3,735 research outputs found

    The Dynamics of Vehicular Networks in Urban Environments

    Full text link
    Vehicular Ad hoc NETworks (VANETs) have emerged as a platform to support intelligent inter-vehicle communication and improve traffic safety and performance. The road-constrained, high mobility of vehicles, their unbounded power source, and the emergence of roadside wireless infrastructures make VANETs a challenging research topic. A key to the development of protocols for inter-vehicle communication and services lies in the knowledge of the topological characteristics of the VANET communication graph. This paper explores the dynamics of VANETs in urban environments and investigates the impact of these findings in the design of VANET routing protocols. Using both real and realistic mobility traces, we study the networking shape of VANETs under different transmission and market penetration ranges. Given that a number of RSUs have to be deployed for disseminating information to vehicles in an urban area, we also study their impact on vehicular connectivity. Through extensive simulations we investigate the performance of VANET routing protocols by exploiting the knowledge of VANET graphs analysis.Comment: Revised our testbed with even more realistic mobility traces. Used the location of real Wi-Fi hotspots to simulate RSUs in our study. Used a larger, real mobility trace set, from taxis in Shanghai. Examine the implications of our findings in the design of VANET routing protocols by implementing in ns-3 two routing protocols (GPCR & VADD). Updated the bibliography section with new research work

    On the Experimental Evaluation of Vehicular Networks: Issues, Requirements and Methodology Applied to a Real Use Case

    Get PDF
    One of the most challenging fields in vehicular communications has been the experimental assessment of protocols and novel technologies. Researchers usually tend to simulate vehicular scenarios and/or partially validate new contributions in the area by using constrained testbeds and carrying out minor tests. In this line, the present work reviews the issues that pioneers in the area of vehicular communications and, in general, in telematics, have to deal with if they want to perform a good evaluation campaign by real testing. The key needs for a good experimental evaluation is the use of proper software tools for gathering testing data, post-processing and generating relevant figures of merit and, finally, properly showing the most important results. For this reason, a key contribution of this paper is the presentation of an evaluation environment called AnaVANET, which covers the previous needs. By using this tool and presenting a reference case of study, a generic testing methodology is described and applied. This way, the usage of the IPv6 protocol over a vehicle-to-vehicle routing protocol, and supporting IETF-based network mobility, is tested at the same time the main features of the AnaVANET system are presented. This work contributes in laying the foundations for a proper experimental evaluation of vehicular networks and will be useful for many researchers in the area.Comment: in EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, 201

    Relieving the Wireless Infrastructure: When Opportunistic Networks Meet Guaranteed Delays

    Full text link
    Major wireless operators are nowadays facing network capacity issues in striving to meet the growing demands of mobile users. At the same time, 3G-enabled devices increasingly benefit from ad hoc radio connectivity (e.g., Wi-Fi). In this context of hybrid connectivity, we propose Push-and-track, a content dissemination framework that harnesses ad hoc communication opportunities to minimize the load on the wireless infrastructure while guaranteeing tight delivery delays. It achieves this through a control loop that collects user-sent acknowledgements to determine if new copies need to be reinjected into the network through the 3G interface. Push-and-Track includes multiple strategies to determine how many copies of the content should be injected, when, and to whom. The short delay-tolerance of common content, such as news or road traffic updates, make them suitable for such a system. Based on a realistic large-scale vehicular dataset from the city of Bologna composed of more than 10,000 vehicles, we demonstrate that Push-and-Track consistently meets its delivery objectives while reducing the use of the 3G network by over 90%.Comment: Accepted at IEEE WoWMoM 2011 conferenc

    Adoption of vehicular ad hoc networking protocols by networked robots

    Get PDF
    This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan

    DSDV, DYMO, OLSR: Link Duration and Path Stability

    Full text link
    In this paper, we evaluate and compare the impact of link duration and path stability of routing protocols; Destination Sequence Distance vector (DSDV), Dynamic MANET On- Demand (DYMO) and Optimized Link State Routing (OLSR) at different number of connections and node density. In order to improve the efficiency of selected protocols; we enhance DYMO and OLSR. Simulation and comparison of both default and enhanced routing protocols is carried out under the performance parameters; Packet Delivery Ratio (PDR), Average End-to End Delay (AE2ED) and Normalized Routing Overhead (NRO). From the results, we observe that DYMO performs better than DSDV, MOD-OLSR and OLSR in terms of PDR, AE2ED, link duration and path stability at the cost of high value of NRO
    corecore