700 research outputs found

    End-to-end security for video distribution

    Get PDF

    Dynamic region of interest transcoding for multipoint video conferencing

    Get PDF
    This paper presents a region of interest transcoding scheme for multipoint video conferencing to enhance the visual quality. In a multipoint videoconference, usually there are only one or two active conferees at one time which are the regions of interest to the other conferees involved. We propose a Dynamic Sub-Window Skipping (DSWS) scheme to firstly identify the active participants from the multiple incoming encoded video streams by calculating the motion activity of each sub-window, and secondly reduce the frame-rates of the motion inactive participants by skipping these less-important subwindows. The bits saved by the skipping operation are reallocated to the active sub-windows to enhance the regions of interest. We also propose a low-complexity scheme to compose and trace the unavailable motion vectors with a good accuracy in the dropped inactive sub-windows after performing the DSWS. Simulation results show that the proposed methods not only significantly improve the visual quality on the active subwindows without introducing serious visual quality degradation in the inactive ones, but also reduce the computational complexity and avoid whole-frame skipping. Moreover, the proposed algorithm is fully compatible with the H.263 video coding standard. 1

    Compressed-domain transcoding of H.264/AVC and SVC video streams

    Get PDF

    Efficient HEVC-based video adaptation using transcoding

    Get PDF
    In a video transmission system, it is important to take into account the great diversity of the network/end-user constraints. On the one hand, video content is typically streamed over a network that is characterized by different bandwidth capacities. In many cases, the bandwidth is insufficient to transfer the video at its original quality. On the other hand, a single video is often played by multiple devices like PCs, laptops, and cell phones. Obviously, a single video would not satisfy their different constraints. These diversities of the network and devices capacity lead to the need for video adaptation techniques, e.g., a reduction of the bit rate or spatial resolution. Video transcoding, which modifies a property of the video without the change of the coding format, has been well-known as an efficient adaptation solution. However, this approach comes along with a high computational complexity, resulting in huge energy consumption in the network and possibly network latency. This presentation provides several optimization strategies for the transcoding process of HEVC (the latest High Efficiency Video Coding standard) video streams. First, the computational complexity of a bit rate transcoder (transrater) is reduced. We proposed several techniques to speed-up the encoder of a transrater, notably a machine-learning-based approach and a novel coding-mode evaluation strategy have been proposed. Moreover, the motion estimation process of the encoder has been optimized with the use of decision theory and the proposed fast search patterns. Second, the issues and challenges of a spatial transcoder have been solved by using machine-learning algorithms. Thanks to their great performance, the proposed techniques are expected to significantly help HEVC gain popularity in a wide range of modern multimedia applications
    • 

    corecore