367 research outputs found

    Content Delivery System for Optimal VoD Streaming

    Full text link
    The demand of video contents has rapidly increased in the past years as a result of the wide deployment of IPTV and the variety of services offered by the network operators. One of the services that has especially become attractive to the customers is real-time video on demand (VoD) because it offers an immediate streaming of a large variety of video contents. The price that the operators have to pay for this convenience is the increased traffic in the networks, which are becoming more congested due to the higher demand for VoD contents and the increased quality of the videos. As a solution, in this paper we propose a hierarchical network system for VoD content delivery in managed networks, which implements redistribution algorithm and a redirection strategy for optimal content distribution within the network core and optimal streaming to the clients. The system monitors the state of the network and the behavior of the users to estimate the demand for the content items and to take the right decision on the appropriate number of replicas and their best positions in the network. The system's objectives are to distribute replicas of the content items in the network in a way that the most demanded contents will have replicas closer to the clients so that it will optimize the network utilization and will improve the users' experience. It also balances the load between the servers concentrating the traffic to the edges of the network

    Web Replica Hosting Systems

    Get PDF

    A Holistic Approach to Lowering Latency in Geo-distributed Web Applications

    Get PDF
    User perceived end-to-end latency of web applications have a huge impact on the revenue for many businesses. The end-to-end latency of web applications is impacted by: (i) User to Application server (front-end) latency which includes downloading and parsing web pages, retrieving further objects requested by javascript executions; and (ii) Application and storage server(back-end) latency which includes retrieving meta-data required for an initial rendering, and subsequent content based on user actions. Improving the user-perceived performance of web applications is challenging, given their complex operating environments involving user-facing web servers, content distribution network (CDN) servers, multi-tiered application servers, and storage servers. Further, the application and storage servers are often deployed on multi-tenant cloud platforms that show high performance variability. While many novel approaches like SPDY and geo-replicated datastores have been developed to improve their performance, many of these solutions are specific to certain layers, and may have different impact on user-perceived performance. The primary goal of this thesis is to address the above challenges in a holistic manner, focusing specifically on improving the end-to-end latency of geo-distributed multi-tiered web applications. This thesis makes the following contributions: (i) First, it reduces user-facing latency by helping CDNs identify and map objects that are more critical for page-load latency to the faster CDN cache layers. Through controlled experiments on real-world web pages, we show the potential of our approach to reduce hundreds of milliseconds in latency without affecting overall CDN miss rates. (ii) Next, it reduces back-end latency by optimally adapting the datastore replication policies (including number and location of replicas) to the heterogeneity in workloads. We show the benefits of our replication models using real-world traces of Twitter, Wikipedia and Gowalla on a 8 datacenter Cassandra cluster deployed on EC2. (iii) Finally, it makes multi-tier applications resilient to the inherent performance variability in the cloud through fine-grained request redirection. We highlight the benefits of our approach by deploying three real-world applications on commercial cloud platforms
    • …
    corecore