [167] in the variational lower bound of a single document j and normalize them by D
(the total number of documents in the corpus) so that lower bound becomes:

L =
∑
j

Lj = Ej [DLj ] (172)

where DLj is the variational lower bound (ELBO) with D copies of document j.
Similarly, in MAP estimate as we follow this time a stochastic framework at word-level,
we need to operate on unnormalized parameterization in order to compute unnormalized
expected sufficient statistics during the stochastic expectation step as in MAP-LDA. This
is because in online EM algorithm as proposed in [168], the likelihood function and the
sufficient statistics are normalized by the total number of words W in the corpus. Using W
copies of the proposed EM lower bound for each word leads to an unnormalized expected
sufficient statistics during E-step and provides the appropriate scale between the normalized
ML estimates and the prior distribution that summarizes the posterior probability of the
parameters. This shows the correspondence between the proposed approach for MAP
where we estimate sufficient statistics within unnormalized representation and the stochastic
variational inferences as they use noisy estimates of natural gradient of the ELBO to update
the global parameters.

We compute the unnormalized expected sufficient statistics as MAP estimates for
the parameters using online averages as alternatives. While performing in unnormalized
parameterization of LDA, one of the advantages is the fact that MAP-LDA’s update
equation and the one for CVB0 (zero order approximation of LDA) are analytically identical
if we adjust their hyperparameters by one [4]. This ultimately connects the CVB0-LDA
to MAP-LDA and stochastic CVB0-LDA (SCVB0-LDA) to online EM for MAP-LDA,
and it introduces the EM statistics and responsibilities to CVB0 statistics and variational
distributions (responsibilities). This connection allows the SCVB0-LDA as unnormalized
stochastic MAP-LDA with minibatch of size one scheme when assessing one data point
at a time (from its recursive update equation). In this chapter, we are also performing
in unnormalized parameterization of LBLA where we hope to show its connection to the
collapsed space representation. The connection originates from the fact that both MAP
and SCVB0 operate on unnormalized parameterization of the LDA. Furthermore, the
SCVB0-LDA’s update equation is also similar to that of MAP-LDA [13]. We implement a
MAP-LBLA estimation with stochasticity at word-level that is connected to SCVB0-LDA
inference. In MAP, from the hidden variables, we marginalize out the latent variables from
the corpus while leaving only the parameters. On the other hand, in CVB inference, we
integrate out the parameters from the hidden variables.

5.3.3 Generative process of the MAP-LBLA

LDA [3, 5] is generally a three level hierarchical model. The corpus level includes the
global topics and their hyperparameters and document hyperparameters. The document
level is characterized by the topic proportions and finally, the word level includes the topic
assignments and the words [5]. By marginalizing out the parameters, we get a two level
hierarchical LDA (corpus to document and document to word). As based on the LDA
architecture, LBLA in this condition also follows a two level topic model, and as a result,
generates documents within the MAP framework as:
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Choose a global topic φk|ζ ∼ BL(ζ) where k ∈ {1, ...,K}
For each document j

Choose the topic proportion θj |ε ∼ BL (ε)
For i ∈ {1, 2, ...,W } in document j
Choose word xi|θj , φ1:K ∼ Mult

(∑K
i=1 θjiφi

)
In this chapter, the variables xi, wi, and vi could be used interchangeably to denote a
word in the vocabulary.

It is noteworthy that this two level hierarchical topic model is different from mixture
of unigrams and PLSA or PLSI because its multinomial parameters are drawn from prior
distributions (the existence of priors to smooth the multinomials). Without the priors, our
LBLA and LDA topic models could have been reduced to PLSI or mixtures of unigrams
[4]. Table 5.1 summarizes the relevant variables for the MAP-LBLA topic model.

5.3.4 The Two-Level LBLA Topic Mixture Model

In general from the hidden variables and observed data, the three-level generative equation
is:

p(X,Z, θ, φ|ε, ζ) =
K∏
k=1

p(φk|ζ)
D∏
j=1

p(θj |ε)
N∏
i=1

p(zij |θj)p(xij |φ, zij) (173)

We then compute the joint posterior distribution:

p(Z, θ, φ|X, ε, ζ) = p(X,Z, θ, φ|ε, ζ)
p(X|ε, ζ)

When we marginalize out the latent variables, the two-level LBLA posterior distribution
becomes:

p(θ, φ|X, ε, ζ) = p(X, θ, φ|ε, ζ)
p(X|ε, ζ) ∝ p(X, θ, φ|ε, ζ) (174)

where

p(X, θ, φ|ε, ζ) =
∑
Z

p(X,Z, θ, φ|ε, ζ) (175)

=
∑
Z

p(X,Z|θ, φ)p(θ, φ|ϵ, ζ) (176)

with ∑
p(X,Z|θ, φ)p(θ, φ|ϵ, ζ) = p(θ|ε)p(φ|ζ)

∑
Z

p(X,Z|θ, φ) (177)

In our case, p(θjk|ε) and p(φk|ζ) are BL priors where ε = (α1, ..., αK , α, β) and ζ =
(λk1, ..., λkV , λ, η) are their respective parameters. For instance, the document BL priors
p(θj |ε) is defined as:

p(θj |ε) = BL(α1, ..., αK , α, β) =
Γ
(∑K

k=1 αk
)

Γ (α+ β)
Γ (α) Γ (β)

×
K∏
k=1

θαk−1
jk

Γ (αk)

(
K∑
k=1

θjk

)α−
∑K

k=1 αk
(

1−
K∑
k=1

θjk

)β−1

(178)
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To show the sufficient statistics and natural parameters of the BL priors for the corpus and
documents parameters, we represent them in exponential family form using for instance
p(θd|ϵ) = exp{log p(θj |ε)} as we also show below.

p(θd|ε) = exp{
(

K∑
k=1

(αk − 1) log θjk

)

+
(
α−

K∑
k=1

αk

)
log

(
K∑
k=1

θjk

)

+ (β − 1) log
(

1−
K∑
k=1

θjk

)
+ log Γ

(
K∑
k=1

αk

)

+ log(α+ β)− log Γ(α)− log Γ(β)−
K∑
k=1

log Γ(αk)} (179)

From (178) and (179), we use similar steps for the corpus BL prior p(φk|ζ).
We define the joint distribution p(X, θ, φ|ε, ζ) such that: p(X, θ, φ|ε, ζ) =

p(X|θ, φ)p(θ|ε)p(φ|ζ)

p(X, θ, φ|ε, ζ) =
∑
Z

p(X,Z, θ, φ|ε, ζ) (180)

=
(∑

Z

p(X,Z|θ, φ)
)
p(θ|ε)p(φ|ζ) (181)

=
(∑

Z

p(X|Z,φ)p(Z|θ)
)
p(θ|ε)p(φ|ζ) (182)

From (180) to (182), we saw that when the latent variables are marginalized out, the three-
level LBLA topic model is reduced to a two-level LBLA model similar to LDA.

The distribution p(X|φ, θ) =
∑
Z p(X|Z,φ)p(Z|θ) is reminiscent of a mixture topic

model (PLSI or mixture of unigrams) [5]. Given priors information, we can define:

p(X|ε, ζ) =
∫ ∫

p(θ|ε)p(φ|ζ)
(
N∏
i=1

p(xi|θ, φ)
)
dθdφ (183)

This marginal distribution (183) of a document is a (continuous) mixture distribution whose
mixture weights are (p(θ|ε)× p(φ|ζ)) and components p(xi|θ, φ) [5]. This illustrates the
flexibility of the LBLA due to the prior information compared to PLSI and mixture of
unigrams.

5.3.5 The EM lower bound for the MAP-LBLA

We first define the log likelihood logP (X|θ, φ) as:

logP (X|θ, φ) = log
∑
Z

p(X,Z|θ, φ) (184)

We introduce the distribution q(Z) over the latent variables Z. Instead of log marginal
distribution, we provide an EM lower bound to the log likelihood which allows us to include
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the prior information in the EM lower bound for MAP-LBLA in (193).

log p(X|θ, φ) = F (q, θ, φ) +KL(q||p) (185)
≥ F (q, θ, φ) (186)

with KL(q||p) ≥ 0

F (q, θ, φ) =
∑
Z

q(Z) log p(X,Z|θ, φ)
q(Z) (187)

KL(q||p) = −
∑
Z

q(Z) log p(Z|X, θ, φ)
q(Z) (188)

From the definition of the KL(q||p), if q(Z) = p(Z|X, θ0, φ0)
then KL(q||p) = 0, then we have:

F (q, θ, φ) =
∑
Z

q(Z) log p(X,Z|θ, φ)−
∑
Z

q(Z) log q(Z) (189)

F (q, θ, φ) =
∑
Z

p(Z|X, θ0, φ0) log p(X,Z|θ, φ)

−
∑
Z

p(Z|X, θ0, φ0) log p(Z|X, θ0, φ0) (190)

F (q, θ, φ) = Q(θ, φ, θ0, φ0) + C (191)

=
∑
Z

p(Z|X, θ0, φ0) log p(X,Z|θ, φ) (192)

The functional F represents the standard EM lower bound for ML estimation (MLE) as
illustrated in Table 5.1. Now using Bayes’ theorem, we can derive an EM lower bound for
MAP-LBLA:

log p(θ, φ|X) = log p(θ, φ,X)− log p(X)
= log p(X|θ, φ) + log p(θ, φ)− log p(X)
= F (q, θ, φ) +KL(q||p) + log p(θ, φ) + C

≥ F (q, θ, φ) + log p(θ, φ) + C

≥ F (q, θ, φ) + log p(θ) + log p(φ) + C

Here KL(q||p) ≥ 0 and log p(X) is a constant C. Since q = q(Z) = p(Z|X, θ0, φ0) = ψijk
which is our EM responsibility vector, similar to a variational responsibility, then the EM
lower bound for MAP is:

L (ψijk, θ, φ|ε, ζ) = F (ψijk, θ, φ) + log p(θ|ε) + log p(φ|ζ) (193)

This shows that at the E-step, the MAP lower bound will be identical or reduced to the
MLE one if we compute the latent ψijk and then the M-step will require both the MLE lower
bound and the priors information to estimate the parameters [89]. We have in our case a
topic mixture model where its parameters are drawn from their respective conjugate priors.
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We showed that when q(Z) = p(Z|X, θ0, φ0) = ψijk which is the complete conditional
distribution of the latent variables given the samples and model parameters, the variational
case and the standard mixture model technique coincide. Below, from (194) to (199), we
show the MAP steps for its point estimate from its EM lower bound with LBLA.

L (ψijk, θ, φ) ∝

⎛⎝∑
k

ψijk
∑
i,j,v

log p(Xi|Zij , φkv)p(Zij |θjk)

⎞⎠
+

⎛⎝∑
j,k

log p(θjk|ε) +
∑
k,v

log p(φkv|ζ)

⎞⎠ (194)

From the lower bound in (194) and (265), we derive the coordinate ascent method that is
used to compute the model point estimate θ and φ from (224) to (231). Then we formulate
the MAP-LBLA update equation as a function of θ and φ using (231), (229), (195), (196),
(197), and (198).

ψijk ∝ (θk)(φk)(φk(V+1)) (195)

ψij(K+1) ∝
(
θj(K+1)

)
(196)

ψijk ∝

⎡⎣
(
N jk
θ + αk − 1

)
(
∑
k αk − 1) +

(∑K
k=1 N jk

θ

)
⎤⎦

×

⎡⎣
(
N

vijk
φ + λkv − 1

)
(
∑
v λkv − 1) +

(∑V
v=1 N

vijk
φ

)
⎤⎦

×
(
1− θj(K+1)

) (
1− φk(V+1)

)
(φk(V+1)) (197)

such that:
U =

(
1− θj(K+1)

) (
1− φk(V+1)

)
(φk(V+1)) (198)

with: ⎧⎪⎪⎨⎪⎪⎩
1− θd(K+1) =

∑K
k=1 θdk < 1

1− φk(V+1) =
∑V
v=1 φkv < 1

φk(V+1) = 1−
∑V
v=1 φkv < 1

(199)

The Beta distributed random variables in (198) make the MAP-LBLA (197) irreducible to
MAP-LDA due to the constraints in (199) which prohibit the factor (198) to be equal to
one: as a result, the MAP-LBLA and MAP-LDA do not have the same update equation.
However, under some conditions, we could observe that MAP-LBLA update equation in
(197) is proportional to that of MAP-LDA in [4], [13], and [17] when using the unnormalized
representation. In that case, the EM responsibility vector becomes:

ψijk ∝

⎡⎣
(
N jk
θ + αk − 1

)
(
∑
k αk − 1) +

(∑K
k=1 N jk

θ

)
⎤⎦⎡⎣

(
N

vijk
φ + λkv − 1

)
(
∑
v λkv − 1) +

(∑V
v=1 N

vijk
φ

)
⎤⎦ (200)
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From (200), the EM algorithm for MAP-LBLA could be identified with MAP-LDA. Using
the work in [11], we could also notice that BL prior in (201) contains Beta distribution
(203) (the generating density function) that is related to the density generator in (202):

p(θj |α1, ..., αK) = G (γ)
K∏
k=1

θαk−1
jk

Γ(αk)
(201)

The density generator G (.) of BL gives:

G (γ) = Γ(
∑K
k=1 αk)

γ
∑K

k=1 αk−1
J (γ) (202)

Below is the representation of the Beta distribution in BL given its hyperparameters α and
β.

J (γ|α, β) = Γ(α+ β)
Γ(α)Γ(β)γ

α−1(1− γ)β−1 (203)

with γ =
∑K
k=1 θjk < 1. From (203), we can use (198) and (197) to show that:{

φk(V+1)(1− φk(V+1))→
∑V
v=1 φkv ∼ Beta(2, 2) (204)

since J (γ|2, 2) ∝ γ(1− γ) for γ =
∑V
v=1 φkv

Then, we identify the Beta parameters from (204) and (203):

λ = 2 η = 2 (205)

for the corpus BL prior. From (195) to (197), we can observe that J (γ|2, 2) ∝ γ(1 − γ)
for γ =

∑V
v=1 θjk as well; so for the document BL prior we have:

α = 2 β = 2 (206)

As we identify the hyperparameters of the generating density function or the Beta
distribution (203), the corpus BL is then defined as BL(λk1, ..., λkV , 2, 2) while the document
BL is still BL(α1, ..., αK , 2, 2) from (201), (202), (203), (205), and (206). Importantly, during
initializations, the only unknown hyperparameters in the MAP-LBLA are the Liouville
distribution document parameters (αk)Kk=1 and Liouville corpus parameters (λkv)Vv=1. The
EM lower bound to MAP estimation therefore simplifies the LBLA structure which has
been reduced from a three-level hierarchical model to two levels. This ultimately suggests
that while the formulation of MAP-LBLA in (197) is proportional to the update equation
in (200) which bears some ressemblance with MAP-LDA [4], [17], [13], we can primarily
identify (200) as a Liouville family distribution that turns out to be proportional to the
Dirichlet. Since the Liouville family distribution of the second kind is proportional to
Dirichlet, then both their update equations under a topic modeling framework would be
proportional. This is the case because in (200) by proportionality, the Beta prior defined in
(204) acts as a uniform prior. As previously mentioned, when considering proportionality,
the MAP-LBLA’s update equations could be equivalent to those from MAP-LDA. Instead of
using EM statistics in a form of Nφ, N j

θ , and NZ , we could also represent the EM algorithm
for LBLA point estimates in terms of unnormalized counts of the EM responsibilities as
shown below:

θjk ∝
(
N jk
θ + αk − 1

)
(1− θj(K+1)) (207)

∝
(
N jk
θ + αk − 1

)
=
∑
i

ψijk + αk − 1 (208)
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φkv ∝
(
N

vijk
φ + λkv − 1

)
(1− φ(V+1)k) (209)

∝
(
N

vijk
φ + λkv − 1

)
=
∑
ij

ψijk + λkv − 1 (210)

where the EM statistics for LBLA are:⎧⎪⎪⎨⎪⎪⎩
N jk
θ =

∑
i ψijk

N kv
φ =

∑
j ψijk

N k
Z =

∑
ij ψijk

(211)

We just showed that with unnormalized count, the LBLA using EM for MAP, and LDA
share similar parameters and EM statistics in (229), (231), and (211). So we combine
unnormalized count method to parameterization to connect the MAP estimation to other
inferences such as stochastic variational inference for the LDA architecture. We will show
that our proposed approach could be in alignment with the work in [4].

The batch algorithm for MAP using EM for LBLA (BEM-LBLA) follows (229), (231),
and (197). It requires an extensive amount of memory because it stores on each word, in
the corpus, an EM responsibility vector. It constantly needs access to all the available data
at every iteration before providing an update which is not efficient. We first aim for a fast
batch method (similar to CVB0) from which we can build a stochastic EM algorithm for
MAP estimation.

5.3.6 Fast Batch Algorithm for EM-LBLA

It is mainly a refined version of the original batch EM algorithm for MAP-LBLA. For time
and memory complexity, it is directly faster and provides a good performance over the
original batch EM because it excludes the current posterior from its sufficient statistics. It
excludes current value of the responsabilty for the word x. The counts in (212) are then
used for batch processing. In the collapsed space, it is equivalent to CVB0. We summarize
its expected counts or EM sufficient statistics as:⎧⎪⎪⎨⎪⎪⎩

N jk
θ−ij =

∑
−i ψijk

N
vijk
φ−ij =

∑
−j ψijk

N k
Z−ij =

∑
−(i,j) ψijk

(212)

where the responsability update equation is defined as:

ψijk ∝

⎡⎣
(
N jk
θ−vij + αk − 1

)
(∑K

k=1 αk − 1
)

+
(∑K

k=1 N jk
θ−vij

)
⎤⎦

×

⎡⎣
(
N

vijk
φ−vij + λkv − 1

)
(
∑
v λkv − 1) +

(∑V
v=1 N

vijk
φ−vij

)
⎤⎦

×
(
1− θj(K+1)

) (
1− φk(V+1)

)
(φk(V+1)) (213)

with ij meaning the ith word in document j; ijk is the ith word in document j in topic
k; i also represents the number of latent variables in the document j. From the work in
[4] and [13], it shows that SCVB0-LDA is equivalent to MAP-LDA through unnormalized
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parameterization because the MAP-LDA update equation is identical to the SCVB0 except
that their hyperparameters must be offset by one. This equivalent relationship between the
MAP-LDA and SCVB0-LDA characterizes the similarity between the EM statistics and
responsibilities with CVB0-LDA statistics and variational responsibilities (distributions).
The SCVB0-LDA is the unnormalized MAP-LDA using standard EM algorithm. Because
it implements a stochastic method at word-level using the variational distribution as a local
parameter, the SCVB0-LDA is the stochastic unnormalized MAP-LDA using minibatch
scheme of size one. In the EM algorithm, the MAP estimates unnormalized expected
sufficient statistics to scale properly its prior distributions for a normalized likelihood
function. In this chapter and using online stochastic CVB0 for LBLA that we previously
proposed in [107], we can observe that there is no equivalent relationship between the
currently proposed MAP-LBLA and the SCVB0-LBLA [107] as their respective update
equations are different. This is in contrast to the MAP-LDA and the SCVB0-LDA that share
some equivalent relationship as shown in [13], [17]. However, our EM-based MAP-LBLA
shares some equivalent relationship with SCVB0-LDA under unnormalized parameterization
in (197) from [13]. As the current MAP-LBLA’s update equation is proportional to
the one in MAP-LDA, consequently, it is connected to SCVB0-LDA. With unnormalized
representation, the EM-based MAP-LBLA associates its EM statistics and responsibilities
to CVB0-LDA statistics and responsibilities: the EM algorithm for MAP-LBLA therefore
operates on unnormalized parameterization of LDA.

We have just illustrated that both MAP-LBLA and MAP-LDA operate on unnormalized
parameterization of LDA. Therefore, the SCVB0-LDA could characterize a MAP estimation
for LBLA as well. Connecting the MAP-LBLA to CVB0-LDA and SCVB0-LDA will help in
providing an alternative to a model selection as we show in sub-section 5.3.8. The proposed
MAP-LBLA ultimately optimizes an EM lower bound on the posterior probability of the
parameters using EM responsibilities and EM statistics.

5.3.7 Stochastic EM algorithm for MAP-LBLA model

We call this method SEM-LBLA which stands for stochastic EM algorithm for MAP
estimation for LBLA topic model. This method ultimately does not require all the available
samples for an update as in the original batch. It follows a stochastic technique within a
minibatch scheme that also refines the fast batch in sub-section 5.3.6. The standard batch
method is slow. This approach provides two update equations for its global parameters:
we have the update equation for the document global parameter and the one for the global
topics.

In our proposed method, SEM-LBLA operates as follow: In minibatch, SEM-LBLA
accesses one word x in a corpus (a random and uniform draw), then from that sample,
it updates its parameters. In the E-step, it computes unnormalized expected sufficient
statistics and evaluates the EM responsibility ψij associated to the word x = xij . In the
M-step, it evaluates the intermediate global parameters (topics in terms of expected counts)
in the corpus as it optimizes the EM lower bound. To do that, it creates W copies of the
intermediate global parameters associated to x in the minibatch and then average them
using V . The average estimate of the intermediate global parameters in a minibatch (of
size V ) scheme using W copies is generally given as:

ˆNφ = W

V

∑
vij∈V

A (i,j) (214)
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where A (i,j) is the word-topic expected count matrix. It is a K × V matrix such that the
vth column contains the responsibility

ψij =
∑
k

ψijk (215)

So for V = 1, we have a minibatch of size one. When V > 1 we have a standard minibatch
scheme which draws a subset of samples from the corpus at each iteration. When W = V
and κ = 0, we have a batch EM for MAP. However, for a minibatch of size one, the estimate
accesses W copies of the distribution on word x; so the estimate becomes:

ˆNφ = W
∑
vij∈V

A (i,j) = W ψij [vij = v] (216)

This simply counts the number of times the word v appears in the corpus (of size W ) as
the global intermediate estimate for selecting a random word v in the corpus. Then, this
intermediate global parameter estimate is then used to update the global topic parameter
as shown in:

Nφ[t+ 1] = (1− ρt)Nφ[t] + ρt ˆNφ (217)

where ρt = (τ0 + t)−κ is the step size. The variable τ0 is the number of minibatches
(predefined), t is the minibatch index, and κ ∈ (0.5 1] is provided by the users. Similarly, in
the document j, the random and uniform draw of a word in a corpus creates an intermediate
global estimate of ˆN j

θ = Wjψij (for V = 1) leading to an update equation of:

N j
θ [t+ 1] = (1− ρt)N j

θ [t] + ρt ˆN j
θ (218)

When V > 1, we use: { ˆN j
θ = Wj

V

∑
vij∈V ψij

ˆNZ = W
V

∑
vij∈V ψij

(219)

We also estimate the expected count ˆNZ = W ψij (when V = 1) and then summarize its
online average equation in the following:

NZ [t+ 1] = (1− ρt)NZ [t] + ρt ˆNZ (220)

From [13], the SEM-LBLA will converge to the stationary point of the MAP objective
function. This is because:
0 < ρt ≤ 1 ∀ t and

∑∞
t ρt =∞ and lim

∞
ρt = 0. These expectations explain the EM statistics

for the MAP-LBLA along with the responsibility vector ψijk. The parameter estimates at
M-step are identical to the expected sufficient statistics from E-step.

5.3.8 Model selection: Small samples, number of topics, and vocabulary
size under MAP-LBLA

The MAP favors small samples as it can regularize better ML estimates with its prior
information. Because it can perform well on small datasets, we expect it to offer a much
improved performance when using for instance a minibatch processing (stochastic method)
compared to full batch methods. For extremely large samples, the MAP estimate will
be close to the posterior means (unbiased estimator [162], [157]). However, it will require
expensive computational resources [157]. Large samples can cause an increase in the number
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of parameters, especially the number of topics and vocabulary size. Increasing the number
of topics in a finite, parametric topic mixture model is not ideal because such setting
automatically increases the search space for the optimal number of topics and vocabulary
size [157], [80]. To efficiently reduce the searching space for model selection, we propose a
performance of our MAP algorithm using small samples size along with small number of
topics and possibly small vocabulary size as well [17]. From previous sections, we showed
that our model, the MAP-LBLA, under unnormalized parameterization is equivalent to
SCVB0 which uses CVB0 (the zero order approximation of CVB) as a fast batch method
[13]. The CVB0 itself could be restrictive for large scale processing because of its memory
requirement problems at every iteration [13], [157]. It led to a stochastic CVB0 or SCVB0.
The work in [157] showed that CVB0 favors a small set of topics because when the hypothesis
grows, the CVB0 is unable to find a global optimum as it often gets stuck in local maxima
[157], [1]. The SCVBO uses its stochasticity to escape local optima [157], [1]. SCVB0 can
operate in large scale applications (Big Data), but it has no ability in parameter streaming
especially when the vocabulary size and number of topics increase in topic-word matrix.
To solve this problem the SCVB0 could operate on a small number of topics, and small
minibatches, possibly using minibatch of size one.

Since the MAP-LBLA is connected to SCVB0-LDA through MAP-LDA, it can therefore
carry such implementation to allow both large scale data and parameter streaming. This
explains our decision to operate on small number of topics and samples sizes for MAP-
LBLA topic model. In terms of EM algorithm, under unnormalized counts, the MAP-LDA
and MAP-LBLA have similar update equations. We can use these characteristics to assess
a model selection for our LBLA model through LDA since MAP-LDA and SCVB0 have
identical update equations with only their hyperparameters offset by one [4, 13]. In other
words, from SCVB0-LDA to MAP-LBLA, the MAP update equation only adds negative
one on its hyperparameters. The SCVB0-LDA is therefore the unnormalized representation
of online EM for both MAP-LDA and MAP-LBLA. However, from analysis, SCVB0 uses
CVB0 as a fast batch method in a stochastic optimization. Despite its use of large memory,
the CVB0 could outperform the unbiased estimator CGS when the number of topics is
low [157]. As a deterministic method, this allows it to converge faster than any other
inferences. Finally, for instance, in multi-label framework [157], when only one sample is
required, the CVB0 outperforms both the CGS and its unbiased estimator. Since SCVB0
is a stochastic version of CVB0, it carries all the advantages of CVB0 while improving the
memory requirement of CVB0 for large scale data processing.

In topic modeling, time and memory complexities are functions of the number of
topics and the size of the vocabulary [17, 12]. When the size of global parameters
increases, especially the word-topic expected count matrix of size K × V , a model selection
that efficiently reduces the variables K and V ultimately improves time and memory
complexities. Such model selection scheme would implicitly provide an efficient setting
for a parameter streaming. We would like to consider improving solutions provided to
SCVB0-LDA in model selection and data management problems with our proposed EM-
based MAP-LBLA topic model. This is because our approach is connected to SCVB0
through the MAP-LDA: from the literature, as SCVB0 (with a minibatch scheme that
processes one sample at a time [13]) is equivalent to a stochastic unnormalized MAP for
LDA, we can therefore set a minibatch of size one for MAP-LBLA as we suggested it earlier
in sub-section 5.3.7 to accommodate data and parameter streaming. This constitutes a
direct alternative to the work in [17] that uses a dynamic scheduling approach based on
residuals including a buffer mechanism that provides an alternative to model selection which
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also improves both time and memory complexities. The approach in [17] first reduces the
number of topics and vocabulary size in a parametric finite topic mixture model using LDA.
Their buffering technique makes it easy to transfer data between computer’s memory and
external storages that carry the load (massive data including word-topics expected count
matrices). This finally leads to a parameter streaming that fixes the problem of big topic
modeling in large scale applications.

Our proposed alternative to model selection using minibatch scheme of size one or
reasonable minibatch sizes is in agreement with the core method that is implemented in
[17]. Though, ours is more simpler and also allows us to process documents with almost
infinite vocabularies: a minibatch of size one ultimately fixes the problem of vocabulary.
This is equivalent to processing or updating only the vth column of the K × V word-
topic matrix while the corpus expected count increases by one anytime we access a new
vocabulary, for instance. We can summarize our contribution as follows: ultimately,
with our scheme supporting a small number of topics and a minibatch method of size
one, there is no need for a buffer of size K × V to connect to external storages. This
facilitates flow of data and parameter. In fact, the buffering scheme would have required
us to probably implement two buffers: one for the global topic matrix and one for the
document parameter (documents expected count matrix), and use both simultaneously
in inferences within a stochastic framework at word level which defines the topic and
document parameters as global parameters. In contrast to the method in [17] which follows
a stochasticity at document-level, our approach does not discard the document parameter
after one look. It updates both the corpus (topics) and document parameters. We only used
the connection between the MAP-LBLA and MAP-LDA and their equivalent relationship
within the collapsed variational Bayes inferences to suggest for an improved alternative to
model selection for MAP in order to handle both large scale data and parameter streaming.
Our method is not computationally expensive when we compare it to the work in [17] that
supports expensive dynamic scheduling and a buffering methods.

In our proposed method, despite being stochastic, we also prioritize accurate estimates
over extremely fast methods that could miss important processing steps and negatively
affect overall results. For a regular minibatch (255), with reasonable small samples, we can
use the proposed |K| ≤ 150 as almost similar to the setting in [157], and for a minibatch
scheme of size one (216), we can set |K| = 10 for every word as in [17]. We combine both
processes in our framework where we use regular minibatch when the parameters and data
are manageable or we switch to a minibatch of size one for extremely large vocabulary size
in the data and parameters.

5.4 Experimental results and settings

5.4.1 Datasets

We consider three challenging text document datasets. These collections are: ENRON
dataset, NIPS text documents, and KOS data as shown in Table 6.6. ENRON dataset has
total corpus of D = 39861 documents. With a vocabulary size V = 28102, it provides a
total of W = 6400000 words. The NIPS text documents represent a collection from scientific
papers from the proceedings of NIPS database. It has a corpus around 2484 papers. The
corpus contains D = 1740 documents for a total vocabulary size V = 12419. It also carries
a total of W = 2166029 words and M = 836644 unique word-document pairs. The KOS
collection is from the report blog website (online). It has a total of D = 3430 documents,
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a vocabulary size of V = 6909, and a total of W = 467714 words and M = 360664 unique
word-document pairs.

Table 5.2: Text document datasets

Dtrain Dtest W V D

NIPS 1256 419 2166029 12419 1675

KOS 2573 857 467714 6909 3430

ENRON 29896 9965 6400000 28102 39861

5.4.2 Implementation

This is a stochastic EM algorithm for MAP estimation using the LBLA topic model. As we
perform a stochastic at word-level method in our proposed approach, we have two global
parameters to estimate instead of one global parameter as in case of a stochasticity at
document level. Our global parameters include the topic-word parameters and the document
parameters. We estimate these parameters in terms of unnormalized expected counts which
define our EM statistics for the stochastic EM-based LBLA model for MAP estimation.
The M-step optimizes the EM lower bound with respect to the parameters while the E-step
provides the unnormalized expected sufficient statistics as we use here exponential family
distributions. The proposed approach requires initializations on the hyperparameters.
We usually set them randomly. However, for the BL hyperparameters, we also provide
initializations as follows: For BL prior on the document multinomial parameter, we choose
αjk = 1

k where k ∈{1, 2, ...,K} to characterize asymmetric BL prior. We set αj = 2 based
on (206), and we choose αjk such that αj −

∑K
k=1 αjk ̸= 0. Then, we choose βj = 2. For the

BL on the corpus multinomial parameter, we are setting values for λkv with v ∈ {1, 2, ..., V }
(similar to the document BL) and λ = 2 (where λ −

∑V
v=1 λkv ̸= 0) and η = 2 from (205)

for every k. We use a stochasticity at word-level where we randomly sample one word at a
time from which we estimate its EM responsibility vector (local parameter) ψijk that allows
us to obtain estimates of the model parameters in terms of expected counts.

We implement a minibatch method of size one to process one sample at a time. We use
regular minibatch (multiple samples) when the parameters and data are manageable or we
can also switch to a minibatch of size one for extremely large vocabulary size in the data.
This illustrates the flexibility of our framework to large scale applications. At convergence,
the global parameters are approximated as point estimates. The method still favors much
smaller batch size so that the prior regularizes estimates. We set the minibatch sizes as:
V = {10, 40, 60, 80, 100}. The set of topics is: K = {10, 20, 40, 60, 80, 100, 120, 150}. We
provided a learning rate ρt at iteration t such that:

ρt = (t+ τ0)−κ (221)

The forgetting rate κ ∈ (0.5, 1] actively controls how quickly previously estimated data
are forgotten, during successive iterations. With EM algorithm, we can always reach a
local optimum of the EM lower bound of the posterior distribution of the parameters. We
maintain τ0 = 1 and κ = 0.7.
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5.4.2.1 Evaluation method using perplexity

Each of the three datasets selected for this experiment went through similar process. In
each dataset (a collection of text documents), we randomly divide the data into training
and testing sets. We compute the corpus parameters φ during the training phase. Then,
in the test document, we randomly divide it into a ratio of 90% and 10% as each subset
contains word tokens. As we fix φ, we estimate the document topic proportions θ on the
90% of the test set and then calculate the predictive perplexity on the rest 10% of the subset
using (222) in [153].
A low value of the predictive perplexity or a high predictive log likelihood suggest a better
model.

perplexity = exp
{
−
∑
i,j xij log[

∑
k ψijk]∑

ij xij

}
(222)

The variables xij and [
∑
k ψijk] represent the data and responsibility at 10%, respectively.

We compute the responsibility vector ψijk using (197) from our EM statistics while φ is
maintained fixed.

5.4.2.2 Time and memory complexities

The proposed online EM based-MAP-LBLA has similar time and memory complexity to
LDA topic model in general [12, 153]. Especially, the work in [153] has provided an extensive
detail on LDA’s time and memory complexities. Though, the main difference between the
LDA and LBLA’s time and memory complexities is the flexibility of the BL that allows the
model to perform many tasks: its covariance structure offers possibility to model selection
easier than the one in LDA when analyzing topic structure based on probability masses
(topic proportions) associated to global topics in LBLA. The LDA has no ability to topic
correlation analysis as we mentioned earlier. Therefore, our model is much faster because it
can handle more tasks than LDA including performing topic correlation analysis; all these
tasks within the same time of LDA. This suggests that online EM based-MAP-LBLA is
faster at performing each task and therefore has a much improved time complexity compared
to its LDA counterpart per task. Furthermore, with flexible priors such as BL, it means we
do not need too much samples including the number of topics to achieve better estimates
as the MAP improves and regularizes our point estimates.

Since in topic modeling, time and memory complexities are functions of the parameters
such as the number of topics K the size of the vocabulary V , and the size of the dataset D
[12], [153], when K, V , and D become extremely small, they can significantly improve the
memory requirement (with stochastic method) and the time complexity. The possibility
in our case to carry extremely small samples makes it a better approach over the LDA in
terms of time and memory complexities. It also makes online method efficient over batch
techniques.

5.4.3 Results

The use of prior distributions for MAP estimation makes PLSA and mixture of unigrams
unfit for comparison because the work in [3, 5] even used the simple symmetric LDA to
show the limitations of the PLSA and mixture of unigrams as they lack prior information.
In this experiment, we mainly focus on topic models that could characterize a Bayesian
framework. We compare the performance of our LBLA topic model directly to LDA for
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Figure 5.1: Online MAP-LBLA and NIPS batch sizes
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Figure 5.2: Online EM-based MAP-LBLA vs. online EM-based MAP-LDA at different
minibatch sizes (NIPS dataset)

MAP estimation. We then use the predictive perplexity to evaluate the online EM algorithm
for MAP-LBLA and MAP-LDA under a variety of situations: in each dataset, we monitor
the influence of the number of topics and batch size in the predictive perplexity. In each
dataset we observe that online EM for MAP-LBLA is faster than online EM for MAP-LDA
because of its ability to summarize relevant topics faster than symmetric LDA. Importantly,
we observe that the predictive perplexity favors a small number of topics as we assess the
first topic values to which the perplexity remains constant while being at its lowest values.
The online EM for MAP-LBLA constantly outperforms online EM for MAP-LDA in terms
of predictive perplexity. Figs. 5.2, 5.4, and 5.6 show the performance of the LBLA over the
symmetric LDA in each of our proposed datasets. The flexibility of the BL prior in LBLA
also plays a central role in the predictive distributions and perplexity: a topic model in
general has a fixed multinomial distribution as likelihood function. Its robustness relies on
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Figure 5.3: Online MAP-LBLA and KOS batch sizes
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Figure 5.4: Online EM-based MAP-LBLA vs. online EM-based MAP-LDA at different
minibatch sizes (KOS dataset)

the choice of priors such as BL. The symmetric prior with a uniform base measure does not
offer a variability in the set of topics while the asymmetric BL prior provides heterogeneity
in the topics that speeds up the search for most relevant topics. In addition, the use of
uniform priors such as symmetric Dir, while it simplifies computation, reduces the MAP
framework to MLE. Within the MAP-LBLA topic models, we also observe that providing a
reasonable batch size ultimately enhances the predictive performance in our datasets from
Figs. 5.1, 5.3, and 5.5. This is because a reasonable size of samples could benefit from the
contribution of prior information In this case the MAP could act as regularizer through the
prior for small sample sizes. These characteristics in the proposed approach improve point
estimates and contributes to a much robust perplexity framework. It is also important
to mention that in many occasions, the predictive perplexity of the MAP-LDA is almost
close to that of the MAP-LBLA as shown in Figs 5.2b, 5.6a, and 5.6c. This could be
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Figure 5.5: Online MAP-LBLA and ENRON batch sizes
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Figure 5.6: Online EM-based MAP-LBLA vs. online EM-based MAP-LDA at different
minibatch sizes (ENRON dataset)

explained by the hyperparameter setting in LBLA. The LBLA is a generalization of LDA
which means under some conditions (hyperparameter initialization) the LBLA could be
reduced to LDA topic model. The MAP-LBLA favoring a small number of topics and a
relatively reasonable batch size show its equivalent relationship with CVB0 that also favors
small number of topics [157].

5.5 Conclusion
In this chapter, for parameter estimation in topic modeling, we provide an alternative to
the collapsed variational Bayes and collapsed Gibbs inferences by proposing a simple MAP
estimation technique based on standard EM algorithm. The method optimizes an EM
lower bound on the posterior distribution of the parameters in the M-step. In the E-step, it
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updates exponential family sufficient statistics using online averages. Our main parameters
are the unnormalized expected counts (EM statistics) that summarize the MAP-LBLA’s
update equation. The CVB and CGS, the collapsed space inferences, marginalize out the
parameters while leaving the latent variables. On the other hand, the MAP estimation
method integrates out the latent variables leaving only the parameters. It also reduces
the three-level hierarchical structure in topic models to two levels in the hierarchy. We
implement the MAP-LBLA using online EM algorithm and then compare its performance
(predictive perplexity) against the MAP-LDA that is with equipped symmetric Dir. We
show that the update equation of MAP-LBLA could be proportional to that of MAP-LDA.

The MAP-LDA is connected to CVB0 because they have identical update equations with
only their hyperparameters adjusted or offset by one. The CVB0 favors a small number
of topics. The stochastic CVB0 (SCVB0) allows large scale data modeling but could not
handle parameter streaming due to the size of vocabulary and number of topics as they
increase in large scale processing. The MAP-LBLA (which is connected to MAP-LDA)
aims to improve the capability of SCVB0-LDA that has an equivalent relationship with
MAP-LDA: under unnormalized parameterization, the SCVB0-LDA is equivalent to MAP-
LDA. Furthermore, using reasonable samples sizes in the minibatch scheme ultimately fixes
the problem related to large parameter matrices especially the word-topic expected count
matrix during inferences. We manage the data and parameter streaming by creating a
framework where we use regular minibatch when the parameters and data are manageable or
we switch to a minibatch of size one for extremely large vocabulary sizes in the data. Because
the number of topics and vocabulary size are reduced in this way, the memory and time
complexities are much improved in the proposed approach. We also think that the efficiency
in the predictive perplexities is due to the flexibility of the BL prior in LBLA compared to
the Dir distribution in LDA. Its ability to model dependency between documents through
topic correlation characterizes a much robust compression algorithm and predictive models.
It is still important to recognize that in general, one of the problems in parametric finite
topic mixture models is the parameters initializations, especially the number of topics. In
addition, these models seem to have a much reduced hypothesis space that do not allow
them to cope with extremely large number of topics.

For future work, we could investigate the performance of the topic model when using
other flexible conjugate priors such as generalized Dirichlet based on hyperparameter
estimation. Similarly, we could also implement non conjugate priors using for instance
logistic normal distributions. Another alternative to finite mixture topic models would
be to implement nonparametric models where datasets ultimately choose their underlined
components (number of topics) by themselves.
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Appendix
We formulate the EM lower bound for MAP-LBLA where the priors L (ψijk, θ, φ) are BL
distributions.

L (ψijk, θ, φ) ∝
∑
k,i,j,v

ψijk logφkv + ψijk log θjk

+ ψij(K+1) log(θj(K+1)) + ψijk log(φk(V+1))

+ {

⎛⎝∑
j,k

(αk − 1) log θjk

⎞⎠+
(
α−

∑
k

αk

)
log

⎛⎝∑
j,k

θjk

⎞⎠
+ (β − 1) log

⎛⎝1−
∑
j,k

θjk

⎞⎠+ log Γ
(∑
k=1

αk

)
+ log Γ (α+ β)

− log Γ(α)− log Γ(β)−
∑
k

log Γ(αk)}

+ {

⎛⎝∑
k,v

(λkv − 1) logφkv

⎞⎠+
(
λ−

∑
v

λkv

)
log

⎛⎝∑
k,v

φkv

⎞⎠
+ (η − 1) log

⎛⎝1−
∑
k,v

φkv

⎞⎠+ log Γ
(∑

v

λkv

)
+ log Γ(λ+ η)

− log Γ(λ)− log Γ(η)−
∑
v

log Γ(λkv)} (223)

We perform a coordinate ascent method to obtain the parameter update equations: we
characterize the lower bound associated to each parameter, compute the corresponding
derivative and set it equal to zero. We added the Lagrangian term to the lower bound to
include the optimizations constraints for the parameters before derivation.

L (θ) =
∑
k,i,j,v

ψijk (log θjk) + {

⎛⎝∑
j,k

(αk − 1) log θjk

⎞⎠}
+
(
α−

∑
k

αk

)
log

⎛⎝∑
j,k

θdk

⎞⎠+ (β − 1) log

⎛⎝1−
∑
j,k

θjk

⎞⎠
+ ξ

(
θj(K+1) +

K∑
k=1

θjk

)
(224)

∂

∂θjk
L (θ) =

∑
n ψijk + αk − 1

θjk
+ α−

∑
k αk∑

k,j θjk

+ 1− β
1−

∑
k,j θjk

+ ξ

(225)

Let T be defined as: T = α−
∑

k
αk∑

k,d
θdk

+ 1−β
1−
∑

k,j
θjk

, so we can see that T is not defined when∑
k,j θjk = 0 and 1−

∑
k,j θjk = 0;
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∑
k,j θjk ̸= 0 and (1−

∑
k,j θjk) = θj(K+1) ̸= 0, T = 0 means

α =
∑
k

αk β = 1 (226)

So we have:

∂

∂θjk
L (θ) =

∑
n ψijk + αk − 1

θjk
+ T + ξ (227)

Now making the derivative equal to zero gives
∑

n
ψijk+αk−1
θjk

+T +ξ = 0 or
∑

n
ψijk+αk−1
θjk

=

−T − ξ; so θdk =
∑

n
ψijk+αk−1
−C−ξ where

∑
k θjk =

∑
k

∑
n
ψijk+αk−1
−T −ξ = 1 − θj(K+1);

−ξ =
∑

k
(
∑

i
ψijk+αk−1)+T (1−θj(K+1))

1−θj(K+1)
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∑
i
ψijk+αk−1∑

k
(
∑

i
ψijk+αk−1)+T (1−θj(K+1))

1−θj(K+1)
−T
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θjk =
∑
i ψijk + αk − 1∑

k
(
∑

n
ψijk+αk−1)+T (1−θj(K+1))−T (1−θj(K+1))

1−θj(K+1)

(228)

θjk =
∑

n
ψijk+αk−1∑

k
(
∑

n
ψijk+αk−1)

1−θj(K+1)

=
∑

n
ψijk+αk−1∑

k

∑
i
ψijk+αk−1(1− θj(K+1))

For N jk
θ =

∑
i ψijk

θjk =

(
N jk
θ + αk − 1

)
(
∑
k αk − 1) +

(∑
k N jk

θ

)(1− θj(K+1)) (229)

We have also

L (φ) =
∑
k,i,j,v

ψijk (logφkv) +

⎛⎝∑
k,v

(λkv − 1) logφkv

⎞⎠
+
(
λ−

∑
v

λkv

)
log

⎛⎝∑
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φkv

⎞⎠
+ (η − 1) log

⎛⎝1−
∑
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φkv

⎞⎠+ ϱ

(
φ(V+1)k +

V∑
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φkv

)
(230)

Similarly for φkv using L (φ), we have:

φkv =

(
N

vijk
φ + λkv − 1

)
(
∑
v λkv − 1) +

(∑
v N

vijk
φ

)(1− φk(V+1)) (231)

We define Ω similar to T as Ω = λ−
∑

v
λkv∑

k,v
φkv

+ 1−η
1−
∑

k,v
φkv

with N vjk
φ =

∑
(ij)=v ψijk where

the ith word is v
with 1− θj(K+1) =

∑K
k=1 θjk and 1− φk(V+1) =

∑V
v=1 φkv
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Chapter 6

Stochastic Variational
Optimization of A Hierarchical
Dirichlet Process Latent
Beta-Liouville Topic Model

In topic models, collections are organized as documents where they arise as mixtures
over latent clusters called topics. A topic is a distribution over the vocabulary. In
large scale applications, parametric or finite topic mixture models such as LDA (latent
Dirichlet allocation) and its variants are very restrictive in performance due to their reduced
hypothesis space. In this chapter, we address the problem related to model selection and
sharing ability of topics across multiple documents in standard parametric topic models.
We propose as an alternative a BNP (Bayesian nonparametric) topic model where the
HDP (hierarchical Dirichlet process) prior models documents topic mixtures through their
multinomials on infinite simplex. We therefore propose asymmetric BL (Beta-Liouville) as
a diffuse base measure at the corpus level DP (Dirichlet process) over a measurable space.
This step illustrates the highly heterogeneous structure in the set of all topics that describes
the corpus probability measure. For consistency in posterior inference and predictive
distributions, we efficiently characterize random probability measures whose limits are the
global and local DPs to approximate the HDP from the stick-breaking’s formulation with
the GEM (Griffiths-Engen-McCloskey) random variables. Due to the diffuse measure with
the BL prior as conjugate to the count data distribution, we obtain an improved version
of the standard HDP that is usually based on symmetric Dirichlet (Dir). In addition, to
improve coordinate ascent framework while taking advantage of its deterministic nature, our
model implements an online optimization method based on stochastic, at document level,
variational inference to accommodate fast topic learning when processing large collections
of text documents with natural gradient. The high value in the likelihood per document
obtained when compared to the performance of its competitors is also consistent with the
robustness of our fully asymmetric BL-based HDP. We show that online HDP-LBLA (Latent
BL Allocation)’s performance is the asymptote for parametric topic models. The accuracy
in the results (improved predictive distributions of the held out) is a product of the model’s
ability to efficiently characterize dependency between documents (topic correlation) as now
they can easily share topics, resulting in a much robust and realistic compression algorithm
for information modeling.
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6.1 Introduction
In this world of data analytics, the introduction of Bayesian approaches has revolutionized
data mining and machine learning techniques for large scale applications. One of
the alternatives provided by Bayesian analysis to classical frequentist estimation (e.g.
maximum likelihood estimation) remains the use of prior distributions in data modeling
to accommodate the likelihood functions [89, 7]. Today, the possibility of applying full
Bayesian techniques where we can marginalize over the entire parameters space ultimately
opens the door to better prediction rules [42, 9, 18] including the possibility to compare
efficiently different models [89]. This concept is being currently applied in topic modeling
with the extensive use of probabilities as ways to quantity uncertainty. The main goal
is to learn good topics that could be used in applications such as classification and
information retrieval (i.e. a robust topic model could be embedded into a search engine).
For classification, for instance, the topics learnt in the generative stage could be used in the
discriminative stage with powerful classifiers such as SVM (support vector machines).

Topic models in general depend heavily on prior distributions because their likelihood
functions are already intrinsically fixed to multinomial distributions, so robust topic models
are characterized by the flexibility in the choice of the prior distributions. It is noteworthy
that the multinomial distribution carries some limitations that are widely known and
documented in machine learning’s literature. In text document analysis, a multinomial
distribution does not capture very well the phenomenon of word burstiness, as shown in
[6, 7]. Furthermore, as it usually operates with count data, a direct frequentist method
with multinomial distributions is not efficient because it provides unstable point estimates
where unseen events are more likely to get zero probability for highly sparse data. A prior
distribution ultimately solves these problems by smoothing out the multinomial. Many
applications have therefore favored the Dirichlet as prior distribution to the multinomials
[3, 7]. The use of prior information is very necessary to point out the highly dependence of
topic models on a Bayesian analysis. Without these priors, the widely known parametric
LDA topic model would be reduced to a mixture of unigrams or PLSA (probabilistic
latent semantic analysis) which do not offer the advantages of full Bayesian methods [3, 4].
Topic models can be viewed also as compression algorithms that summarize documents
into relevant topics. In other words, in topic modeling, documents arise as mixtures of
topics where each topic (the latent cluster) is a distribution over the vocabulary. For
better compression algorithms, it is natural to characterize an efficient topic modeling’s
architecture where documents show some level of dependency between them through their
topic structure. Documents that share similar topics could be grouped together. This
provides a much realistic and natural way of organizing unstructured collections [8]. The
current popularity of topic models due to the proliferation of large scale applications (text
document modeling and computer vision) has made it necessary to point out that the
majority of these topic models are severely challenged by complexities in datasets. To
cope with the difficulties, finite dimensional topic models (parametric) have to navigate
between conjugate prior distributions [3, 5, 107, 67, 80, 64, 35] and non conjugate priors
[8, 21]. Conjugate priors to the multinomials make posteriors in the same form as the
priors. They tend to make inferences simple with possible closed-form solutions within the
mean-field variational approach. For instance, the Dirichlet is considered conjugate prior
to the multinomial distribution. The logistic normal distribution used as non conjugate
prior is more sophisticated than conjugate priors; however it makes inference extremely
complex and computationally extensive. Logistic normal distribution models the topic
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proportions to allow full covariance structure on the topic mixture components [8, 169, 21].
Its main contribution was to model correlation between topics as a way of characterizing
dependency between documents. Still, to improve results in the standard parametric LDA
topic model, symmetric and asymmetric priors have been introduced, and they have shown
which combinations enhance topic models performances [9]. For LDA, the standard method
requires a use of asymmetric Dirichlet prior for the document parameter and symmetric
Dirichlet prior on the corpus parameter leading to AS (asymmetric-symmetric) combination
following the work in [9]. We can immediately observe that all these specifications and
restrictions ultimately increase the complexity in topic modeling just in the choice of a
simple, but flexible prior as we now have to navigate through layers of conjugate and non
conjugate priors before assessing flexibility of our model with asymmetric over symmetric
structure or maybe efficiently combining these priors for better results [9]. Importantly, the
complexity in the choice of priors is highly increased by the ultimate possibility of assessing
the appropriate number of latent clusters (topics) that describe the datasets [5, 80, 41, 9].
As in any latent mixture model, model selection [16, 170, 171] is an important subject in
parametric and nonparametric topic mixture models. The machine learning’s literature
has suggested several methods for topic mixture models [16, 170, 171]. The problem with
working with finite mixtures is that their reduced hypothesis space prohibits a robust model
selection ability. For instance, the deterministic nature of CVBO (zero order approximation
of the collapsed variational Bayes) [4] combined with its reduced hypothesis space [172]
prevent the model from performing efficiently when there is an increase in the number of
topics. The scheme can effectively outperform the unbiased estimator CGS [173] when
the number of topics is low. When there is an increase in the number of topics, CVB0
performs poorly. Since working in finite dimensional space with parametric topic model
is very challenging due to the choice of prior that can complicate inferences and estimates
including problems related to reduced hypothesis space and efficient model selection, we
propose a framework where the dataset chooses its own components. In other words, we let
the dataset choose its underlined structure instead of making any assumption as often in
parametric models. The proposed technique has a much bigger hypothesis space (operating
in infinite dimensional space) that allows to cope and accommodate any sort of complexity.
Another reason for our proposed alternative is the widely use of LDA and its Dirichlet prior
in many applications. Since with Dirichlet prior, the topic components are independent
[8], it does not offer a more natural and realistic way of exploring unstructured (large)
collections of observed data where correlation might highly occur.

Compared to standard finite mixture models, topic models generalize the concept of
finite mixtures as each observation arises from multiple draws from a mixture model. As
a result, they are also called mixed membership models [1]. Parametric finite dimensional
topic models extensively use symmetric Dirichlet priors in LDA. The problem with the
symmetric Dirichlet is that it forces the topics to exhibit same frequency (topics are equally
common) [173, 1]. As a result, this could make model selection very difficult for parametric
topic models. In nonparametric topic models, the literature has presented several methods
with Bayesian nonparametric priors such as the DP (Dirichlet process) [174, 175] and HDP
(hierarchical Dirichlet process) [14], the two parameter poisson-Dirichlet process also called
Pitman-Yor process (PYP), [176] and its hierarchical extensions. The DP and HDP have
prediction rules that introduce the Chinese restaurant process (CRP) and the Chinese
restaurant franchise (CRF), respectively [14]. As the PYP and HPYP generalize the DP
and HDP, respectively, they carry prediction rules that generalize the CRP and CRF,
respectively [15]. While the HPYP is used in natural language processing [177], [178]
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and image segmentation [179], the HDP prior is widely used in topic modeling where the
symmetric Dirichlet serves as a base probability measure at the top level DP which is often
referred to as the HDP-LDA topic model. We are aware that providing the best priors
will result in a better topic model. Through an efficient prior, and due to the limitation
of parametric finite dimensional topic models, we aim for a nonparametric setting that
could serve as an alternative to model selection while characterizing the sharing ability of
clusters (topics) between documents. The DP is the nonparametric prior when extending
standard parametric mixture model whereas the HDP is the appropriate nonparametric
prior for topic models. We therefore propose as alternative to the standard HDP-LDA,
a stochastic Bayesian nonparametric (BNP) technique that implements a variant of HDP
prior where the base distribution at the top level DP (Dirichlet process) is the asymmetric
Beta-Liouville distribution. In contrast to the standard methods that implement symmetric
Dirichlet prior at the top level DP, we formulate the BL prior as alternative for more
variability and heterogeneity in documents topic structure [173]. The goal is to characterize
a detailed topical multi-resolution analysis (where coarser topics interact with finely grained
topics) for accurate estimates [180]. By providing the atoms/topics, the BL is the conjugate
prior to the data distribution in the documents. This flexibility allows us to carry efficient
topic correlation framework within a nonparametric setting. The BL with its versatile
covariance structure could be the alternative to the discrete infinite logistic distribution
(DILN) that has been proposed in HDP because implementing continuous priors on discrete
distributions was hindering performance when topics are not sparse [181]. Since the logistic
normal distribution has very complex posterior inference, our proposed topic model with
the BL as conjugate prior to the multinomial could be the appropriate nonparametric topic
correlation method that not only could offer an alternative to model selection but also
allow topic sharing. This will result in a much robust and efficient compression algorithm
in topic modeling for information retrieval. With the use of BL, we formulate the proposed
approach as asymmetric HDP-LBLA (HDP based on the latent BL allocation) in comparison
to the HDP-LDA topic model [15, 1, 167, 182]. One more leverage from our HDP-LBLA
is that while sharing the global topics among its documents, the topics could be highly
sparse than in HDP-LDA. Therefore, this sparse representation on infinite dimensional
space could be useful when selecting most relevant topics. It therefore means, the HDP-
LBLA has a very flexible GEM [183] structure at the top and lower level DPs. Finally, we
took advantage of the deterministic nature of the proposed approach to implement a fast
stochastic variational HDP-LBLA (SV-HDP-LBLA) to accommodate massive collections of
documents processing. The consistent high value in the predictive likelihood per word in a
document obtained against its competitors shows the robustness of our model in document
processing.

Importantly, for an easy implementation of our BNP topic model, we first constructed
the parametric SV-LBLA (stochastic variational-LBLA) from which we derive our proposed
SV-HDP-LBLA topic model. In our proposed approach, the parametric LBLA is a smoothed
topic model where both the document and corpus parameters are drawn from asymmetric
Beta-Liouville priors. It is also an alternative to another parametric LBLA variant presented
in [64, 35] that is a hybrid between the LBLA and PLSA as it was halfway Bayesian [4]. We
characterize a fully Bayesian analysis in our parametric LBLA and nonparametric HDP-
LBLA. Three main contributions fundamentally summarize our proposed approach.

• Under standard symmetric LDA, all topics are more likely to exhibit same frequency.
We implement a much flexible and sophisticated nonparametric (asymmetric) HDP
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prior based on BL distribution (the BL generalizes the Dirichlet) which is conjugate
to the documents multinomials to enhance variability and heterogeneity of the topics
shared among documents. The proposed approach promotes topic correlation.

• With a much improved stochastic variational framework, the heterogeneity in the
set of all topics from the global probability measure enhances the GEM structure and
contributes to a much faster detection of most relevant topics where the proposed HDP
shows that it represents an alternative to model selection. Unlike our nonparametric
model, the performance of parametric LDA and its variants including LBLA always
rely on the number of topics (which is unknown).

• When marginalizing over the parameters space, the BL-based HDP topic model
provides accurate predictive distributions that could enhance perplexities and log
likelihood estimates for a better compression algorithm in information retrieval in
large scale applications.

This chapter is structured as follows: section 6.2 presents the related work and background
while section 6.3 elaborates on our smoothed asymmetric and stochastic LBLA model.
Section 6.4 focuses on our proposed stochastic and asymmetric HDP-LBLA model follows
by section 6.5 which carries the experiments using text data collections. Finally, section 6.6
provides future works and a conclusion.

6.2 Related work and background
One of the main advantages of topic modeling is in fact the simplicity of its architecture
because the likelihood function has been kept fixed to a multinomial distribution as we
operate with count data. In generative parametric topic models, as often characterized in
posterior inferences, prior distributions play a central role in smoothing the multinomials
[6, 4, 58]. Different priors lead to different results in point estimate. This observation has
led to the introduction of a wide variety of priors within finite parametric topic models
because the goal is to generalize the LDA topic model so that it operates on a variety of
data (images, videos and text data). This generalization introduces some complexities and
challenges when characterizing useful properties and notions such as topic correlation and
dependency between documents through latent clusters (topics). Choosing the right prior
for the related multinomials parameters that could respect such properties while enhancing
predictive distributions and perplexities has become one of the central themes in efficient
topic modeling. The reason behind is to help also in model selection besides the concept
of sharing topics between documents which can be described as modeling some level of
dependency between corpus documents. In that regard, topic modeling literature has
witnessed a competition between conjugate priors (to the multinomials) and non conjugate
priors. Conjugate priors [3, 5] are often considered appropriate in inference. The Dirichlet [3]
is a widely used conjugate prior in topic models. Non conjugate priors have been essentially
introduced for a direct topic correlation framework while characterizing possible connections
between documents through their topics. The logistic normal distribution and its variants
[8, 181, 21] remain important non conjugate priors for the multinomial. However, the
choice of such priors often leads to very complex inferences. Recently, another property
has been introduced to the priors adding more fuel to the old battle between conjugate and
non conjugate priors: the new battle is now between symmetric (the base measure is fixed
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to a uniform distribution) and asymmetric priors (base measure fixed to a non uniform
distribution) [9].

In LDA, authors in [9] suggested that the combination of an asymmetric prior on
the document parameter and a symmetric prior on the corpus parameter, resulting in
asymmetric-symmetric (AS) LDA provides better results than any other combination: this
has become the standard setting when it comes to choosing priors for multinomials [9] in
finite parametric models. In BNP topic models with HDP, maintaining the AS structure is
implicitly equivalent to using symmetric Dirichlet priors as base distribution at the corpus
level DP whose global atoms are then shared among documents at the lower level DP. For
instance, in [16, 167], the truncated versions of the HDP-LDA with a symmetric Dirichlet on
the corpus parameter have been observed to implicitly generate asymmetric-symmetric (AS)
structure. So, many authors encouraged the widely use of symmetric Dirichlet priors within
nonparametric settings as in [182, 14, 1]. In addition, Mallet, for instance, automatically
follows an asymmetric-symmetric (AS) LDA structure [184] because it is a truncated version
of HDP-LDA with a finite symmetric Dirichlet that truncates a GEM (Griffiths, Engen and
McCloskey) [180].

Recently, fully asymmetric priors characterizing the asymmetric-asymmetric (AA) LDA
started to emerge in BNP using HDP-LDA to increase flexibility of topics components.
This is because researches have recently concluded that topic models hyperparameters can
affect the number of topics, so it is unsafe to immediately fix these hyperparameters. The
NP-LDA (nonparametric-LDA) is a fully nonparametric asymmetric variant of the HDP-
LDA with a truncated GEM prior [180]. This topic model is based on the PYP process,
and it is an example of the superiority and flexibility of AA-structure as it outperforms
the standard truncated HDP-LDA and variants. It outperforms these models in perplexity,
therefore, in predictive distributions [180]. Though, currently, very few authors successfully
implemented asymmetric-asymmetric (AA) priors [67, 80, 107, 163] in parametric topic
modeling framework. In addition, only a small number of authors have worked on AA
structure within nonparametric setting. For instance, the work in [180, 173] supported
asymmetric Dirichlet prior at the top level DP and was able to exhibit successfully AA LDA
structure instead of the standard AS LDA in [9]. Asymmetric and symmetric Dirichlets have
been constantly part of Bayesian inferences. For instance, while authors in [173] applied a
CGS (collapsed Gibbs sampler) using asymmetric Dirichlet prior, the work in [180] showed
that the truncated versions of the HDP-LDA could not outperform the fully asymmetric
nonparametric topic model (NP-LDA) as it is equipped with PYP (Pitman-Yor process)
prior on the document and corpus parameters. The hyperparameters have GEM priors and
form mean vectors drawn from asymmetric priors. Nonparametric LDA-based topic models
that follow AS framework are less robust compared to the NP-LDA with its AA structure.
The work in [180] found that AA version of HDP easily outperforms AS methods.

Within hyperparameters analysis, prior distributions in empirical Bayes estimation have
successfully demonstrated in the literature their influences in topic models inferences.
The work in [4, 180, 9] illustrates the impact of hyperparameters [4] in inferences and
model selection [180, 9]. For instance, in model selection, authors in [180] showed that
hyperparameters have direct effect on the number of topics. Through the work in [4] which
connected hyperparameter analysis to inferences, the literature has also noticed a variety of
BNP topic models with HDP often within variational, MCMC (Markov Chain Monte Carlo)
approaches (such as Gibbs sampler and collapsed Gibbs sampler), and hybrid methods that
bridge the gap between MCMC and variational inferences. An example is the collapsed
variational Bayes (CVB) and its variants including online methods with CVB-HDP in[16].
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In inferences, the work in [185] implemented a truncation-free method for variational
approaches using hierarchical BNP model with DP mixtures as a direct extension to the
PYP (Pitman-Yor Process) [176], NCRP (Nested Chinese Restaurant process) [186], [187],
and IBP (Indian Buffet Process), [188, 189]. However, these methods including the work in
[185] were all outperformed by the work in [173] that implemented an improved version of the
direct assignment sampler of [14] and [190]. The scheme in [173] is an online sparse collapsed
hybrid variational method that performs better than the Gibbs sampler when using large
number of topics. It outperforms the SMF-HDP (stochastic mean-field variational HDP)
model [167], and it is an extension to [191] that is based on fast Gibbs sampling using
high level of sparsity in hybrid parametric LDA including [68]. The method improves the
Chinese restaurant process (CRP) representation. Despite all these flexibilities, the vast
majority of these inferences promote the use of Dirichlet priors. Under LDA, with the
Dirichlet prior, the topic components are independent, a setting that negatively affects
a natural way of visualizing, analyzing, and organizing unstructured collections of data
where correlation and information (topics) sharing become essential [8]. Sharing the topics
between documents is one the main advantages of nonparametric models using HDP as it
provides a better way of grouping documents that are similar leading to a much robust and
efficient compression algorithm with HDPs. While Gibbs sampler is an unbiased estimator
that has been combined in many hybrid models [12, 173, 70, 172, 16, 170, 171], variational
techniques are deterministic and flexible for fast convergence. MCMC approaches are often
slow and could not take advantage of fast online schemes (streaming) for massive data
processing as variational.

The flexibility of priors could be handicapped by the reduced hypothesis space of finite
parametric latent topic models. For instance, CVB0 is unable to perform effectively when
the number of topics increases; however, it outperforms the unbiased estimator CGS for
a much lower number in topics [172]. This suggests that the reduced hypothesis space
can negatively affect model selection or makes it very challenging [5, 9, 41, 153, 1, 80] in
finite dimensional space. In many occasions this leads to exhaustive methods including
cross-validations that may not be efficient [1] in nonparametric setting with large scale
applications. Nonparametric topic models have a much bigger hypothesis space as they
operate in infinite dimensional space where the dataset can effectively select its underlined
components from a set of a countably infinite components.

The work in [170, 192] recently found there is no significant difference between symmetric
and asymmetric priors when using Dirichlet on the corpus parameter in LDA: this shows
again the inability of the Dirichlet in general in very complex and challenging applications.
We decide to implement a variational approach to take advantage of its deterministic nature
while performing an efficient stochastic learning on massive collections of data. We also
decide to use a flexible conjugate prior to the data distribution that could equally have
the same performance of the logistic normal distribution in infinite dimensional space, a
framework proposed in [181] to accommodate topic correlation modeling. Instead of the
standard LDA and its symmetric Dirichlet priors that often dominate topic modeling, we
propose an alternative with asymmetric BL based-HDP prior for the multinomials in our
BNP method. Importantly, the choice of asymmetric BL is an alternative to non conjugate
priors such as logistic normal distribution [8] and discrete infinite logistic normal distribution
[181]. This suggests that our variational posteriors are simple and in closed-form, unlike the
ones in DILN of [181]. In the proposed approach, the BL acts as a diffuse base measure at
the top level DP and as a result offers a variant of HDP prior that is different from standard
HDP-LDA. With the BL, a global probability measure (a draw from the top level DP with
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probability one) is highly heterogeneous and holds the set of all topics that are shared
among documents at the lower level DPs. The Sethuraman’s stick-breaking representations
of the probability measures from our two level HDP improve predictive distributions as
we marginalize out the parameters. Finally, the stochastic implementation learns rapidly
topics components from large corpora (collections). We called it the stochastic variational
Bayes using HDP for LBLA topic model (SV-HDP-LBLA).

6.3 Stochastic variational approach using smoothed and fully
asymmetric LBLA

6.3.1 Motivations

Our proposed HDP-LBLA topic model is the extended nonparametric version of the
fully asymmetric parametric LBLA topic model. The parametric LBLA naturally is a
generalization of the parametric LDA due to the BL generalizing the Dirichlet (Dir) prior
in LDA. Before actual implementation of our proposed HDP-LBLA in section 6.4, we are
first implementing a version of LBLA topic model which will facilitate the transition to
HDP-LBLA. In this section, besides the literature review, we are providing some direct
motivational steps that have contributed to the implementation of this particular parametric
LBLA and proposed HDP-LBLA. We found this step necessary in order to show the
core differences between parametric LBLA and its nonparametric counterpart within our
variational stochastic inference with predictive scheme for both models.

The original parametric LBLA proposed in [64, 35] is a hybrid topic model between
a variational Bayes (VB) and a PLSA’s (Probabilistic latent semantic analysis) maximum
likelihood method [4]. The work in [64, 35] implements variational posteriors on document
parameters; however, the corpus parameter is maintained fixed and estimated through MLE
instead as no prior is placed on it. This makes variational coordinate ascent framework
inefficient because of the lack of a fully Bayesian analysis in the method which also penalizes
its ability to make efficient prediction on unseen documents. Placing a meaningful prior
(such as BL in our proposed approach) on the corpus parameter smooths out the corpus
multinomials [4, 6, 7] during the training phase. Symmetric priors are widely used in
parametric topic modeling many times just for convenience and simplicity in the models
[4]. With symmetric priors, the topics are equally common [1] in the set. For instance,
with symmetric Dir priors in LDA, we expect all the topics to have more likely the same
frequency [173]. Symmetric priors could make model selection very difficult when all topics
become equiprobable as they prevent from assessing relevant topics. Despite the flexibility
of asymmetric parametric LBLA over parametric LDA, all these parametric models do not
have the big hypothesis space of nonparametric topic models including hierarchical topic
models to handle model selection and the sharing ability of topics between documents.

Compared to our previous work with LBLA topic model [107] where we implemented a
deterministic method with CVB inference, we currently provide another alternative by using
a variational method instead of our previous methods with CVB inference. This is due to the
efficiency of VB over the complexity of the CVB inference in large scale applications. The
CVB is a robust deterministic algorithm; however, it can be slow to reach converge due to
its MCMC scheme that utilizes a collapsed Gibbs sampler to compute full dense probability
distributions over each token in order to approximate the variational posterior distribution of
the topic assignments [157]. The CVB update equation is extremely and computationally
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expensive, and it requires a second order Taylor expansion as approximation [12, 70, 4]
that carries a correction factor of variances. Even the implementation of the zero order
information of CVB called CVB0 is also complex and slow due to the fact that it also
maintains full dense probability distributions over each word, preventing it from a possible
sparsity framework that could speed up the algorithm [157]. These reasons directly motivate
our work here where we favor asymmetric priors over symmetric ones. For parametric LBLA
topic model, we use asymmetric BL priors as they also generalize the Dirichlet priors; and
for our proposed hierarchical nonparametric topic model, we utilize asymmetric HDP prior.
Precisely, documents multinomials are drawn from the proposed asymmetric BL-based HDP
prior. The HDP-LBLA could be seen as a nonparametric alternative of the parametric topic
models such as LBLA and LDA including their parametric variants.

6.3.2 Generative process of LDA and LBLA

LDA [3, 5] is the simplest parametric latent graphical topic model. It assumes that each
document exhibits K topics with different proportions. We consider the smoothed LDA
topic model where the document and corpus multinomial parameters are drawn from
Dirichlet conjugate priors. The generative process is given as:

Draw topics φk ∼ Dir(λk1, ..., λkV ) for k ∈ {1, 2, ...,K}
For each document d∈ {1, 2, ...,D} :
a−Draw topic proportions θd ∼ Dir(αd1, ..., αdK)
b−For each word xdn where n ∈ {1, ..., N}

i)-Draw topic assignment zdn|θd ∼Mult(θd)
ii)-Draw word xdn|zdn, φk ∼Mult(φzdn)

where Mult is the multinomial distribution. In LBLA, we replace the Dir for the corpus
and documents parameters by BL(λk1, ..., λkV , λ, η) and BL(α1, ..., αK , α, β), respectively.
Therefore, the hierarchical structure in LDA is also preserved under the LBLA model as
well. Nevertheless, in parametric topic models, the LBLA due to its BL prior [107] topic
generalizes the LDA.

6.3.3 Asymmetric BL with a general covariance structure

From [11], a vector θ⃗d = {θd1, ..., θdK} following the BL distribution with parameter ε =
(α1, ..., αK , α, β) is defined as:

p(θ⃗d|α1, ..., αK , α, β) =
Γ
(∑K

k=1 αk
)

Γ(α+ β)
Γ(α)Γ(β)

K∏
k=1

θαk−1
dk

Γ(αk)

(
K∑
k=1

θdk

)α−
∑K

k=1 αk
(

1−
K∑
k=1

θdk

)β−1

(232)
We utilize asymmetric BL priors with non uniform base measures with concentration
parameters ε and ζ [9]. Following the work in [7, 11, 64, 35], the expectation of θk using
BL(α1, ..., αK , α, β) is:

E[θdk|αk, α, β] = α

(α+ β)
αk∑K
d=1 αk

(233)

V ar(θdk) = α(α+ 1)
(α+ β)(α+ β + 1)

αk(αk + 1)
(
∑K
k=1 αk + 1)

− α2

(α+ β)2
α4
k

(
∑K
k=1 αk)4

(234)

The BL covariance is defined as:

Cov(θdl, θdk) = αlαk∑K
d=1 αk

(
α(α+ 1)

(α+ β)(α+ β + 1)(
∑K
k=1 αk + 1)

)
− α2

(α+ β)2(
∑K
k=1 αk)

(235)
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E(log θdk|αk, α, β) = Ψ(α)−Ψ(α+ β) + Ψ(αk)−Ψ
(

K∑
d=1

αk

)
(236)

The vector θ⃗d = {θd1, ..., θdK} in BL satisfies
∑K
k=1 θd < 1. Therefore, in a K+1-dimensional

space θ⃗ only carries its first K components.

6.3.4 Variational inference for asymmetric and smoothed LBLA

We compute the lower bound then use it as the objective function to derive a form of a
coordinate ascent framework (as we estimate the global variables from the local document
context) that implements a stochastic optimization using the natural gradient of the
objective function. Given our LBLA model, we compute the following marginal:

p(D |ε, ζ) =
∫
θ

∫
φ

∑
z

p(D , z, θ, φ|ε, ζ)dθdφ (237)

log p(D |ε, ζ) = log
∫
θ

∫
φ

∑
z

p(D , z, θ, φ|ε, ζ)dθdφ (238)

= log
∫
θ

∫
φ

∑
z

p(D , z, θ, φ|ε, ζ)q(θ, φ, z)
q(θ, φ, z)dθdφ

= logEq(θ,φ,z)

[
p(D , z, θ, φ|ε, ζ)

q(θ, φ, z)

]
≥ Eq(θ,φ,z)

[
log

(
p(D , z, θ, φ|ε, ζ)

q(θ, φ, z)

)]
≥ Eq [log p(D , z, θ, φ|ε, ζ)]− Eq [log q(θ, φ, z)]
= L (q)

For the stochastic optimization within the variational inference we first need to formulate
the objective function (ELBO) in terms of D copies of document m. This is given in (239).

L = Eq[log p(x|z, φ)] + (Eq[log p(z|θdk)]− Eq[log q(z)])
+ (Eq[log p(θd|ε)]− Eq[log q(θd|ε̃)]) + (Eq[log p(φk|ζ)]− Eq[log q(φk|ζ̃)])

L =
D∑

m=1
Eq [p(xm|zm, φ)] + Eq [log p(zm|θm)]

− Eq [log q(zm)] + Eq [log p(θm|ε)]− Eq [log q(θm)] + (Eq [log p(φ|ζ)]− Eq [log q(φ)]) /D
(239)

The steps from (240) to (242) aim to summarize these expectations to facilitate the
coordinate ascent framework when we compute the update equations as detailed in the
Appendix.

Eq[log p(z|θdk)]− Eq[log q(z)]

= {
N∑
n=1

K∑
k=1

γnk (Eq[log θdk]− log γnk) +
N∑
n=1

γn(K+1)(Eq[log(θd(K+1))]− log γn(K+1))}

(240)
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Table 6.1: Stochastic variational learning of LBLA [1]

General stochastic variational method

⋄ Input:
⋄ Corpus of D documents
⋄ Step size ρt = (τ + t)−κ

⋄ Maximum iteration I

For t = 1 : I
⋄ Select randomly a document di from the corpus D

⋄ Compute noisy natural gradients including
its local variational information Θdt using D copies
∇̂Φℓ(Φ) = −Φ + DΘdt

⋄ Update the global variational parameter (topic)

Φ← Φ + ρt∇̂Φℓ(Φ)
⋄ Output: Φ

Eq[log p(θd|ε)]− Eq[log q(θd|ε̃)]

=
[
K∑
k=1

(αk − α̃k)Eq[log θdk]
]

+ (α− α̃)Eq

[
log

(
K∑
k=1

θdk

)]
+ (β − β̃)Eq

[
log

(
1−

K∑
k=1

θdk

)]

+ log Γ
(

K∑
k=1

αk

)
+ log Γ(α+ β)− log Γ(α)− log Γ(β)−

K∑
k=1

log Γ(αk)− log Γ
(

K∑
k=1

α̃k

)

− log Γ(α̃+ β̃) + log Γ(α̃) + log Γ(β̃) +
K∑
k=1

log Γ(α̃k) (241)

Eq[log p(φk|ζ)]− Eq[log q(φk|ζ̃)]

=
[
V∑
v=1

(λkv − λ̃kv)Eq[logφkv]
]

+ (λ− λ̃)Eq

[
log(

V∑
v=1

φkv)
]

+ (η − η̃)Eq

[
log(1−

V∑
v=1

φkv)
]

+ log Γ
(

V∑
v=1

λkv

)
+ log Γ(λ+ η)− log Γ(λ)− log Γ(η)−

V∑
v=1

log Γ(λv)

− log Γ
(

V∑
v=1

λ̃kv

)
− log Γ(λ̃+ η̃) + log Γ(λ̃) + log Γ(η̃) +

V∑
v=1

log Γ(λ̃kv) (242)

6.3.4.1 Maximizing the smoothed LBLA’s lower bound with respect to the
variational parameters

This section computes the variational update equations. We place a BL prior on the global
topic parameter in contrast to the method in [3, 35]. This leads to a smoothed LBLA
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Table 6.2: Batch variational method

Complete Conditionals Variational Updates

STEP 1: Complete conditionals distributions

for exponential family STEP 2: Compute expectations

p(zdn = k|θd, φ, xdn) and p(zdn = K + 1|θd, φ, xdn) γkdn = Eq[zkdn] and γK+1
dn

using (244) using (295)

p(θd|zd) = BL(ᾱ1, ..., ᾱK , ᾱ, β̄) q(θd|ε̃) = BL(ᾱ1, ..., ᾱK , ᾱ, β̄)

with hyperparameters using (246) with hyperparameters using (245)

where θd(K+1) = 1−
∑K
k θdk

with
∑K
k θdk < 1

p(φk|z = k, x) = BL(λ̄k1, ..., λ̄kV , λ̄, η̄) q(φk|ζ̃) = BL(λ̃k1, ..., λ̃kV , λ̃, η̃)

with hyperparameters using (248) with hyperparameters using (247)

where φk(V+1) = 1−
∑V
v=1 φkv with

∑V
v=1 φkv < 1

model. Furthermore, the BL is asymmetric (non uniform base measure) to characterize
heterogeneity in the topics. We are using the lower bound, the ELBO (evidence lower
bound) to characterize coordinate ascent update equations. We derive the new update
equations (both on the corpus and document level) for the parametric LBLA in this section
as it will be useful when we apply our BNP prior using HDP-LBLA topic model. So this
actually shows that this model is an extension to the work in [3, 35].

In the following section, we define the partial derivatives with respect to the model
variational parameters (as we use BL priors both on the corpus and document parameters)
and the latent variables znk. From these partials, we obtain the variational update
equations. For instance, the coordinate ascent (ELBO) of γnk is defined as L (γnk) while
its partial derivative with respect to γnk is L ′(γnk) = ∂L

∂γnk
. The corresponding partial

derivative is set to zero from which we obtain the update equation for γnk. The corpus and
documents variational update equations are computed and summarize in the Appendix.
Below is a list of some useful variational expectations for the variational update equations:
θdk ∼ BL(αk, ..., αK , α, β)(∑K

k=1 θdk
)
∼ Beta(α, β)

Eq
[∑K

k=1 θdk
]

= α̃
α̃+β̃
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Eq
[
(1−

∑K
k=1 θdk)

]
= β̃

α̃+β̃

Eq
[
log(

∑K
k=1 θk)

]
= Ψ(α̃)−Ψ(α̃+ β̃)

Eq
[
log(1−

∑K
l=1 θdk)

]
= Ψ(β̃)−Ψ(α̃+ β̃)

Eq[log θdk] = Ψ(α̃)−Ψ(α̃+ β̃) + Ψ(α̃k)−Ψ
(∑K

d=1 α̃k
)
φkv ∼ BL(λk1, ..., λkV , λ, η)(∑V

v=1 φkv
)
∼ Beta(λ, η)(

1−
∑V
v=1 φkv

)
∼ Beta(η, λ)

Eq
[∑V

v=1 φkv
]

= λ̃
λ̃+η̃

Eq
[
1−

∑V
v=1 φkv

]
= η̃

λ̃+η̃

Eq
[
log

(∑K
k=1 φkv

)]
= Ψ(λ̃)−Ψ(λ̃+ η̃)

Eq
[
log

(
1−

∑V
v=1 φkv

)]
= Ψ(η̃)−Ψ(λ̃+ η̃)

Eq[logφkv] = Ψ(λ̃)−Ψ(λ̃+ η̃) + Ψ(λ̃kv)−Ψ
(∑V

v=1 λ̃k
)

The topics models following the LDA architecture operate with three main conditional
distributions (posteriors): p(zdn = k|θ, φk, x), p(θd|zd), and p(φk|z, x).

The work in [1] shows that for exponential family distributions, variational parameters
could be obtained by taking expectations of the natural parameters of their corresponding
complete conditionals. We apply this method for our proposed asymmetric and smoothed
LBLA model, the alternative to the (symmetric) LDA topic model. It will be also
implemented in our HDP-LBLA model when we evaluate infinite dimensional complete
conditionals.

First, we estimate the complete conditionals for the parametric LBLA by following the
conditional of LDA model. In LDA, we have:

p(z = k|θd, φ, x) ∝ p(x|z = k, φ)p(z = k|θd)p(θ)p(φ) (243)
∝ p(x|z = k, φ)p(z = k|θd)
∝ (θdkφkv)
∝ exp{log(θdkφkv)}
∝ exp{log θdk + logφkv}

The observation here is that the complete conditional of topic assignment only groups the
parameters that have common zdn as indicator (in p(x|z, φ) and p(z|θ)) or common γdn
in variational setting between Eq[log p(x|z, φ)] and Eq[log p(z|θ)]. Evaluating the complete
conditionals of the latent variables for LBLA is very complex due to the composition between
the Beta distribution and the Liouville of the second kind distribution that ultimately form
the BL prior [11]. The form is not as straightforward as in the LDA. From LDA, using
Dirichlet distribution, we know that coordinate ascent variational inferences iterate between
updating the local context variational parameters (the local per-document topic proportions
Dirichlet parameters and the per-word topic assignment multinomial parameters) and
updating the global variational parameters.

Importantly, these latent update equations are obtained from expectations of the natural
parameters of the complete conditionals. This relationship between complete conditionals
natural parameters and variational parameters allows us to recover complex complete
conditionals such as the one for the topic assignment for our LBLA variational framework.
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Using the variational multinomial parameter update from (296), we can simply express the
corresponding complete conditionals for topic assignments as:{

p(zdn = k|θ, φ, xdn) ∝ exp{log θdk + logφkv + log(φk(V+1))}
p(zdn = K + 1|θ, φ, xdn) ∝ exp{log(θd(K+1))}

(244)

Using our variational updates, we can deduct updates for the complete conditionals as shown
in Table 6.2 for LBLA. The variational updates are summarized in Table 6.1. We can see
the difference between LDA method in [1] and the asymmetric and smoothed LBLA just by
examining the updates in the complete conditionals (posteriors) and variational posteriors.
The posterior p(θd|zd) is BL(ᾱd1, ..., ᾱdK , ᾱ, β̄) while p(φk|z, x) is BL(λ̄k1, ..., λ̄vK , λ̄, η̄). The
document variational updates equations in our work are:

α̃dk = αdk +
N∑
n=1

γkdn α̃ = α+
N∑
n=1

D∑
k=1

γdn β̃ = β +
N∑
n=1

D∑
d=1

γK+1
dn (245)

The complete conditional parameters updates are the following:

ᾱdk = αdk +
N∑
n=1

zkdn ᾱ = α+
N∑
n=1

D∑
k=1

zdn β̄ = β +
N∑
n=1

D∑
d=1

zK+1
dn (246)

Similarly, in the word-topic distribution, the corpus variational parameters are in (247)
while (248) shows the complete conditionals of the topics (global parameters).

λ̃kv = λkv +
N∑
n=1

γkdnx
v
dn λ̃ = λ+

N∑
n=1

D∑
k=1

γdnxdn η̃ = η +
N∑
n=1

D∑
d=1

γdnx
V+1
dn (247)

λ̄kv = λkv +
N∑
n=1

zkdnx
v
dn λ̄ = λ+

N∑
n=1

D∑
k=1

zdnxdn η̄ = η +
N∑
n=1

D∑
d=1

zdnx
V+1
dn (248)

The variational parameters are expectations of the natural parameters of their
corresponding complete conditionals. This connection between complete conditionals and
variational parameters will allow easy implementation of HDP-LBLA as we move from finite
parametric topic model to nonparametric (infinite dimensional) topic model as we will show.
The update equations from (293) to (302) obtained are then rewritten using indicator zkdn
and its variational Eq[zkdn] = γkdn instead of znk and its Eq[znk] = γnk to characterize our
stochastic framework at document level as shown in Table 6.2.

6.3.4.2 Stochastic optimization and convergence framework of the LBLA

We implement a stochastic optimization using the natural gradient of the ELBO,
and we study the convergence of our asymmetric smoothed LBLA. We first derive
the appropriate ELBO for the the stochastic optimization in (249) which allows easy
implementation of the natural gradient method. We use the objective function L (ε̃, γ, ζ̃) =∑
d Ld(nd, (α̃d, α̃, β̃)d, γd, (λ̃k, λ̃, η̃)k) where

Ld = Eq [p(xd|zd, φ)] + Eq [log p(zd|θd)]− Eq [log q(zd)]
+ Eq [log p(θd|ε)]− Eq [log q(θd)] + (Eq [log p(φ|ζ)]− Eq [log q(φ)]) /D
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so that it leads to:

L =
D∑
d=1

Ld = DEd[Ld] = Ed[DLd] (249)

When summing over the documents using [167, 65], we identified the per-corpus terms (the
corpus wide-terms) and divided them by D (the total number of documents). We therefore
show that our lower bound could also be expressed as an expectation over the distribution
of the data (empirical) which characterizes a variational lower bound computed using D
copies of a document d.

The lower bound is also expressed as a function of variational parameters including the
document count variables. To find a maximum of our objective function we apply a step size
ρt in the direction of the natural gradient to speed up process. The natural gradient also
characterizes the information geometry of the parameter space which uses the Riemannian
metric or Fisher information matrix to guide the standard gradient. The metric locally uses
the KL divergence between distributions. We will provide more information on the natural
gradient in section 6.4 when we implement for the stochastic HDP-LBLA. Following the
work in [65] about the gradient method for optimizing the global topic parameters λ, for
instance, we also proved that premultiplying that gradient ∂L (nd,(α̃d,α̃,β̃)d,ψd,(λ̃k,λ̃,η̃)k)

∂λ̃k
by the

inverse of the Fisher information matrix
(
−∂2 logφkv

∂λ̃kλ̃
T
k

)−1
leads to a stochastic method which

implements a noisy natural gradient of the proposed ELBO using D copies of document d
along with ρt as step size (learning rate) as shown below.
L = L (nd, (α̃d, α̃, β̃)d, ψd, (λ̃k, λ̃, η̃)k)

ρtD

⎡⎣(−∂2 logφk
∂λ̃kλ̃

T
k

)−1
∂L

∂λ̃k

⎤⎦
v

= ρtD

(
−λ̃k
D

+ λk
D

+ ntvγtvk

)
(250)

= ρt(−λ̃kv + λkv + Dntvγtvk) (251)
= ρt∇̂λℓ(λ) (252)

∇̂λℓ(λ) includes the inverse of Fisher information or the inverse of the Riemannian metric.
From (252), we can also expand it when we add λ̃kv to generate the well known online
average approach as follow:

ρt∇̂λℓ(λ) + λ̃kv = λ̃kv − ρtλ̃kv + ρtλkv + ρtDntvγtvk

= (1− ρt)λ̃kv + ˆ̃λkv

We can deduct the stochastic updates using noisy natural gradient method with D copies
for the global variational parameters as:⎧⎪⎪⎨⎪⎪⎩

λ̃kv ← λ̃kv + ρt∇̂λ̃ℓ(λ̃)
λ̃ ← λ̃ + ρt∇̂λℓ(λ)
η̃ ← η̃ + ρt∇̂ηℓ(η)

(253)

where ⎧⎪⎪⎨⎪⎪⎩
∇̂λ̃kvℓ(λ̃kv) = −λ̃kv=w + λkv + D

∑N
n=1 γ

k
ndxdn

∇̂λ̃ℓ(λ̃) = −λ̃+ λ+ D
∑N
n=1 γdn

∇̂η̃ℓ(η̃) = −η̃ + η + D
∑N
n=1 γdnx

(V+1)
dn

(254)
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In online framework (Table 6.3), given the initial values of the global variational parameters,
we randomly select a document j which is used to compute the local parameters that include
the variational responsibility distribution and the document parameters. The local context
of the document is therefore used to compute the natural gradient of the global parameters
(corpus parameters) from the variational ELBO using D copies of document j. The global
variables in stochastic optimization update method follow their natural gradients with a
step size ρt ≜ (τ + t)−κ where for convergence κ ∈ (0.5 1]. The variable κ monitors the rate
at which old values are forgotten while τ slows down the early iterations t of the algorithm
[1, 65, 167, 107]. Since

∑∞
t=0 ρt =∞ and

∑∞
t=0 ρ

2
t <∞ therefore, λ̃k, λ̃ and η̃ each converges

to a stationary point with each of their respective gradients (∇̂λ̃kvℓ(λ̃kv), ∇̂λ̃ℓ(λ̃), ∇̂η̃ℓ(η̃))
converges to zero. As stochastic variational framework at document level, only the global
parameters (here the global topics) are updated [1]. In this stochastic optimization method,

Table 6.3: Stochastic Variational Inference for parametric LBLA topic model

Stochastic Variational Method for Asymmetric LBLA

⋄ INITIALIZATIONS:

⋄ Choose a number of topics K

⋄ Set ρt such that ρt = (τ + t)−κ, t = 1, t← t+ 1.

⋄ Initialize (corpus) global variational parameters λ̃k, λ̃, η̃

⋄ Draw a document d uniformly from the corpus

⋄ Initialize the document local variational parameters α̃dk, α̃d, β̃d

⋄ E-STEP: Evaluate the local context of a document

⋄ Update γkdn and γK+1
dn using (293) and (294)

⋄ Document variational parameters update (α̃dk, α̃d, β̃d) using (245)

⋄ M-STEP:

⋄ Compute natural gradients using D copies of document d from (254)

⋄ Global topic variational paramaters update (λ̃k, λ̃, η̃) using (253)

⋄ Until convergence

⋄ Output: λ̃k, λ̃, η̃

we could set a minibatch technique to reduce noise by using multiple samples (documents)
at a time. Instead of computing the natural gradient of DLd, we could implement the
natural gradient of a minibatch defined as:

Ls = D

S

∑
d∈S

Ld (255)

where S is the subset of documents and S the cardinality of S (the number of documents in
S). We can see that when S = 1, we have a stochastic method of size one (one document at
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a time). When S > 1, we have a regular minibatch framework (using multiple documents at
a time). When S = D with the forgetting rate κ = 0, then we have a batch-based stochastic
variational scheme. This shows the flexibility of the minibatch method for characterizing
online stochastic variational LBLA.

6.3.4.3 Predictive models

To compute the per-word log predictive probability L in (287), we estimate the expectations
in (286) as we marginalize out the models parameters. We compute the expectation
of the documents BL distributions Eq [θdk|ε̃] using the held out data (previoulsy unseen
text documents). However, we estimate Eq

[
φk|ζ̃

]
from the training set Dtr which is

then maintained fixed during prediction. It represents the expectation of the corpus BL
distribution. Given ε̃ = (α̃1, ..., α̃K , α̃, β̃), we evaluate the predictive estimate Eq [θk|ε̃] using:

Eq [θdk|ε̃] = α̃

α̃ + β̃

α̃k∑K
k=1 αk

(256)

where (245) allows us to express the documents BL’s parameters α̃k, α̃, and β̃. As we can
notice in (256), marginalizing over the parameters ultimately shows the clustering property
as it introduces distributions over partitions, which is reminiscent of the multivariate Polya
urn process [157]. Here, we have a more general version compared to the one from LDA
with Dirichlet prior [1].

6.4 HDP-LBLA model
In this proposed approach, we place a hierarchical Bayesian nonparametric prior on the
documents multinomials. Documents in topic models are naturally defined as mixtures
over topics, and the objective is to provide a prior that not only solves the problem of
optimal number of topics (model selection) but also allows documents to share the global
topics. It is understood that each document exhibits topics in different proportions. The
possibility of sharing global topics therefore connects all corpus documents to the global
probability measure (that provides the set of all topics). In hierarchical mixture modeling,
this setting automatically makes the HDP the right Bayesian nonparametric prior to model
efficiently the topic mixtures.

Our proposed method is mainly an alternative to the standard and parametric LDA
which is very restrictive both in model selection and sharing ability of topics due to the
limitations [3, 5, 8] of its Dir prior. Among these limitations, the symmetric Dir does not
provide variability and heterogeneity of topics. This is because under its symmetric LDA,
topics are more likely to exhibit same frequency. Therefore, symmetric LDA could not be
applied in a real life scenario when, for instance, information of the most relevant topics are
needed for a better compression algorithm. To encourage variability, heterogeneity where
coarser topics can combine with finely grained and detailed ones, we propose asymmetric
BL distribution as a global measure and as an alternative to the symmetric Dir prior in
LDA. The setting enhances the asymmetric nature of the GEM priors in our HDP-LBLA.
Importantly, such flexibility in the topic structure offers the possibility of a fast detection
of most relevant topics and as a result provides an alternative to model selection. We
propose a stochastic variational approach, and it summarizes the model to SV-HDP-LBLA
(stochastic variational Bayes using HDP-LBLA). In implementing the SV-HDP-LBLA, we
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first constructed the finite dimensional SV-LBLA and then we simply accommodate it in
infinite dimensional space where the multinomials are modeled by our nonparametric prior,
the BL-based HDP. We characterize the Sethuraman’s stick breaking method on both levels
of the HDP-LBLA model. The proposed stochastic optimization with minibatches uses
noisy estimates of the natural gradient of our ELBO (objective function).

6.4.1 Generative process for two level-HDP using asymmetric BL

In our BNP topic model, the BL-based HDP replaces the standard Dirichlet prior in LDA
as it models documents multinomials. The asymmetric BL acts as a diffuse base measure
H and provides the global topics. We use the Sethuraman’s stick breaking construction for
the two level hierarchical BL-based HDP topic model in this work. We implemented two
stick-breaking constructions, one for each level (corpus and document level). Similar to the
LDA case in [1], the generative process for our HDP with BL as a top-level base measure
is given as follows:
Let ζ = (λk1, ..., λkV , λ, η)
Draw an infinite number of topics φk ∼ BL(ζ) for k ∈ {1, 2, 3, ...}
Draw corpus breaking proportions ς ′

k ∼ Beta(1, ℏ) for k ∈ {1, 2, 3, ...}
For each document d
a−Draw a document-level topic indices ξdi ∼Mult(ς) for i ∈ {1, 2, 3, ...}
b−Draw the document breaking proprtions ϕ′

di ∼ Beta(1, ϱ) for i ∈ {1, 2, 3, ...}
c−For each word xdn
i) Draw topic assignment zdn ∼Mult(ϕd)
ii) Draw a word xdn|ξdi, zdn, φ ∼Mult(φξd,zdn )

where Mult is the multinomial distribution. This generative process naturally defines the
batch HDP-LBLA.

6.4.2 Sethuraman’s stick-breaking method for HDP-LBLA

A hierarchical Dirichlet process is a distribution over a collection of probability measures
over a measurable space (Θ,B(Θ)). It characterizes the connection between documents
as they share global clusters (topics), but at different proportions. In this chapter, our
two level hierarchical Dirichlet process is similar to the work in [14], [193], [1], [167]. The
difference is that we use BL prior instead of Dir. We define the global probability measure
G0:

G0|ℏ, H ∼ DP (ℏ, H) (257)

For each document d, we draw with probability one:

Gd|ϱ,G0 ∼ DP (ϱ,G0) (258)

The base measure at the corpus level (top-level) DP is a fully asymmetric BL distribution
whose atoms are the topics (global variables). From the first DP, we draw G0 with
probability one and then use it as a random global (base) measure in the second level
(document-level) DP from which we draw Gd random probability measures, each with
probabilty one. They are conditionally independent given the random global measure G0.
First, a draw G0 at corpus-level DP(ℏ, H) following a stick-breaking scheme can be
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characterized as follows:

ς
′
k ∼ Beta(1, ℏ) ςk = ς

′
k

k−1∏
l=1

(1− ς ′
l ) φk ∼ H G0 =

∞∑
k=1

ςkδφk (259)

where H is the asymmetric BL distribution, φk are the global topics such that φk are drawn
from the base measure H; δφ is a probability measure concentrated at φ. The sequence
ς is a random probability measure on the positive integers [14, 15]. In other words G0
has weights or probability masses ς = {ςk}∞k=1 such that

∑∞
k=1 ςk = 1. The support of the

discrete distribution G0 is the set of atoms φ = {φk}∞k=1. Furthermore, as ς satisfies (259),
we have ς ∼ GEM(ℏ) where GEM stands for Griffiths, Engen and McCloskey [183]. They
characterize the GEM distributions of the random weights ς. From the document-level DP
conditioned on G0, we constructed the local random measure Gd as follows:

ϕ
′
dk ∼ Beta(1, ϱ) ϕdk = ϕ

′
dk

k−1∏
j=1

(1− ϕ′
dj) Gd =

∞∑
k=1

ϕdkδφk (260)

This stick-breaking construction allows both Gd and G0 distributions to share the same
support (topics). However, sharing directly the same atoms makes their weights tightly
coupled, and it is a situation that negatively affects variational inference and coordinate
ascent methods as it makes them difficult and challenging as shown in [194], [16], [167]
where closed-form variational updates are not possible. A solution has been to draw the
document-level topics (atoms) from G0 instead while still maintaining ϕd ∼ GEM(ϱ). Now,
we have Ωdt ∼ G0 so that Gd =

∑∞
t=1 ϕdtδΩdt .

At the document level, we finally get:

Ωdt ∼ G0 ϕ
′
dt ∼ Beta(1, ϱ) ϕdt = ϕ

′
dt

t−1∏
j=1

(1− ϕ′
dj) Gd =

∞∑
l=1

ϕdtδΩdt (261)

such that Ωdt = (Ωdt)∞
t=1. However, we need indicators to connect to the global atoms. This

is given by ξdt = (ξdt)∞
t=1 where ξdt ∼ Mult(ς). The variables ξdt as indicators connect the

document-level to the corpus level. They index the corpus level topics that correspond to
Ωdt such that Ωdt = φξdt . We can therefore see with Ωdt = φξdt that the global topics at the
corpus level are still shared at the document level. To generate a word xdn in a document
d in our BL-based HDP model, we first draw ξdt ∼ Mult(ς); then, given ξdt, we draw the
topic Ωdt = φξdt from G0. Then, we sample its topic assignment zdn ∼ Mult(ϕd) (using
the document topic proportions or weights ϕd). Then, the word xdn is drawn from the top
level topic space indexed by indicator ξ such that xdn|zdn, φξdt ∼Mult(φξdzdn) [167], [182],
[1]. In this representation, φ is drawn from our BL distribution.

6.4.3 Inference for HDP-LBLA

The HDP-LBLA means that inference is governed by the LBLA topic model using the HDP
prior (nonparametric) in infinite dimensional space as it models infinite dimensional topic
mixtures for each document. The most important task in Bayesian inference for parametric
and nonparametric models is the computation of posterior distributions. where we estimate
the posterior distribution over the number of topics that describes the observed data. In
general, in a latent model as in our case, the number of topics is unknown in advance.
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In nonparametric setting, the exact posterior distribution in HDP (in infinite dimensional
space) is expected to be intractable. We implement a variational framework with two levels
of trunctations (at the corpus level and at the document level). This is because BNP models
contain infinite number of hidden variables, so they cannot be fully estimated by variational
distributions as this will be equivalent to optimizing over infinite number of variational free
parameters. Though, one of the advantages of variational methods is that the variational
distributions are in the same family as the complete conditional distributions (which are
exponential family and therefore have closed-form solutions).

In this Bayesian nonparametric model using HDP, our hidden variables include the top
(corpus)-level stick-breaking proportions ς, the document-level stick-breaking proportions
ϕ

′
di, the latent indictator variables ξdi for each Gd, the atom/topic distributions φk, and

topic index zdn for each word xdn. For a stochastic framework, it is important to identify
the global and local variables: the global variables are the topics φk including the corpus
level breaking proportions ς ′

k. Local variables are the document-level topic indices ξdi and
breaking proportions ϕ′

di including the latent variables zdn and the words xdn. We implement

Table 6.4: Complete conditionals

Complete conditionals for HDP-LBLA

Local topic assignment:

p(zidn = 1|ϕ′
d, φ1:K , xdn, ξd) using (270)

Connector between global and local topics:

p(ξkd = 1|ς ′
, φ1:K , xd, zd) using (269)

Topic posterior distributions:

p(φk|z, ξ, x) = BL(λ̄k1, ..., λ̄kV , λ̄, η̄) using (267)

Conditionals on stick-breaking proportions:

p(ς ′
k|ξ) = Beta(∆1,∆2) using (268) (corpus breaking proportion)

p(ϕ′
di|zd) = Beta(Υ1,Υ2) using (271) (document breaking proportion)

a fully factorized (mean-field) variational Bayes inference. Because of (294), we have to set
the truncations at K and T . Furthermore, in general, in practice, the value T can be set
smaller than K because each document requires a much lower number of topics than the
case that considers the entire corpus which has a much larger set of topics. Therefore,
K >> T .
Given our HDP-LBLA topic model’s hidden variables, the variational distribution is
expressed as q(φ, ξ, ς ′

, z, ϕ
′) = q(φ)q(ξ)q(ς ′)q(z)q(ϕ′) with each factor extended as follows:

q(z) =
D∏
d=1

N∏
n=1

q(zdn|γdn) q(φ) =
K∏
k=1

q(φk|ζ̃) q(ξ) =
D∏
d=1

T∏
i=1

q(ξdi|℧di)
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where the variational parameters ℧di and γdn are multinomials while ζ̃ is a BL parameter.

q(ς ′) =
K∏
k=1

q(ς ′
k|ιk, bk) q(ϕ′) =

D∏
d=1

T∏
i=1

q(ϕ′
di|ϑdi, rdi)

where (ιk, bk) and (ϑdi, rdi) are variational parameters of Beta distributions.

q(φ, ξ, ς ′
, z, ϕ

′) =
K∏
k=1

q(φk|ζ̃)q(ς
′
k|ιk, bk)

D∏
d=1

T∏
i=1

q(ξdi|℧di)q(ϕ
′
di|ϑdi, rdi)

N∏
n=1

q(zdn|γdn) (262)

Because variational posterior distributions approximate their corresponding complete
conditional distributions (posterior) in mean-field (batch) variational inference, the free
parameters of the variational distributions are usually obtained as expectations of the
natural parameters of their corresponding complete conditionals specifically for exponential
family distributions [1] as in our case.

For a collection of D documents, using the Jensen’s inequality, we can compute the log
marginal likelihood with the truncated variationals:

log p(D |ℏ, ϱ, ζ) = log
∫
φ,ς′ ,ϕ′

∑
ξ,z

p(D , φ, ς ′
, ϕ

′
, ξ, z, x|ℏ, ϱ, ζ) (263)

log p(D |ℏ, ϱ, ζ) ≥ Eq
[
log p(D , φ, ς ′

, ϕ
′
, ξ, z, x|ℏ, ϱ, ζ)

]
− Eq

[
log q(φ, ξ, ς ′

, z, ϕ
′)
]

= F (q)
(264)

The ELBO is obtained as:

F (q) =
∑
j

Eq[log p(xj |ξj , zj , φ)p(ξj |ς
′)p(zj |ϕ

′
j)p(ϕ

′
j |ϱ)p(φ|ζ)p(ς ′ |ℏ)]

−H (q(ξj))−H (q(zj))−H (q(ϕ′
j))−H (q(ς ′

k))−H (q(φ)) (265)

This is also equivalent to:

F (q) =
∑
j

Eq[log p(xj |ξj , zj , φ)p(ξj |ς
′)p(zj |ϕ

′
j)]−H (q(ξj))−H (q(zj))

−H (q(ϕ′
j)) + E

[
log p(ϕ′

j |ϱ)
]

+ Eq [log p(φ|ζ)] + Eq
[
log p(ς ′ |ℏ)

]
−H (q(ς ′

k))−H (q(φ))
(266)

with H (.) defining the entropy of the variational distribution.

6.4.3.1 Infinite dimensional complete conditionals, truncations, variational
expectations, and updates

In the following, we express the infinite dimensional complete conditionals of the global
topics/atoms φk, the corpus level stick-breaking proportions ς ′

k, the indicator variables ξdi,
the latent variables zdn, and document level stick-breaking proportions ϕ′

d as shown from
(267) to (271). The LBLA-based complete conditionals became infinite dimensional along
with its natural parameters due to the HDP prior. These infinite dimensional complete
conditionals provide the reason our proposed HDP-LBLA-based variational framework
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requires truncations.
p(φk|z, ξ, x) = BL(ζ̄) such that:

λ̄kv = λkv +
D∑
d=1

∞∑
i=1

ξkdi

N∑
n=1

zidnx
v
n λ̄ = λ+

D∑
d=1

∞∑
i=1

ξkdi

N∑
n=1

zdnxdn η̄ = η +
D∑
d=1

∞∑
i=1

ξkdi

N∑
n=1

zdnx
V+1
dn

(267)

p(ς ′
k|ξ) = Beta

⎛⎝1 +
D∑
d=1

∞∑
i=1

ξkdi, ℏ +
D∑
d=1

∞∑
i=1

∑
j>k

ξjdi

⎞⎠ (268)

p(ξid = 1|ς ′
, φ1:K , xd, zd) ∝ exp

{
log ςk +

N∑
n=1

zidn

(
logφkv + (1− log

(
V∑
v

φkv

))}
(269)

p(zidn = 1|ϕ′
d, φ1:K , xdn, ξd) ∝ exp

{
log ϕdi +

∞∑
k=1

ξkdi

(
logφkv + log

(
1−

V∑
v=1

φkv

))}
(270)

p(ϕ′
d|zd) = Beta

⎛⎝1 +
N∑
n=1

zidn, ϱ+
N∑
n=1

∑
j>i

zjdn

⎞⎠ (271)

As shown above from (267) to (271), because the natural parameters of these complete
conditionals are infinite dimensional, variational Bayesian inference with a tractable ELBO
will be difficult to implement without truncations.

After the proposed truncations from (262) and using our complete conditional
distributions, we express the variational parameters through expectations of the natural
parameters of these complete conditionals for our exponential family based HDP-LBLA
topic model (Table 6.4). Therefore, from (267), the corpus-level variational parameters of
q(φk|ζ̃) from the truncations become:⎧⎪⎪⎨⎪⎪⎩

λ̃kv = λkv +
∑D
d=1

∑T
i=1 Eq[ξkdi]

∑N
n=1 Eq[zidn]xvn

λ̃ = λ+
∑D
d=1

∑T
i=1 Eq[ξkdi]

∑N
n=1 Eq[zdn]xdn

η̃ = η +
∑D
d=1

∑T
i=1 Eq[ξkdi]

∑N
n=1 Eq[zdn]xV+1

dn

(272)

Using the complete conditional p(ς ′
k|ξ) in (268), its corresponding variational distribution

q(ς ′
k|ιk, bk) has its Beta variational parameters truncated as:

ιk = 1 +
D∑
d=1

T∑
i=1

Eq[ξkdi] bk = ℏ +
D∑
d=1

T∑
i=1

K∑
j=k+1

Eq[ξjdi] (273)

Similarly, with p(ϕ′
d|zd) as in (271), its corresponding document’s variational posterior

distribution q(ϕ′
d|ϑdi, rdi) also has its variational Beta parameters expressed as:

ϑdi = 1 +
N∑
n=1

Eq[zidn] rdi = ϱ+
N∑
n=1

T∑
j=i+1

Eq[zjdn] (274)

Finally, the indicator random variables ξdi in (269) and latent variables zdn in (270) have
variational parameters ℧di and γdn, respectively. This effectively leads to:

℧kdi ∝ exp{Eq[log ςk] +
N∑
n=1

γidn

(
Eq[logφkv] + Eq[log(φk(V+1))]

)
}, k ∈ {1, 2, ...,K} (275)
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γidn ∝ exp{Eq[log ϕdi] +
K+1∑
k=1

℧kdi
(
Eq[logφkv] + Eq[log(φk(V+1))]

)
}, i ∈ {1, 2, ..., T} (276)

γidn ∝ exp{Eq[log(ϕdi)]}, i = T + 1 (277)

Deriving variational parameter estimates using expectations of complete conditionals follows
the work in [1] on symmetric LDA.

These variational updates and expectations at the corpus and document level DPs
characterize a form of HDP-LBLA based coordinate ascent framework when maximizing
its lower bound, a scheme that is reminiscent of the EM algorithm where in the E-step,
we compute documents local variational parameters while maximizing the ELBO (with the
initialized global parameters held fixed). Then in the M-step, we maximize the ELBO
with respect to the global parameters given the local context (document’s variational
parameters).

We express here some useful expectations [167] as shown below:
Eq[ξkdi] = ℧kdi
Eq[zkdn] = γkdn
Eq
[
log ς ′

k

]
= Ψ(ιk)−Ψ(ιk + bk)

Eq
[
log(1− ς ′

k)
]

= Ψ(bk)−Ψ(ιk + bk)

Eq[log ςk] = Eq
[
log ς ′

k

]
+
∑k−1
l=1 Eq

[
log(1− ς ′

l )
]

Eq[log ϕdt] = Eq
[
log ϕ′

dt

]
+
∑t−1
i=1 Eq

[
log(1− ϕ′

di)
]

Eq
[
log ϕ′

dt

]
= Ψ(ϑdi)−Ψ(ϑdi + rdi)

Eq
[
log(1− ϕ′

di)
]

= Ψ(rdi)−Ψ(ϑdi + rdi)

6.4.3.2 Stochastic optimization for HDP-LBLA with the natural gradient

In our proposed approach, the variational inference accommodates the computation of
natural gradients of the ELBO with respect to the variational parameters. In maximum
likelihood (ML) framework the natural gradient method is favored as it provides fast
convergence than standard gradient (it does not require the whole corpus data to improve
global estimates).

The stochastic variational method uses stochastic optimization where it iteratively gets
subsamples from the corpus. Doing so, it computes a noisy estimate of the natural gradient
of the ELBO which is used to find point estimate of the global variational parameters. With
probability measures, the natural gradient scheme characterizes information geometry of
the parameter space (the Riemannian space which is the space where local distances are
defined by the Kullback Leibler divergence) as it utilizes the Riemannian metric or Fisher
information matrix to guide the directions of standard Euclidean gradients [1].

Considering the global topics indexed by the global variational parameters ζ̃ such that
ζ̃ = (λ̃k1, ..., λ̃kV , λ̃, η̃), we can compute the natural gradient by premultiplying the standard
gradient with the inverse of the Riemannian metric G such that ∇̂ζ̃ℓ(ζ) ≜ G (ζ̃)−1∇ζ̃ℓ(ζ̃).
The metric G is also called the Fisher information matrix of q(φ|ζ̃), and it is defined as
G = Eζ̃ [(∇ζ̃ log q(φ|ζ̃))(∇ζ̃ log q(φ|ζ̃))T ].

For exponential family variational distribution q(φ|ζ̃), the metric G becomes the second
derivative (the Hessian) of the log normalizer with respect to the variational parameter ζ̃

165



such that G = ∇2
ζ̃
ag(ζ). The Hessian of the log normalizer with respect to the variational

parameter ζ̃ is also identified as the covariance matrix of the sufficient statistic vectors t(φ).

∇ζ̃ℓ = ∇2
ζ̃
ag(ζ̃)(Eq[Cg(x, z, ξ, ζ)]− ζ̃) (278)

∇̂ζ̃ℓ = Eq[Cg(x, z, ξ, ζ)]− ζ̃ (279)

where Cg(x, z, ξ, ζ) is the global natural parameter of the complete conditional posterior
p(φk|z, ξ, x) = BL(ζ̄). As we can see in (279), noisy estimates of the natural gradients are
simpler to compute than true gradients (278). Importantly, such estimates are often useful
as they help algorithms avoiding shallow local optima when optimizing complex objective
functions (ELBO). The efficiency of natural gradient techniques allow variational Bayes
methods to accommodate large scale applications. We use stochastic optimization with
natural gradient method to optimize our variational objective function from SV-HDP-LBLA
topic model. Below, we provide our objective function for the stochastic optimization.

F (q) =
D∑
j

Eq[log p(xj |ξj , zj , φ)p(ξj |ς)p(zj |ϕ
′
j)]−H (q(ξj))−H (q(zj))−H (q(ϕ′

j))

+ E
[
log p(ϕ′

j |ϱ)
]

+ Eq [log p(φ|ζ)] + Eq
[
log p(ς ′ |ℏ)

]
−H (q(ς ′

k))−H (q(φ)) (280)

Our approach is also similar to the work in [182, 1, 65, 167]. With D defining the total
number of documents in the corpus, we divide the corpus wide term by D such that (265)
is rewritten as F =

∑
j Fj = Ej [DFj ] from (249) where ℓ = Fj . It leads to:

ℓ = Eq[log p(xj |ξj , zj , φ)] + Eq
[
p(ξj |ς

′)
]

+ Eq
[
p(zj |ϕ

′
j)
]

−H (q(ξj))−H (q(zj))−H (q(ϕ′
j)) + Eq

[
log p(ϕ′

j |ϱ)
]

+ 1
D

(Eq [log p(φ|ζ)] + Eq
[
log p(ς ′ |ℏ)

]
−H (q(ς ′

k))−H (q(φ)) (281)

The expression above is the variational lower bound for D copies of document j. The
convergence analysis of our HDP-LBLA topic model is similar to the one already discussed
in our LBLA model in section 6.3.4.2 due to truncations. With D copies of document j, we
compute the natural gradient estimates of the global variational parameters of the topics:⎧⎪⎪⎨⎪⎪⎩

∇̂λ̃kvℓ(λ̃kv) = −λ̃kv + λkv + D
∑T
i=1 ℧kdi

∑N
n=1 γ

i
dnxdn

∇̂λ̃ℓ(λ̃) = −λ̃+ λ+ D
∑N
n=1 γdn

∇̂η̃ℓ(η̃) = −η̃ + η + D
∑N
n=1 γdnx

(V+1)
dn

The other global variables are the corpus level stick-breaking proportions ςk where each is
associated with a set of Beta distributions.

∇̂ιkℓ(ιk) = −ιk + 1 + D
T∑
i=1

℧kdi ∇̂bkℓ(bk) = −bk + ℏ + D
T∑
i=1

K∑
j=k+1

℧jdi

We summarize the local updates: Under the variational method, we compute the latent
indicator functions ℧di in (275) and γdn (276) and (277), and the parameters (ϑdi, rdi) of
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the variational distributions associated to the document-level stick-breaking proportions
q(ϕ′

di|ϑdi, rdi) in (282) below.

ϑdi = 1 +
N∑
n=1

γind, i ∈ {1, 2, ..., T} rdi = ϱ+
N∑
n=1

T∑
j=i+1

γjnd, i ∈ {1, 2, ..., T} (282)

We update the variational parameters of the global stick-breaking proportions and the global
topic parametes q(φk|ζ̃) and q(ς ′

k|ιk, bk). We recapitulate the global variational parameters
updates in (283) and (284).⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∇̂λ̃kvℓ(λ̃kv) = −λ̃kv + λkv + D
∑T
i=1 ℧kdi

∑N
n=1 γ

i
dnxdn

∇̂λ̃ℓ(λ̃) = −λ̃+ λ+ D
∑N
n=1 γdnxn

∇̂η̃ℓ(η̃) = −η̃ + η + D
∑N
n=1 γdnx

(V+1)
dn

∇̂ιkℓ(ιk) = −ιk + 1 + D
∑T
i=1 ℧kdi

∇̂bkℓ(bk) = −bk + ℏ + D
∑T
i=1

∑K
j=k+1 ℧

j
di

(283)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

λ̃kv ← λ̃kv + ρt∇̂λ̃kvℓ(λ̃kv)
λ̃ ← λ̃ + ρt∇̂λ̃ℓ(λ̃)
η̃ ← η̃ + ρt∇̂η̃ℓ(η̃)
ιk ← ιk + ρt∇̂ιkℓ(ιk)
bk ← bk + ρt∇̂bkℓ(bk)

(284)

The proposed online HDP-LBLA which is the SV-HDP-LBLA proceeds as follows, given
the corpus level parameters, we first and randomly draw a document j from the corpus
and then compute its optimal local context. In other words, we evaluate the document
level variational parameters (ϑj , rj ,℧j , γj) using coordinate ascent method in (282), (275),
and (276). Then, we take the natural gradient of DFj with respect to the global-level
parameters (λ̃k1, ..., λ̃kV , λ̃, η̃, ιk, bk). It is a noisy estimate of the lower bound (ELBO)
formulated as an expectation using D copies of document j. The global variables follow
their natural gradients with a step size ρt until convergence. When t increases, the step
size decreases. In this stochastic method, we could also implement a minibatch framework
by using multiple samples (documents) at a time as in the case of SV-LBLA using (255).
Furthermore, the minibatch approach ultimately improves the computational speed and the
estimates [65].

6.4.4 Time and space complexities

Reaching a model selection, assessing time and memory complexities are some of the most
important subjects in topic modeling literature because such terms are related. The work of
[12], [80], [18] especially the one in [153] provided a detailed time and memory complexities
for standard parametric LDA within the variational inference. Usually, the time complexity
of LDA in VB for one iteration is O(2 × K × N0 × ℘), where ℘ is the overall time it
takes to compute exponential digamma functions. The LDA in general has to handle three
types of estimates: two multinomial parameters and latent variables. The document-topic
multinomial parameter has a size of 1 × K for each document whereas the topic-word
multinomial parameter is a K × V matrix per document where K is the number of topics
while V is the size of the vocabulary. The corpus contains D documents. Each document has
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Table 6.5: Stochastic Variational Inference for Bayesian nonparametric HDP-LBLA

Fully asymmetric HDP-LBLA Stochastic Variational Method

⋄ Initialize corpus-level HDP-LBLA parameters

⋄ Set the learning rate ρt (ρt = (τ + t)−κ, t = 1, t← t+ 1)

⋄ Select a document d uniformly from the corpus data D

⋄ E-STEP

⋄ Update document local variational parameters: ϑdi, rdi,℧kdi, γidn
using (274) or (282), (275), and (276)

⋄ M-STEP

⋄ Compute noisy estimates of the natural gradients:

∇̂λ̃kvℓ(λ̃kv), ∇̂λ̃ℓ(λ̃), ∇̂η̃ℓ(η̃), ∇̂ιkℓ(ιk), ∇̂bkℓ(bk)

with D copies of document d using (283)

⋄ Compute global parameters with natural gradients with (284)

(λ̃kv, λ̃, η̃, ιk, and bk)

⋄ Until convergence

⋄ Output: λ̃kv, λ̃, η̃, ιk, and bk

N0 (nonzero) elements in document-word sparse matrix. The corpus has therefore a size of
D×V . The total space complexity of VB-based LDA is around O(D×N0+2×K×(D+V )).
The HDP-LDA in VB inference, has to perform five estimates which include the corpus
breaking proportions, the document-level topic indices, the global topic, the document-level
breaking proportions, and the latent variables. This automatically increases the memory
requirement of the HDP-LDA compared to standard LDA. The memory complexity of the
HDP-LDA is around O(2×D ×K + 2× V × T +N0× T + D ×N0).

As expected, the HDP-LDA is slow compared to standard LDA with a time complexity
usually higher than that of LDA. Our truncated HDP-LBLA has a time and memory
complexities almost similar to that of HPD-LDA. However, it is relatively faster than HDP-
LDA. Its AA structure leads to very flexible stick-breaking priors (probability measures)
that provides very heterogeneous topics which allow the proposed approach to select quickly
relevant topics while discarding the irrelevant ones. The truncated HDP-LDA with the
standard symmetric Drichlet prior has no ability to provide such flexibilities in terms of
constructing fast and relevant topics. Naturally, we expect the HDP-LBLA to be slower
than the standard LDA because of the high complexity in BNP. However, its estimates
(predictive distributions) are accurate compared to the standard (parametric) LDA.

Convergence is not an issue in variational Bayes as the models are deterministic
methods. It is important to mention that while implementing a stochastic (online) method
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here, the time and memory complexities characterized in this section only concern the
batch techniques. It is implicitly clear that in online scheme, the number of documents
accessed at a time is much reduced (S << D); therefore, with an improved time and
memory complexities, our online methods are much faster to reach convergence or providing
estimates. This suggests that for large scale processing, we expect the batch HDP-LBLA to
be slower than online versions despite its flexibility in providing accurate number of topics.
Particularly, while the online HDP-LBLA operates in infinite dimensional space within a
countably infinite number of topics, it reaches a model selection with fewer number of topics.
It means that in online HDP-LBLA, time and memory complexities components such as
K, T with (K >> T ), and S are much smaller; therefore, its has much better time and
memory complexities than batch HDP-LBLA.

6.5 Experimental Results
Our experimental section is based on three datasets for text document analysis. It includes
these large scale datasets to take advantage of our SV-HDP-LBLA also called online HDP-
LBLA (OHLB).

6.5.1 Implementation

In implementation, we have initialized the global variational parameters. This is a stochastic
mean-field variational inference at document level. Only the global parameters are recorded
while the local context is discarded including the latent variables. The goal is to optimize
(maximize) our objective function, the ELBO, with respect to the variational parameters.
The framework requires an initial setting concerning the model’s hyperparameters. We
usually set them randomly. However, for the BL hyperparameters, we could also provide
initializations as follows: at the document level we choose αdt = 1

t where t ∈{1, 2, ..., T} to
characterize asymmetric BL prior. We also set αd such that αd <

∑T
t=1 αdt or αd >

∑T
t=1 αdt.

Then, we choose the value of βd within the same scale as αd (βd > αd(T+1)). At the corpus
level for BL, we repeat the same process by setting values for λkv with v ∈ {1, 2, ..., V } and
λ and η where the truncation is set at K (k ∈ {1, 2, ...,K}). In our truncated HDP-LBLA’s
implementation T << K.

While our implementation is also described in section 6.4.3.2, we could summarize
it here as follows: given the corpus level parameters, we randomly draw a document j
from the corpus and then compute its local parameters which means that at the E-step
(expectation), we evaluate the document level variational parameters (ϑd, rd,℧d, γd) using
coordinate ascent method in (282), (275), and (276). Then, we compute estimate of the
natural gradient using the ELBO corresponding to D copies of document d (DFd) with
respect to the global-level parameters (λ̃k1, ..., λ̃kV , λ̃, η̃, ιk, bk) in M-step (maximization).
We also provided an option of a minibatch framework using multiple samples (documents) at
a time as in the case of SV-LBLA using (255) to improve both estimates and computational
speed. At convergence, the global parameters are estimated. They are point estimates.
In case minibatch sizes become too small and affect performamce, we can provide much
larger minibatch sizes. In these experiments we use minibatch sizes such that S =
{10, 50, 200, 500, 1000}.

We set the step size ρt (learning rate) at iteration t such that ρt = (t + τ)−κ. The
forgetting rate κ ∈ (.5, 1] controls how quickly old information is forgotten, during successive
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iterations. The algorithm is guaranteed to converge at least to a local optimum of the ELBO.
The method is summarized in Table 6.5.

6.5.2 Datasets

To show the flexibility and performance of our proposed approach, we used three challenging
datasets in text document processing. These collections are the NIPS dataset, KOS text
documents, and ENRON text data as shown in Table 6.6. The NIPS dataset is a collection
from scientific papers from the proceedings of NIPS database. It has roughly around 2484
papers. The corpus contains D = 1740 documents for a total vocabulary size of V = 12419.
It also carries a total of N = 2166029 words and M = 836644 unique word-document
pairs. The KOS collection is from the report blog website (online). It has a total of
D = 3430 documents, a vocabulary size of V = 6909, and a total of N = 467714 words
and M = 360664 unique word-document pairs. The ENRON dataset has total corpus in
documents of D = 39861; with a vocabulary size of V = 28102, it provides a total of
N = 6400000 words.

Table 6.6: Text document datasets

Dtrain Dtest N V D

NIPS 1256 419 2166029 12419 1675

KOS 2573 857 467714 6909 3430

ENRON 29896 9965 6400000 28102 39861

6.5.3 Methodology and evaluation method

The text documents are represented using the Bow (bag of words) approach. We divide
each collection into two parts: 80% of the corpus documents for training and 20% for testing
(held-out). We used the training set to estimate the model parameters especially φk. For
evaluation, we use the likelihood per word method as in [167, 1, 16, 4]. For testing or
validation, each document d containing xd words is then divided into two parts: xd1 and
xd2. The first part xd1 takes 80% of the total words in xd while the second part xd2 holds
the 20% in words in document d. In topic modeling, the parameter of the multinomial
distribution of the topic assignment zdn represents the document topic proportion. The
topic proportion linked to a document d is K-dimensional while the corpus parameter φk is
V-dimensional.

In our HDP-LBLA model, zdn ∼ Mult(ϕdt), therefore ϕ ∼ GEM(ϱ) and ϕ = {ϕdt}∞t=1
which represent the weights (stick lengths) obtained from the stick-breaking (proportions)
method at the document level. However, ϕd is infinite-dimensional, and the global topic
φ = {φk}∞k=1 is also infinite dimensional. The atoms at the document level Ωdt and the
corpus level φkv coincide at Ωdt = φξdt (with ξd = {ξdt}∞t=1) meaning at locations pointed by
ξdt. Therefore, when the global topic is truncated at K, only a maximum of K global topics
can be shared at the document-level DP. Within the variational framework, these parameters
φk and ϕd become expectations with respect to their variational distributions. Precisely,
as in [167], Eq[φ] is the variational expectation using the training data Dtrain; and Eq[ϕd]
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is the variational expectation using xd2 which is a predictive model as we keep the global
Eq[φ] fixed during testing. Therefore, the predictive distribution of xd2 is approximated
using [167, 1]. We define the predictive likelihood p(xd2|Dtrain,xd1) for xd2 documents
as p(xd2|Dtrain,xd1) =

∏
x∈xd2

∫ ∫ (∑K
k=1(ϕdk)φkx

)
p(ϕ|xd1, φ)p(φ|Dtrain)d(ϕ)dφ which is

approximated as follows:

p(xd2|Dtrain,xd1) ≈
∏

x∈xd2

∫ ∫ ( K∑
k=1

ϕdkφkx

)
q(ϕ)q(φ)d(ϕ)dφ (285)

≈
∏

x∈xd2

K∑
k=1

Eq[ϕdk]Eq[φkx ] (286)

where L is the per-word predictive likelihood in xd2 documents.

L ≈
∑
d∈Dtest log p(xd2|xd1,Dtrain)∑

d∈Dtest |xd2|
(287)

such that |xd2| is the cardinality of xd2 or the total number of words in xd2.
When computing the predictive distribution for the document parameter, in Gd every topic
assignment is always matched to a draw from the base measure. When the base measure
is marginalized out, new topic assignment will be matched to a draw using the global
distribution [9]. In empirical Bayes framework for hyperparameter estimation, integrating
out the base measure at the document-level DP makes the ς ∼ GEM(ℏ) act as infinite
dimensional hyperparameters for the prior used.

6.5.4 Predictive models for HDP-LBLA

We aim to provide the prediction rule for estmating the probability of previously unseen
documents. Since Gd ∼ DP (ϱ,G0) and ς ∼ GEM(ℏ) and ϕ ∼ GEM(ϱ), then ϕd ∼
DP (ϱ, ς). We compute these identities from the Sethuraman’s stick-breaking method to
facilitate estimation of predictives model in our HDP-LBLA topic model.
Eq[log ϕdt] = Eq

[
log ϕ′

dt

]
+
∑t−1
i=1 Eq

[
log(1− ϕ′

di)
]

Eq
[
log ϕ′

dt

]
= Ψ(ιk)−Ψ(ϑdi + rdi)

Eq
[
log(1− ϕ′

di)
]

= Ψ(rdi)−Ψ(ϑdi + rdi)

The Beta random weights are defined as:

Eq [ϕdk|ϑdk, rdk] = ϑdk
ϑdk + rdk

k−1∏
l=1

rdl
ϑdl + rdl

(288)

where the Beta parameters ϑdi and rdi are computed using (282). We can deduct the
expectation of the corpus stick-breaking proportions:

Eq [ςk|ιk, bk] = ιk
ιk + bk

k−1∏
l=1

bl
ιl + bl

(289)

with the corpus Beta parameters ιk and bk computed using (273). At the top level DP,
the global probability measure G0 varies around the expected value H which is a BL (non
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atomic measure) distribution with a concentration parameter ℏ. Similarly, the local measure
Gd varies around the expected value G0 with a degree of variability controlled by the
concentration parameter ϱ. Our GEM variables (random weights) are ϕ = {ϕdt}∞t=1 and
ς = {ςk}∞k=1. At infinite limit of finite mixtures, we have to set the document BL parameters
such that: ⎧⎪⎪⎨⎪⎪⎩

αk = ϱEq[ς] = ϱ× ιk
ιk+bk

∏k−1
l=1

bl
ιl+bl

α >
∑K
k=1 αk or α <

∑K
k=1 αk

β > αK+1 or β < αK+1

(290)

where k ∈ {1, 2, ...,K}. We get a Dirichlet as special case over the finite partitions with
parameters αk such that:

αk = ϱ× ιk
ιk + bk

k−1∏
l=1

bl
ιl + bl

where k ∈ {1, 2, ...,K} and its weights are Beta random variables from the GEM. In that
case, the truncated GEM will approximate the HDP-LDA (infinite limit of finite topic
mixtures). The variational posterior is given as:

α̃dk = ϱEq[ς] +
N∑
n=1

γkdn α̃ = α+
N∑
n=1

D∑
k=1

γdn β̃ = β +
N∑
n=1

D∑
d=1

γK+1
dn (291)

We see the relationship between the Dirichlet and the BL prior. The BL has just two
more parameters than the Dirichlet; yet it has much flexibility over the Dirichlet with a
more general covariance structure (235). Therefore, to use the approximation in (286), we
implement (290) and (291). The truncated GEM in our case will approximate the HDP-
LBLA. As in section 6.3.4.3, we estimate Eq[φkx ] from the training set and keep it fixed
where we compute Eq[ϕdk].

6.5.5 Experiments and Results

In this chapter, because the LBLA generalizes the LDA, we decided to compare directly
our BL-based HDP topic model to its parametric counterpart which is the LBLA. The
goal is to show the performance of these two models under different datasets. We will
have to predefine the number of topics for the finite dimensional parametric LBLA whereas
for the HDP, we will let the model choose its components based on the data. In other
words the HDP-LBLA will be initially set to the maximum of topics. We will also show
how the stochastic variables such as the batch size S and the forgetting rate κ influence
the performance. We will also show how different number of topics affect the parametric
LBLA. Topic models in general have to estimate K topics from a vocabulary of size V
per iteration using the training data. Batch methods require all the training dataset while
stochastic online variational methods only utilize subsets (minibatches). Therefore, we will
assess the per-iteration performance of these models (batch an online schemes) in terms of
their predictive likelihood per document.

Despite the flexibility of the perplexity method as an evaluation scheme it has
been reported that the predictive likelihood framework is an alternative as it avoid
comparing bounds. As evaluating the predictive distributions avoids comparing bounds,
we chose the per-word log predictive probability as an evaluation method. [1], [167].
Below is our initial setting concerning the size of the topics K and minibatch S:
K ∈ {10, 20, 40, 50, 60, 100, 120, 180, 200}. The minibatch size is selected from S ∈
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{50, 100, 200, 500, 1000}. We maintained the second level truncation to T = 10 following
the work in [1, 167] where K >> T .

In our figures, the online LBLA (the online SV-LBLA) is the OLB to keep it short. The
HLB is the batch-HDP-LBLA (the nonparametric hierarchical topic model), and finally
the OHLB is the online version of HLB (the online SV-HDP-LBLA). Throughout the
experiments, we use these acronyms interchangeably.

6.5.5.1 NIPS dataset

The per-iteration step observed in online HDP-LBLA and online parametric LBLA (OLB)
is much improved compared to that of the batch HDP-LBLA as we notice high value in
their log predictive probability for a held out document. The per-iteration step of the
batch HDP (HLB) is much slower as it gets penalized with a low value in its per-word
log predictive probability. The batch method when using variational inference only follows
the coordinate ascent framework which requires the use of all the training data in order
to estimate the global parameters such as topics. The time and memory complexities we
provided in subsection 6.4.4 show the batch is slower. Furthermore, batch methods are easy
to get stuck at local optima, and this could potentially affect the per-word log predictive
likelihood. Stochastic online variational schemes can easily escape shallow local optima as
they use noisy estimates of the natural gradients [1].

These reasons explain the high performance of our proposed online methods compared
to the batch in Figs. 6.1 and 6.2 as they maintain a constantly high value in the log
predictive likelihood over the batch at each iteration step. Though, these figures also show
that online HDP-LBLA outperforms the online parametric LBLA (OLB). It implicitly shows
that online HDP-LBLA has a much bigger hypothesis space than OLB which provides its
flexibility when complexity rises in the model. Our parametric models have a very reduced
hypothesis space and could not perform efficiently when for instance the number of topics
rises. For an extremely high number of topics, they tend to overfit. The BL-based HDPs
are much robust: though, while the OHLB is faster, the HLB (batch) is the slowest from
these three models due its inefficient time and memory complexities. For a moderate size
of topics (Figs. 6.3a and 6.3b), we see that the parametric online model’s performance
(the per-word log predictive probability value) increases with the size of topics. However,
the nonparametric OHLB outperforms both the online stochastic parametric and the batch
methods. The online schemes (parametric and nonparametric) that we propose here seem
to favor larger batch size along with a slower forgetting rate. This observation is similar to
work in [182], [1].

In this dataset, we maintain a κ = 0.7 as it allows good convergence. The forgetting rate
monitors how fast old information are forgotten. This stochastic framework also includes
the delay variable τ = 1 (in our experiment). The online HDP obtained the optimal
number of topics for the NIPS dataset using S = 100 at K = 70 from the initial maximum
of K = 200 topics. We can therefore observe that this dataset favors a small number of
topics. Importantly, we could mention the heterogeneity in topics at K = 50 in Fig. 6.3c.
The GEM structure of the HDP allows such enhanced variability. This promotes a fast
detection of relevant topics and an alternative to model selection. It is possible for the
parametric online model under a good initial guess on the number of topics to yield also a
model selection. Despite the flexibility of the BL-based HDP in determining automatically
the number of topics, the performance of our online parametric LBLA is almost close to
that of the online HDP-LBLA as shown in Fig. 6.2. Though, without an initial good guess
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Figure 6.1: Per-word log predictive probability from NIPS dataset showing the performance
of the batch HDP-LBLA (HLB), online-LBLA set with 30 topics, and online HDP-LBLA
(OHLB).

on the number of topics, the online HDP-LBLA has always the edge over parametric topic
models. This essentially represents the central problem with parametric topic models for
their inability to assess efficiently the optimal number of topics. As a result, they heavily
rely on predefining the exact number of topics which is actually unknown.

6.5.5.2 ENRON dataset

Experiments with this dataset show immediate dominance of online HDP-LBLA over its
parametric competitor, the online parametric LBLA as illustrated is Figs. 6.4 and 6.5,
especially in Fig. 6.5. The per-iteration step (performance) in the proposed online HDP-
LBLA (OHLB) shows that the model estimates the per-word log predictive likelihood faster
than its online parametric counterparts. Compared to NIPS data, we notice a much larger
batch size for the stochastic framework which also favors a slower forgetting rate κ.

We set the batch size to S = 500 while κ = 0.7. The efficiency of online the BL-based
HDP could be explained by the stick-breaking scheme that provides heterogenous topics
where we can characterize relevant topics by assessing the probability masses associated to
topics [18]. This makes the model robust when the number of topics increases as shown in
Figs. 6.6a, 6.6b, and 6.6c. Importantly, Fig. 6.6c shows very heterogenous topic features.
Characterizing relevant topics through the GEMs within a stochastic online variational
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Figure 6.2: Per-word log predictive probability from HDP-LBLA (HLB), online parametric
LBLA with 10 and 20 topics (OLB-10 and OLB-20), and online BL-based HDP (OHLB).
Performances obtained using NIPS data.

scheme leads to improvement in the predictive estimates. Furthermore, the (online) HDP-
LBLA) learns quickly and updates its local and global parameters faster than the batch
technique in Fig. 6.5. This flexibility allows it to constantly monitor and maintain an
increased value in its per-word log predictive probability (for a held out document) when
observing its performance per iteration step. Its competitors do not have such ability.
The online parametric model OLB only relies on its stochastic nature to perform quickly
as it is not equipped with GEM random variables whose efficient truncations help in the
quest for an alternative to model selection. Its performance increases with a good guess
on the number of topics; though, OLB is outperformed by online HDP-LBLA. We can see
that the performance of the proposed online BL-based HDP is somehow the asymptote for
parametric topic models in terms of the high value in log predictive probability (per word)
in a document per-iteration (Figs. 6.4 and 6.5).

The batch needs speed to maximize its performance (with predictive likelihood) as
fast as its online counterparts. However, the possibility of getting stuck at some local
optima remains one of the main reasons the batch method does not provide a good estimate
when analyzing its per-word log predictive probability distribution despite being slow. This
is not a problem for our stochastic online methods (Figs. 6.4 and 6.5) that follow the
noisy estimates of the natural gradients (to escape shallow local optima when the objective
function is complex) [1, 157]. They ultimately follow the gradients with a decreasing learning
rate. The online parametric LBLA seems to handle efficiently small number of topics as
they increase its performance in predictive likelihood (Figs. 6.6a and 6.6b). In addition,
despite its noticeable and increased performance within an increased number of topics( with
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Figure 6.3: Variability in the topic structure with NIPS dataset (where K is the number of
topics).

K = 30 and K = 40), online parametric topic models (OLB) are still limited compared to
our proposed online HDP-LBLA. From the 200 topics, the online HDP-LBLA provides an
optimal K = 100 topics for S = 500 and κ = 0.7.

6.5.5.3 KOS dataset

We set the batch size to S = 200. The KOS dataset maintains a good performance with
online HDP-LBLA topic model. We also initialized the parametric topic model with a high
number of topics to compete with online BL-based HDP. It results in predictive models that
were not desirable because the model is overfitting. The reduced hypothesis space of the
parametric model surely does not allow it to accommodate large number of topics. In other
words, the online parametric LBLA or OLB becomes unstable for a highly increased number
of components. While the performance of the online parametric LBLA was almost similar to
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Figure 6.4: Performance of online parametric-LBLA (OLB) using 30 and 40 topics (OLB-
30 and OLB-40), and online HDP-LBLA (OHLB) in terms of per-word log predictive
probability using ENRON data.

that of the online nonparametric for the NIPS dataset as shown in Fig. 6.2, the online HDP-
LBLA in this experiment with KOS dataset clearly outperforms any parametric topic model.
As previously mentioned, several attempts to overload the model with a highly increased
number of topics could negatively affect the per-word log likelihood estimates. This suggests
the parametric models for this dataset require not so high number of topics (Figs. 6.9a,
6.9b). The performance per iteration of online HDP-LBLA in Figs. 6.7 and 6.8 could also be
explained by the fact that it favors a larger batch size than in NIPS dataset. As a result, the
model could provide much better estimate with its stochastic variational inference. Again
the lack of stochasticity in the batch HDP-LBLA makes the model behaving really slow.
Within even one iteration, the online models including parametric ones outperform the batch
because they do not require the use of all the training data to provide updates. Therefore,
the online versions offer much improved predictive estimates per iteration resulting in the
high value in the per-word log predictive likelihood shown in Figs. 6.7 and 6.8. They do so
faster and efficiently than the batch method. With its flexibility to operate effectively with
heterogeneous topics Fig. 6.9c, the online HDP-LBLA reach an optimal number of topics
with K = 80 and κ = 0.7.

6.5.5.4 Discussion

Before the general conclusion in section 6.6, from all these three experiments, we can make
some reasoning that the performance of the batch HDP-LBLA does not necessarily mean
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Figure 6.5: ENRON data showing the per-word log predictive probability’s performance of
batch HDP-LBLA (HLB), parametric online-LBLA using 10 and 20 topics (OLB-10 and
OLB-20), and online BL-based HDP (OHLB).

that batch techniques are not useful at all. For large scale applications where D →∞, the
batch is severely penalized both in time and memory complexities as illustrated in subsection
6.4.4. It makes the batch schemes, despite their capabilities, not efficient compared to
sophisticated online methods (based on minibatches of size S such that S << D) which
can use the noisy estimates of the natural gradient of the objective function to escape local
optima. This flexibility allows online methods to be more efficient in providing estimates
faster than batch methods that require the whole training dataset at their disposal at every
single iteration.

When speed matters, online methods should be favored than batch framework because
they provide efficient estimates more rapidly than any batch system. However, when very
accurate results are needed and speed is not required, the batch methods could be used
because as they utilize the entire dataset, they can fully uncover the intrinsic structure of
the data. Though, their performance per iteration will be always lower: as they need the
whole data to provide estimates they are slow while online methods are capable to compute
through minibatches several estimates within one iteration. This allows online approaches to
reach maximum likelihood estimate faster. By using minibatches, online methods are much
efficient and faster. They can efficiently summarize the data characteristics. In this chapter,
we show that our online HDP-LBLA, in large scale applications is the right candidate for
learning topic models as it has ability to learn the underlined number of components that
describes the data efficiently. Online parametric topic models do not have such flexibility,
in general. The results in the experiments show that online HDP-LBLA outperforms its
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Figure 6.6: Heterogeneous topics from ENRON data as the size of topic increases

batch version and the parametric models.

6.6 Conclusion
we address, in this chapter, the problem of model selection and the sharing ability of
clusters in parametric topic models (mixed-membership models). We proposed the HDP
with the BL distribution (diffuse base probability measure) as the conjugate prior to
the data distribution. Through our experiments with three challenging text datasets, we
show the performance of the proposed nonparametric topic model against its parametric
counterpart. We assess the performance by averaging the predictive log likelihood within a
held out document leading to the per-word predictive log probability value as an evaluation
method. We consider it as an alternative to perplexity for its widely use in text document
modeling. We showed that the proposed online methods clearly outperform the batch
HDP-LBLA technique. The variational coordinate ascent framework, which requires the
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Figure 6.7: From KOS data, the per-word log predictive probability shows the performance
of the batch HDP-LBLA (HLB), online parametric LBLA (OLB) using 40 topics, and online
HDP-LBLA (OHLB).

batch HDP-LBLA method to use all the available training dataset before updating its
variational parameters is not efficient. It makes the batch HDP-LBLA technique very slow
and inefficient when we also analyze its time and memory complexities. Because the batch
approach uses all the available data, it is more likely that it also gets stuck at some shallow
local optima due to the lack of stochasticity in its structure. When it gets stuck, it affects
its likelihood value. We observed such phenomenon throughout our experiments. On the
other hand, online methods have shown high performance with the per-word log predictive
probability value per-iteration. At every iteration, their likelihood is constantly maintained
larger than that of the batch HDP-LBLA. These experiments ultimately show the flexibility
of the natural gradient method over classical gradients as it characterizes the information
geometry of the parameter space and therefore allows a much better estimate.

Online methods demonstrated that they could offer estimate faster with their minibatch
scheme. As a result, they have a much improved time and memory complexities. In
NIPS dataset, the online HDP-LBLA and parametric LBLA almost perform similarly. It
demonstrates that sometimes some good initializations (number of topics) can improve
performance even though this is not efficient because in general the number of topics
is unknown for a parametric topic model. The parametric online LBLA shows that
its performance constantly depends on the number of topics. Its predictive likelihood
seems to increase with an increase in the number of topics until it overfits. While the
performance of online parametric LBLA was almost close to that of online HDP-LBLA
model in NIPS dataset, it is outclassed in the remaining datasets by online HDP-LBLA.
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Figure 6.8: Per-word log predictive probability of the batch HDP-LBLA (HLB), online-
LBLA with 10 and 20 topics (OLB-10 and OLB-20), and online HDP-LBLA (OHLB) from
KOS data

Despite its bigger hypothesis space, the high performance of the HDP-LBLA is due to
the heterogeneity of its latent clusters which allows the model to assess rapidly relevant
topics. The online HDP-LBLA has a robust GEM structure and BL (asymmetric prior)
that offer an alternative to model selection. We also have witnessed that our online models
(nonparametric and parametric) tend to favor larger batch size with slow forgetting rate
for better estimates. Furthermore, the HDP-LBLA can handle the maximum of topics.
Marginalizing over the parameters shows the clustering property (partition) in the dataset.
This is reminiscent of the Polya urn process. The efficiency in the predictive log likelihood
could be explained by the robustness in the compression algorithm in HDP-LBLA which
emphasizes on dependency between documents as they share topics. The ability of our
model to characterize topic correlation also explains this flexibility. Even though our online
methods outperform the batch technique, the online HDP-LBLA clearly outperforms both
the online parametric LBLA and batch HDP-LBLA. We consider it as the most versatile
online BL-based HDP topic model. A future work could be devoted to providing another
alternative to the HDP-LDA topic model with the generalized Dirichlet distribution as the
conjugate prior to the document multinomials.

181



1 2 3 4 5 6 7 8 9 10

Number of topics

0

0.05

0.1

0.15

0.2

0.25

P
ro

b
a
b
ili

ty

(a) K = 10

0 2 4 6 8 10 12 14 16 18 20

Number of topics

0

0.02

0.04

0.06

0.08

0.1

0.12

P
ro

b
a
b
ili

ty

(b) K = 20

0 5 10 15 20 25 30 35 40

Number of topics

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

P
ro

b
a

b
ili

ty

(c) K = 40

Figure 6.9: An example of topic structure observed from KOS data at different resolutions

Appendix

Coordinate ascent and update equations

We formulate the coordinate ascent method from the variational inference where we obtain
the updates equations. These updates at the corpus and document levels will be useful for
the implementation of the parametric and nonparametric topic nodels especially during the
training and testing phases.

L ′(γnk) = (Eq[logφkv] + Eq[log(φk(V+1))]) + (Eq[log θdk]− log γnk − 1) + λ

Setting the derivative equal to zero, and we obtain:

γnk ∝ exp{Eq[log θdk] + Eq[logφkv] + Eq[log(φk(V+1))]} (292)

γnk ∝
exp{Ψ(α̃k) + Ψ(α̃)}

exp{Ψ(α̃+ β̃) + Ψ(
∑K
k=1 α̃k)}

exp{Ψ(λ̃) + Ψ(η̃) + Ψ(λ̃kv)}
exp{2Ψ(λ̃+ η̃) + Ψ(

∑V
v=1 λ̃kv)}

(293)
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L ′(γn(K+1)) = (Ψ(β̃)−Ψ(α̃+ β̃)− log γn(K+1) − 1) + λ

From L ′(γn(K+1)) = 0, it leads to:
γn(K+1) ∝ exp{Eq[log(θd(K+1))]} or

γn(K+1) ∝ exp{Ψ(β̃)−Ψ(α̃+ β̃)} (294)

We obtain two equations for the per-word topic assignment multinomial parameter
(variational). We summarize (293) and (294) to form:⎧⎪⎪⎪⎨⎪⎪⎪⎩

γnk ∝ exp{Ψ(α̃k)+Ψ(α̃)}
exp{Ψ(α̃+β̃)+Ψ(

∑K

k=1 α̃k)}
exp{Ψ(λ̃)+Ψ(η̃)+Ψ(λ̃kv)}

exp{2Ψ(λ̃+η̃)+Ψ(
∑V

v=1 λ̃kv)}
, k ∈ {1, 2, 3, ...,K}

γn(K+1) ∝ exp{Ψ(β̃)−Ψ(α̃+ β̃)}, k = K + 1

(295)

The update in (295) is also equivalent to:⎧⎪⎪⎨⎪⎪⎩
γnk ∝ exp{Eq[log θdk] + Eq[logφkv] + Eq[log(φk(V+1))]}

γn(K+1) ∝ exp{Eq[log(θd(K+1))]}
(296)

L (λ̃kv) =
V∑
v=1

(λkv−λ̃kv)Eq[logφkv]+
V∑
v=1

log Γ(λ̃kv)−log Γ(
V∑
v=1

λ̃kv)+
N∑
n=1

K∑
k=1

γnkx
v
nEq[logφkv]

L ′(λ̃kv) = Ψ′(λ̃kv)
(
λkv − λ̃kv +

N∑
n=1

K∑
k=1

γnkx
v
n

)
−Ψ′(

V∑
v=1

λ̃kv)
(
λkv − λ̃kv +

N∑
n=1

K∑
k=1

γnkx
v
n

)

Computing L ′(λ̃kv) = 0, we get:
(
λkv − λ̃kv +

∑N
n=1

∑K
k=1 γnkx

v
n

)
= 0 or

λ̃kv = λkv +
N∑
n=1

γnkx
v
n (297)

Using the steps from (297), we get:

L ′(λ̃) = Ψ′(λ̃)
(
λ− λ̃+

N∑
n=1

K∑
k=1

γnkx
v
n

)
−Ψ′(λ̃+ η̃)

(
λ− λ̃+

N∑
n=1

K∑
k=1

γnkx
v
n

)

L ′(λ̃) = 0

λ̃ = λ+
N∑
n=1

K∑
k=1

γnkxn (298)

L ′(η̃) = Ψ′(λ̃)
(
η − η̃ +

N∑
n=1

γnkx
V+1
n

)
−Ψ′(η̃ + λ̃)

(
η − η̃ +

N∑
n=1

γnkx
V+1
n

)
With L ′(η̃) = 0, we have:

η̃ = η +
N∑
n=1

K∑
k=1

γnkx
V+1
n (299)
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L ′(α̃k) = Ψ(λ̃k)
(
αk − α̃k +

N∑
n=1

K∑
k=1

γnk

)
−Ψ′

(
K∑
k=1

α̃k

)(
αk − α̃k +

N∑
n=1

K∑
k=1

γnk

)
−log Γ

(
K∑
k=1

α̃k

)

L ′(α̃k) = 0 gives (αk − α̃k +
∑N
n=1

∑K
k=1 γnk) = 0 or

α̃k = αk +
N∑
n=1

γnk (300)

L ′(α̃) = Ψ′(α̃)
(
α− α̃+

N∑
n=1

K∑
k=1

γnk

)
−Ψ′(α̃+ β̃)

(
α− α̃+

N∑
n=1

K∑
k=1

γnk

)

L ′(β̃) = Ψ(β̃)
(
β − β̃ +

N∑
n=1

γn(K+1)

)
−Ψ′(α̃+ β̃)

(
β − β̃ +

N∑
n=1

γn(K+1)

)
(301)

Setting L ′(α̃) = 0 and L ′(β̃) = 0 we get: (α − α̃ +
∑N
n=1

∑K
k=1 γnk) = 0 and(

β − β̃ +
∑N
n=1 γn(K+1)

)
= 0

α̃ = α+
N∑
n=1

K∑
k=1

γnk (302)

β̃ = β +
N∑
n=1

γn(K+1) (303)
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Chapter 7

Conclusions and Future Work

In this thesis, using a series of directed acyclic graphical models, we formulated efficient
alternatives to the latent Dirichlet allocation (LDA) topic model (with its standard
symmetric Dirichlet as conjugate prior to the multinomial). Taking advantage of the
collapsed representation as it provides a better lower bound (compared to the standard
VB method), we were able to implement a series of CVB update equations using the BL
or GD priors as alternative to the Dir in chapters 2 and 3. Our proposed inferences in
the collapsed space extended the LDA capabilities as it allows us to handle a variety of
challenging applications ranging from text document analysis to computer vision (images
and videos). The hybrid generative discriminative in chapter 4 uses in the generative stage
topic features that are fed into SVM classifiers in the discriminative stage. This hybrid shows
in the generative stage the use of BL and GD simultaneously where the SVM accommodates
the topic features using efficient probabilistic kernels for classification. Despite the flexibility
of the CVB algorithms they are often difficult to characterize. As most Bayesian posteriors,
for complex models, are intractable in general, we propose a point estimate (the mode)
that offers a much tractable solution. The MAP hypotheses using point estimates are
much easier than full Bayesian analysis that integrates over the entire parameter space.
We therefore formulate in chapter 5 the MAP-LBLA using standard EM algorithm and it
shows that the update equation is much simpler than the ones in the collapsed with the
CVB. Importantly, it also shows an implicit equivalent relationship between the MAP and
the collapsed representaions with the CVB especially the zero order approximations (CVB0
and the stochastic CVB0). Compared to the situations in parametric topic models where
we initially fix the number of topics in advance, we finally propose in chapter 6 a Bayesian
nonparametric framework where the HDP prior is the conjugate prior to the multinomial.
We formulate the nonprametric prior using the asymmetric BL as a diffuse base measure
to enhance variability and heterogeneity in the topics. Our HDP-LBLA with its much
bigger hypothesis space ultimately relaxes the assumption of a fixed number of topics and
provides an alternative to model selection. From the series of inferences (VB, CGS, and
CVB) with the BL and GD, that have been proposed in this thesis, we also emphasize
on stochastic optimizations using natural gradients methods to speed up the learning of
good topics in online fashion in large scale applications for tasks such as classification
and information retrieval. The scheme improves the time and memory complexities. We
characterize the efficiency of these priors in topic correlation framework. We ultimately
show that asymmetric priors are much robust compared to symmetric priors. As topic
models depend extensively on flexible prior distributions in the Bayesian analysis, we show
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the flexibility of the BL and GD in our proposed topic models. We use both the predictive
likelihoods and perplexities as evaluation metods to assess the robustness of our proposed
topic models. We have improved object categorization in terms of inferences using the
flexibility of these priors. We also improved information retieval system in text document
analysis. These two applications present the ultimate capabilities of enhancing a search
engine based on topic models (for instance).

Future work could formulate the CVB inferences with other conjugate priors. We
could follow a possibility to implement topic models using non conjugate priors, similar
to the logistic normal distributions. We could also propose a series of semi-parametric
topic models. Another direction could emphasize more on empirical Bayes framework
for hyperparameter estimation. Finally, the expectation propagation (EP) is another
deterministic approach for topic models learning that could be deployed.
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