33,652 research outputs found

    A dynamic distributed multi-channel TDMA slot management protocol for ad hoc networks

    Get PDF
    With the emergence of new technologies and standards for wireless communications and an increase in application and user requirements, the number and density of deployed wireless ad hoc networks is increasing. For deterministic ad hoc networks, Time-Division Multiple Access (TDMA) is a popular medium access scheme, with many distributed TDMA scheduling algorithms being proposed. However, with increasing traffic demands and the number of wireless devices, proposed protocols are facing scalability issues. Besides, these protocols are achieving suboptimal spatial spectrum reuse as a result of the unsolved exposed node problem. Due to a shortage of available spectrum, a shift from fixed spectrum allocation to more dynamic spectrum sharing is anticipated. For dynamic spectrum sharing, improved distributed scheduling protocols are needed to increase spectral efficiency and support the coexistence of multiple co-located networks. Hence, in this paper, we propose a dynamic distributed multi-channel TDMA (DDMC-TDMA) slot management protocol based on control messages exchanged between one-hop network neighbors and execution of slot allocation and removal procedures between sender and receiver nodes. DDMC-TDMA is a topology-agnostic slot management protocol suitable for large-scale and high-density ad hoc networks. The performance of DDMC-TDMA has been evaluated for various topologies and scenarios in the ns-3 simulator. Simulation results indicate that DDMC-TDMA offers near-optimal spectrum utilization by solving both hidden and exposed node problems. Moreover, it proves to be a highly scalable protocol, showing no performance degradation for large-scale and high-density networks and achieving coexistence with unknown wireless networks operating in the same wireless domain

    Adaptive resource allocation for cognitive wireless ad hoc networks

    Get PDF
    Widespread use of resource constrained wireless ad hoc networks requires careful management of the network resources in order to maximize the utilization. In cognitive wireless networks, resources such as spectrum, energy, communication links/paths, time, space, modulation scheme, have to be managed to maintain quality of service (QoS). Therefore in the first paper, a distributed dynamic channel allocation scheme is proposed for multi-channel wireless ad hoc networks with single-radio nodes. The proposed learning scheme adapts the probabilities of selecting each channel as a function of the error in the performance index at each step. Due to frequent changes in topology and flow traffic over time, wireless ad hoc networks require a dynamic routing protocol that adapts to the changes of the network while allocating network resources. In the second paper, approximate dynamic programming (ADP) techniques are utilized to find dynamic routes, while solving discrete-time Hamilton-Jacobi-Bellman (HJB) equation forward-in-time for route cost. The third paper extends the dynamic routing to multi-channel multi-interface networks which are affected by channel uncertainties and fading channels. By the addition of optimization techniques through load balancing over multiple paths and multiple wireless channels, utilization of wireless channels throughout the network is enhanced. Next in the fourth paper, a decentralized game theoretic approach for resource allocation of the primary and secondary users in a cognitive radio networks is proposed. The priorities of the networks are incorporated in the utility and potential functions which are in turn used for resource allocation. The proposed game can be extended to a game among multiple co-existing networks, each with different priority levels --Abstract, page iv

    Cognitive Radio Network with a distributed control channel and quality-of-service solution

    Get PDF
    The proliferation of wireless access and applications to the Internet and the advent of a myriad of highly evolved portable communication devices; creates the need for an efficiently utilized radio spectrum. This is paramount in the licensed and unlicensed radio frequency bands, that spawn an exponential growth in Dynamic Spectrum Access (DSA) research, Cognitive Radio (CR) and Cognitive Radio Networks (CRN) research. DSA research has given way to the paradigm shift toward CR with its dynamic changes in transmission schemas. This paradigm shift from a fixed and centralized frequency spectrum environment has morphed into a dynamic and decentralized one. CR provides wireless nodes the capability to adapt and exploit the frequency spectrum. The spectrum information obtained is scanned and updated to determine the channel quality for viability and a utilization/availability by the licensed (primary) user. To take advantage of the CR capabilities, previous research has focused on a Common Control Channel(CCC) for the control signals to be used for spectrum control. This utilization generates channel saturation, extreme transmission overhead of control information, and a point of vulnerability. The traditional designs for wireless routing protocols do not support an ad hoc multi-hop cognitive radio network model. This research focuses on a real world implementation of a heterogeneous ad hoc multi-hop Cognitive Radio Network. An overall model, coined Emerald, has been designed to address the architecture; the Medium Access Control layer, E-MAC; and the network layer, E-NET. First, a Medium Access Control(MAC) layer protocol is provided to avoid the pitfalls of a common control channel. This new design provides CRNs with network topology and channel utilization information. Spectrum etiquette, in turn, addresses channel saturation, control overhead, and the single point of vulnerability. Secondly, a routing model is proposed that will address the efficiency of an ad hoc multi-hop CRN with a focus on the Quality-of-Service(QoS) of the point-to-point as well as end-to-end communication. This research has documented weaknesses in spectrum utilization; it has been expanded to accommodate a distributed control environment. Subsets of the model will be validated through Network Simulator-2(NS/2) and MatLab© simulations to determine point-to-point and end-to-end communications

    A novel multi-fold security framework for cognitive radio wireless ad-hoc networks

    Get PDF
    Cognitive Radio (CR) Technology has emerged as a smart and intelligent technology to address the problem of spectrum scarcity and its under-utilization. CR nodes sense the environment for vacant channels, exchange control information, and agree upon free channels list (FCL) to use for data transmission and conclusion. CR technology is heavily dependent on the control channel to dialogue on the exchanged control information which is usually in the Industrial-Scientific-Medical (ISM) band. As the ISM band is publically available this makes the CR network more prone to security vulnerabilities and flaws. In this paper a novel multi-fold security framework for cognitive radio wireless ad-hoc networks has been proposed. Multiple security levels, such as, encryption of beacon frame and privately exchanging the FCL, and the dynamic and adaptive behaviour of the framework makes the proposed protocol more resilient and secure against the traditional security attacks when compared with existing protocols

    Improving quality of service through road side back-bone network in VANET

    Get PDF
    The vehicular ad hoc Networks (VANETs) are expected to support a large spectrum of traffic alert, dynamic route planning, file sharing, safety and infotainment applications to improve traffic management. User satisfaction plus in time delivery of real-time messages is the most significant quality evaluation criterion for vehicular applications. High mobility and rapidly changing topologies always lead to intermittent quality of services, higher delay and packet dropping issues in network. To improve the quality of services for multi-hop and dynamic environment, different types of solutions have been proposed. The article introduces multi-protocol label switching based on roadside backbone network to provide widespread, scalable, high-speed, robust quality of services and improve network efficiency. The simulation results showed that proposed model improves data transmission and routing performance in terms of data delivery, throughput, end-to-end delay and achieve adequate utilization of resources

    Regulatory and Policy Implications of Emerging Technologies to Spectrum Management

    Get PDF
    This paper provides an overview of the policy implications of technological developments, and how these technologies can accommodate an increased level of market competition. It is based on the work carried out in the SPORT VIEWS (Spectrum Policies and Radio Technologies Viable In Emerging Wireless Societies) research project for the European Commission (FP6)spectrum, new radio technologies, UWB, SDR, cognitive radio, Telecommunications, regulation, Networks, Interconnection
    • …
    corecore