21,032 research outputs found

    Extending Demand Response to Tenants in Cloud Data Centers via Non-intrusive Workload Flexibility Pricing

    Full text link
    Participating in demand response programs is a promising tool for reducing energy costs in data centers by modulating energy consumption. Towards this end, data centers can employ a rich set of resource management knobs, such as workload shifting and dynamic server provisioning. Nonetheless, these knobs may not be readily available in a cloud data center (CDC) that serves cloud tenants/users, because workloads in CDCs are managed by tenants themselves who are typically charged based on a usage-based or flat-rate pricing and often have no incentive to cooperate with the CDC operator for demand response and cost saving. Towards breaking such "split incentive" hurdle, a few recent studies have tried market-based mechanisms, such as dynamic pricing, inside CDCs. However, such mechanisms often rely on complex designs that are hard to implement and difficult to cope with by tenants. To address this limitation, we propose a novel incentive mechanism that is not dynamic, i.e., it keeps pricing for cloud resources unchanged for a long period. While it charges tenants based on a Usage-based Pricing (UP) as used by today's major cloud operators, it rewards tenants proportionally based on the time length that tenants set as deadlines for completing their workloads. This new mechanism is called Usage-based Pricing with Monetary Reward (UPMR). We demonstrate the effectiveness of UPMR both analytically and empirically. We show that UPMR can reduce the CDC operator's energy cost by 12.9% while increasing its profit by 4.9%, compared to the state-of-the-art approaches used by today's CDC operators to charge their tenants

    Evolutionary implementation and congestion pricing

    Get PDF
    game theory;pricing

    Different Policy Objectives of the Road Pricing Problem – a Game Theory Approach

    Get PDF
    Using game theory we investigate a new approach to formulate and solve optimal tolls with a focus on different policy objectives of the road authority. The aim is to gain more insight into determining optimal tolls as well as into the behavior of users after tolls have been imposed on the network. The problem of determining optimal tolls is stated and defined using utility maximization theory, including elastic demand on the travelers’ side and different objectives for the road authority. Game theory notions are adopted regarding different games and players, rules and outcomes of the games played between travelers on the one hand and the road authority on the other. Different game concepts (Cournot, Stackelberg and monopoly game) are mathematically formulated and the relationship between players, their payoff functions and rules of the games are defined for very simplistic cases. The games are solved for different scenarios and different objectives for the road authority, using the Nash equilibrium concept. Using the Stackelberg game concept as being most realistic for road pricing, a few experiments are presented illustrating the optimal toll design problem subject to different pricing policies considering different objectives of the road authority. Results show different outcomes both in terms of optimal tolls as well as in payoffs for travelers. There exist multiple optimal solutions and objective function may have a non- continuous shape. The main contribution is the two-level separation between of the users from the road authority in terms of their objectives and influences.

    Combining Spot and Futures Markets: A Hybrid Market Approach to Dynamic Spectrum Access

    Full text link
    Dynamic spectrum access is a new paradigm of secondary spectrum utilization and sharing. It allows unlicensed secondary users (SUs) to exploit opportunistically the under-utilized licensed spectrum. Market mechanism is a widely-used promising means to regulate the consuming behaviours of users and, hence, achieves the efficient allocation and consumption of limited resources. In this paper, we propose and study a hybrid secondary spectrum market consisting of both the futures market and the spot market, in which SUs (buyers) purchase under-utilized licensed spectrum from a spectrum regulator, either through predefined contracts via the futures market, or through spot transactions via the spot market. We focus on the optimal spectrum allocation among SUs in an exogenous hybrid market that maximizes the secondary spectrum utilization efficiency. The problem is challenging due to the stochasticity and asymmetry of network information. To solve this problem, we first derive an off-line optimal allocation policy that maximizes the ex-ante expected spectrum utilization efficiency based on the stochastic distribution of network information. We then propose an on-line VickreyCClarkeCGroves (VCG) auction that determines the real-time allocation and pricing of every spectrum based on the realized network information and the pre-derived off-line policy. We further show that with the spatial frequency reuse, the proposed VCG auction is NP-hard; hence, it is not suitable for on-line implementation, especially in a large-scale market. To this end, we propose a heuristics approach based on an on-line VCG-like mechanism with polynomial-time complexity, and further characterize the corresponding performance loss bound analytically. We finally provide extensive numerical results to evaluate the performance of the proposed solutions.Comment: This manuscript is the complete technical report for the journal version published in INFORMS Operations Researc

    Differential Pricing for Pharmaceuticals: Reconciling Access, R&D and Patents

    Get PDF
    This paper reviews the economic case for patents and the potential for differential pricing to increase affordability of on-patent drugs in developing countries while preserving incentives for innovation. Differential pricing, based on Ramsey pricing principles, is the second best efficient way of paying for the global joint costs of pharmaceutical R&D. Assuming demand elasticities are related to income, it would also be consistent with standard norms of equity. To achieve appropriate and sustainable price differences will require either that higher-income countries forego trying to "import" low drug prices from low-income countries, through parallel trade and external referencing, or that such practices become less feasible. The most promising approach that would prevent both parallel trade and external referencing is for payers/purchasers on behalf of developing countries to negotiate contracts with companies that include confidential rebates. With confidential rebates, final transactions prices to purchasers can differ across markets while manufacturers sell to distributors at uniform prices, thus eliminating opportunities for parallel trade and external referencing. The option of compulsory licensing of patented products to generic manufacturers may be important if they truly have lower production costs or originators charge prices above marginal cost, despite market separation. However, given the risks inherent in compulsory licensing, it seems best to first try the approach of strengthening market separation, to enable originator firms to maintain differential pricing. With assured market separation, originators may offer prices comparable to the prices that a local generic firm would charge, which eliminates the need for compulsory licensing. Differential pricing could go a long way to improve LDC access to drugs that have a high income market. However, other subsidy mechanisms will be needed to promote R&D for drugs that have no high income market.

    InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services

    Full text link
    Cloud computing providers have setup several data centers at different geographical locations over the Internet in order to optimally serve needs of their customers around the world. However, existing systems do not support mechanisms and policies for dynamically coordinating load distribution among different Cloud-based data centers in order to determine optimal location for hosting application services to achieve reasonable QoS levels. Further, the Cloud computing providers are unable to predict geographic distribution of users consuming their services, hence the load coordination must happen automatically, and distribution of services must change in response to changes in the load. To counter this problem, we advocate creation of federated Cloud computing environment (InterCloud) that facilitates just-in-time, opportunistic, and scalable provisioning of application services, consistently achieving QoS targets under variable workload, resource and network conditions. The overall goal is to create a computing environment that supports dynamic expansion or contraction of capabilities (VMs, services, storage, and database) for handling sudden variations in service demands. This paper presents vision, challenges, and architectural elements of InterCloud for utility-oriented federation of Cloud computing environments. The proposed InterCloud environment supports scaling of applications across multiple vendor clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that federated Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 20 pages, 4 figures, 3 tables, conference pape
    • …
    corecore