1,134 research outputs found

    A Survey on Dynamic Spectrum Access Techniques in Cognitive Radio Networks

    Get PDF
    The idea of Cognitive Radio (CR) is to share the spectrum between a user called primary, and a user called secondary. Dynamic Spectrum Access (DSA) is a new spectrum sharing paradigm in cognitive radio that allows secondary users to access the abundant spectrum holes in the licensed spectrum bands. DSA is an auspicious technology to alleviate the spectrum scarcity problem and increase spectrum utilization. While DSA has attracted many research efforts recently, in this paper, a survey of spectrum access techniques using cooperation and competition to solve the problem of spectrum allocation in cognitive radio networks is presented

    Heuristically Accelerated Reinforcement Learning for Dynamic Secondary Spectrum Sharing

    Get PDF

    Cognitive Spectrum Management in Dynamic Cellular Environments: : A Case-Based Q-Learning Approach

    Get PDF
    This paper examines how novel cellular system architectures and intelligent spectrum management techniques can be used to play a key role in accommodating the exponentially increasing demand for mobile data capacity in the near future. A significant challenge faced by the artificial intelligence methods applied to such flexible wireless communication systems is their dynamic nature, e.g. network topologies that change over time. This paper proposes an intelligent case-based Q-learning method for dynamic spectrum access (DSA) which improves and stabilises the performance of cognitive cellular systems with dynamic topologies. The proposed approach is the combination of classical distributed Q-learning and a novel implementation of case-based reasoning which aims to facilitate a number of learning processes running in parallel. Large scale simulations of a stadium small cell network show that the proposed case-based Q-learning approach achieves a consistent improvement in the system quality of service (QoS) under dynamic and asymmetric network topology and traffic load conditions. Simulations of a secondary spectrum sharing scenario show that the cognitive cellular system that employs the proposed case-based Q-learning DSA scheme is able to accommodate a 28-fold increase in the total primary and secondary system throughput, but with no need for additional spectrum and with no degradation in the primary user QoS

    Deep-Reinforcement Learning Multiple Access for Heterogeneous Wireless Networks

    Full text link
    This paper investigates the use of deep reinforcement learning (DRL) in a MAC protocol for heterogeneous wireless networking referred to as Deep-reinforcement Learning Multiple Access (DLMA). The thrust of this work is partially inspired by the vision of DARPA SC2, a 3-year competition whereby competitors are to come up with a clean-slate design that "best share spectrum with any network(s), in any environment, without prior knowledge, leveraging on machine-learning technique". Specifically, this paper considers the problem of sharing time slots among a multiple of time-slotted networks that adopt different MAC protocols. One of the MAC protocols is DLMA. The other two are TDMA and ALOHA. The nodes operating DLMA do not know that the other two MAC protocols are TDMA and ALOHA. Yet, by a series of observations of the environment, its own actions, and the resulting rewards, a DLMA node can learn an optimal MAC strategy to coexist harmoniously with the TDMA and ALOHA nodes according to a specified objective (e.g., the objective could be the sum throughput of all networks, or a general alpha-fairness objective)
    corecore