1,528 research outputs found

    Global Saturated Regulator with Variable Gains for Robot Manipulators

    Get PDF
    In this paper, we propose a set of saturated controllers with variable gains to solve the regulation problem for robot manipulators in joint space. These control schemes deliver torques inside the prescribed limits of servomotors. The gamma of variable gains is formed by continuous, smooth, and differentiable functions of the joint position error and velocity of the manipulator. A strict Lyapunov function is proposed to demonstrate globally asymptotic stability of the closed-loop equilibrium point. Finally, the functionality and performance of the proposal are illustrated via simulation results and comparative analysis against Proportional-Derivative (PD) control scheme on a two-degrees-freedom direct-drive robot manipulator

    Joint-space adaptive control of a 6 DOF end-effector with closed-kinematic chain mechanism

    Get PDF
    The development is presented for a joint-space adaptive scheme that controls the joint position of a six-degree-of-freedom (DOF) robot end-effector performing fine and precise motion within a very limited workspace. The end-effector was built to study autonomous assembly of NASA hardware in space. The design of the adaptive controller is based on the concept of model reference adaptive control (MRAC) and Lyapunov direct method. In the development, it is assumed that the end-effector performs slowly varying motion. Computer simulation is performed to investigate the performance of the developed control scheme on position control of the end-effector. Simulation results manifest that the adaptive control scheme provides excellent tracking of several test paths

    Stanford Aerospace Research Laboratory research overview

    Get PDF
    Over the last ten years, the Stanford Aerospace Robotics Laboratory (ARL) has developed a hardware facility in which a number of space robotics issues have been, and continue to be, addressed. This paper reviews two of the current ARL research areas: navigation and control of free flying space robots, and modelling and control of extremely flexible space structures. The ARL has designed and built several semi-autonomous free-flying robots that perform numerous tasks in a zero-gravity, drag-free, two-dimensional environment. It is envisioned that future generations of these robots will be part of a human-robot team, in which the robots will operate under the task-level commands of astronauts. To make this possible, the ARL has developed a graphical user interface (GUI) with an intuitive object-level motion-direction capability. Using this interface, the ARL has demonstrated autonomous navigation, intercept and capture of moving and spinning objects, object transport, multiple-robot cooperative manipulation, and simple assemblies from both free-flying and fixed bases. The ARL has also built a number of experimental test beds on which the modelling and control of flexible manipulators has been studied. Early ARL experiments in this arena demonstrated for the first time the capability to control the end-point position of both single-link and multi-link flexible manipulators using end-point sensing. Building on these accomplishments, the ARL has been able to control payloads with unknown dynamics at the end of a flexible manipulator, and to achieve high-performance control of a multi-link flexible manipulator

    Design of an adaptive controller for a telerobot manipulator

    Get PDF
    The design of a joint-space adaptive control scheme is presented for controlling the slave arm motion of a dual-arm telerobot system developed at Goddard Space Flight Center (GSFC) to study telerobotic operations in space. Each slave arm of the dual-arm system is a kinematically redundant manipulator with 7 degrees of freedom (DOF). Using the concept of model reference adaptive control (MRAC) and Lyapunov direct method, an adatation algorithm is derived which adjusts the PD controller gains of the control scheme. The development of the adaptive control scheme assumes that the slave arm motion is non-compliant and slowly-varying. The implementation of the derived control scheme does not need the computation of the manipulator dynamics, which makes the control scheme sufficiently fast for real-time applications. Computer simulation study performed for the 7-DOF slave arm shows that the developed control scheme can efficiently adapt to sudden change in payloads while tracking various test trajectories such as ramp or sinusoids with negligible position errors

    A family of asymptotically stable control laws for flexible robots based on a passivity approach

    Get PDF
    A general family of asymptotically stabilizing control laws is introduced for a class of nonlinear Hamiltonian systems. The inherent passivity property of this class of systems and the Passivity Theorem are used to show the closed-loop input/output stability which is then related to the internal state space stability through the stabilizability and detectability condition. Applications of these results include fully actuated robots, flexible joint robots, and robots with link flexibility

    Dynamic Modeling and Torque Feedforward based Optimal Fuzzy PD control of a High-Speed Parallel Manipulator

    Get PDF
    Dynamic modeling and control of high-speed parallel manipulators are of importance due to their industrial applications deployed in production lines. However, there are still a number of open problems, such as the development of a precise dynamic model to be used in the model-based control design. This paper presents a four-limb parallel manipulator with Schönflies motion and its simplified dynamic modeling process. Then, in order to fix the issue that computed torque method control (CTC) will spend a lot of time to calculate dynamic parameters in real-time, offline torque feedforward-based PD (TFPD) control law is adopted in the control system. At the same time, fuzzy logic is also used to tune the gains of PD controller to adapt to the variation of external disturbance and compensate the un-modeled uncertainty. Additionally, bottom widths of membership functions of fuzzy controller are optimized by bat algorithm. Finally, three controllers of CTC, TFPD and bat algorithm-based torque feedforwad fuzzy PD controller (BA-TFFPD) are compared in trajectory tracking simulation. Fro the result, compared with TFPD and CTC, BA-TFFPD can lead faster transient response and lower tracking error, which prove the validity of BA-TFFPD

    Control strategies for robotic manipulators

    Get PDF
    This survey is aimed at presenting the major robust control strategies for rigid robot manipulators. The techniques discussed are feedback linearization/Computed torque control, Variable structure compensator, Passivity based approach and Disturbance observer based control. The first one is based on complete dynamic model of a robot. It results in simple linear control which offers guaranteed stability. Variable structure compensator uses a switching/relay action to overcome dynamic uncertainties and disturbances. Passivity based controller make use of passive structure of a robot. If passivity of a feedback system is proved, nonlinearities and uncertainties will not affect the stability. Disturbance observer based controllers estimate disturbances, which can be cancelled out to achieve a nominal model, for which a simple controller can then be designed. This paper, after explaining each control strategy in detail, finally compares these strategies for their pros and cons. Possible solutions to cope with the drawbacks have also been presented in tabular form. © 2012 IEEE
    • …
    corecore