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Abstract

We consider an implementation problem faced by a planner who
manages a roadway network.  The problem entails both hidden
information and hidden actions.  We solve the planner's problem by
introducing a new class of mechanisms and a new notion of
implementation.  The mechanisms, called price schemes, attach
transfers to the available routes; they do not involve direct revelation.
The method of implementation is evolutionary, requiring that players
who follow any reasonable myopic adjustment process eventually
learn to behave as the planner desires.  We show that efficient
behavior can be guaranteed using simple, decentralized price schemes.
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1.  Introduction

Roadway congestion is a source of enormous economic costs.1  In principle,
many of these costs can be prevented, as they result from socially inefficient choices
by individual drivers.  For example, it is socially optimal for commuters who only
receive small benefits from driving to work not to drive at all, as these benefits are
outweighed by the delays they create for others.  However, since these drivers ignore
the externalities they create, they may opt to drive anyway.  It is also socially
desirable to limit traffic on narrow, easily congested roads:  the externalities created
by drivers on these roads are more severe than those which develop on wider
expressways.  But drivers typically will choose to drive on narrow roads if they offer
shorter travel times.  Such behavior creates needlessly high congestion levels.
 A number of regions have considered alleviating roadway congestion by
introducing congestion pricing.  The pioneer in this regard is Singapore, which
introduced the first congestion pricing scheme in 1975.2  Originally, this scheme set a
toll for entering the central city during peak driving hours; the scheme was
administered using window stickers which were checked by police at certain
checkpoints.  In 1998, Singapore began to administer its scheme using an electronic
collection system.  Under this system, gantries are stationed over roadways at the
points where tolls are charged.  The gantries send signals to receivers installed
within individual vehicles; tolls are deducted from the driver's debit card.  This
system is designed to generate an error rate of less than 1 in 100,000 even when
traffic is heavy and moving at speeds of 120 km/h, so that the toll collection process
itself is not a source of delay.3  Moreover, electronic tolling makes it possible to place
charges on specific road segments, and for charges to be varied with current
congestion levels.  These features bring substantial efficiency gains within reach.

                                                
1  Schrank and Lomax (1999) estimate that in 1997, roadway congestion in the ten most congested US
cities wasted 2.6 billion hours of drivers' time, yielding a dollar cost of $39.3 billion.  In Los Angeles
alone, the corresponding figures were 739 million hours and $10.8 billion, respectively.
2  More recently, France and California have begun to subject certain specific routes to congestion
pricing.  The Norwegian cities of Bergen, Oslo, and Trondheim possess toll rings around their city
centers; while originally introduced to finance infrastructure improvements, congestion management has
become a secondary goal.  Many cities and regions have undertaken comprehensive studies of the impact
of congestion pricing, most notably Hong Kong, Cambridge (UK), Stockholm, the Randstad (Holland),
and London.  For further details on plans for and introductions of congestion pricing schemes, see Gomez-
Ibañez and Small (1994), The Economist (1997), and Small and Gomez-Ibañez (1998).
3  For more on congestion pricing in Singapore and on electronic tolling technologies, see Gomez-Ibañez
and Small (1994), Phang and Toh (1997) and Soo (1998).
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 In this paper, we view the alleviation of network congestion as an
implementation problem.  As is usual in such problems, we suppose that the
planner must contend with hidden information:  he does not know individual
drivers' tolerances for delay.  We also suppose that the planner faces a hidden action
problem:  he only has a limited ability to observe drivers' behavior.  As we shall see,
the hidden actions can render dominant strategy implementation impossible in this
setting.
 We solve the planner's problem by introducing a new class of mechanisms and a
new notion of implementation.  The mechanisms, called price schemes, attach
transfers to the available routes; they do not involve direct revelation.  The notion
of implementation is evolutionary, requiring that players who follow any
reasonable myopic adjustment process learn to behave efficiently.  We show that
there are simple, decentralized price schemes which ensure efficient play while
respecting the planner's limited knowledge of players' preferences and behavior.
 We can describe the planner's problem in the following way.  A collection of
towns is connected by a network of streets.  Commuters in these towns must travel
from their homes to their offices.  The time such a journey requires is the sum of
the delays on each street the driver takes; the delay on each street depends on the
number of drivers on that street.  Different drivers will tolerate different levels of
delay before preferring to stay home.  The planner would like to ensure that the
right drivers decide to commute, and that those who do commute use the network
in the most efficient manner possible.
 We assume that the planner is faced with two constraints.  First, he does not
know players' valuations for completing their commutes.  Were this the planner's
only constraint, he could solve his problem by applying a standard revelation
mechanism, namely the Vickrey-Clarke-Groves mechanism (Vickrey (1961), Clarke
(1971), Groves (1973)).  Under this mechanism, each player reports a valuation to the
planner, who for each profile of reports specifies an allocation of drivers over routes
and the transfers paid by each player.  The allocation is chosen to be efficient
conditional on reports being truthful, while the transfers are chosen to make truth-
telling a dominant strategy.  Thus, were hidden information is the planner's only
constraint, he could implement efficient behavior in dominant strategies.

In employing the VCG mechanism, one implicitly assumes that the distribution
of drivers over routes specified by the mechanism will be followed by the players.
This assumption might be justified if the planner were able to observe each driver's
choice, as compliance could then be guaranteed using a forcing contract.  However,
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when the number of drivers is large, it seems unrealistic to assume that the planner
can perfectly observe their choices.  If he cannot, the players may prefer to ignore his
recommendation.  For example, a player told to take a roundabout route to work
may instead take a shorter route, confounding the planner's attempt to ensure
efficient behavior.
 Rather than assume that the planner has perfect knowledge of behavior, it seems
more reasonable to suppose that behavior is anonymous :  only aggregate behavior
can be observed, and transfers can depend on this and on action (i.e., route) choices,
not on players' names.4  To study implementation when behavior is anonymous,
we must include the players' route choices explicitly in the mechanism design
problem, and must restrict the planner to mechanisms which respect the players'
anonymity.  The simplest such mechanisms are price schemes .  Under these
mechanisms, each player chooses a route to work or chooses to stay home; the
planner attaches prices to each of these actions which may depend on the players'
aggregate behavior, but which may not depend on the name of the player making
the choice.
 Unfortunately, when behavior is anonymous, dominant strategy
implementation may be impossible.  To see this most easily, suppose that all players
attach the same value to getting to work.  Also assume the planner chooses to
employ a price scheme.5  Suppose that under this scheme a certain driver judges a
particular route to be a dominant strategy:  regardless of what the others do, the
driver prefers to drive on this route.  Absent idiosyncratic preferences between the
streets themselves, it follows that all players will choose this same route.  Therefore,
any social choice function which sometimes requires different players to take
different routes cannot be implemented in dominant strategies.
 In settings where dominant strategy implementation is known to be impossible,
implementation using Nash equilibrium or one of its refinements is often
considered next.  This approach implicitly assumes that players will follow an
equilibrium of the mechanism which the planner provides.  In order to justify the
equilibrium assumption via a rationalistic approach, one needs players with

                                                
4 The hidden action problem described here, which is due to a coarse information structure, differs
from the usual one in information economics, in which the principal receives a noisy signal concerning
the agents' behavior.  Myerson (1982) proves a (Bayesian equilibrium) revelation principle for
mechanism design problems with both hidden information and hidden actions.  His paper focuses on
incentive compatibility, and does not address the problem of multiple equilibria.
5  An analogous argument can be applied to other mechanisms which respect the players' anonymity.
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considerable knowledge of their opponents' intentions and reasoning abilities.6

However, when there are large numbers of players, as is the case in the network
planner's problem, these assumptions seem especially strong, and so predictions
which rely on them may not have much force.
 In order to find a middle ground between dominant strategy and Nash
implementation, we consider a notion of implementation based on evolutionary
game theory.  In particular, we suppose that once a price scheme is in place, the
players adjust their behavior over time in response to current delays and to the
incentives which the price scheme provides.  The adjustment process itself is
described by a differential equation.  Rather than specify a particular functional form
for this equation (e.g., the replicator dynamic), we instead ask that it be a member of
a broad class of admissible dynamics.  The main restriction defining this class is
quite weak, requiring only that strategies' growth rates be positively correlated with
their payoffs.
 The planner would like to ensure that regardless of their types, the players learn
to follow the efficient driving pattern.  A price scheme globally implements  the
efficient social choice function if for every possible type profile, the efficient driving
pattern is globally stable under all admissible dynamics.7

 We show that the planner can solve his implementation problem by selecting a
mechanism from a class whose members we call variable price schemes .8  The
schemes we consider are separable, in the sense that the price of any route can be
decomposed into prices on each individual street in the route, where the price of
each street only depends on the number of drivers on that street.  Separability
implies that the variable price schemes can be imposed in a decentralized fashion.
 The collection of variable price schemes is indexed by a parameter called the
elasticity threshold , which specifies the lowest level of sensitivity to congestion
which a street must exhibit to be assigned a positive price.  When demand to use the
network is inelastic, the elasticity threshold determines the revenues generated by
the tolling scheme.  When demand is elastic, different thresholds generate efficiency

                                                
6 See, for example, Aumann and Brandenburger (1995).
7 As we shall see, global implementation implies implementation in Nash equilibrium.  However,
the former notion of implementation is considerably stronger, as it requires not only that there be a
unique Nash equilibrium outcome, but also that this outcome be globally stable under any reasonable
behavior adjustment process.
8  The word "variable" refers to the fact that the prices charged are not set in advance, but rather are
functions of current network utilization.
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under different welfare measures, which vary the relative weights assigned to costs
and benefits in assessing a driver allocation.9

Variable price schemes can be viewed as generalizations of marginal cost pricing.
"Marginal cost pricing" usually refers to an equilibrium phenomenon:  that by
making agents pay for the externalities they create in equilibrium, one can guarantee
the efficiency of equilibrium play.  In contrast, variable price schemes set prices
appropriately both in and out of equilibrium.  By doing so, a planner can render
efficient behavior the unique equilibrium and the global attractor of any reasonable
adjustment process.  More importantly, he can do so without knowing anything
about players' types, and hence without being able to predict what the equilibrium
will turn out to be.
 By imposing a variable price scheme and noting where behavior settles, the
planner can learn the efficient allocation of drivers over roads.  After determining
this allocation, the planner can maintain efficient behavior using a fixed price

scheme, which always charges the tolls imposed under some variable price scheme
at the efficient allocation.  This simple scheme ensures that the efficient allocation is
globally stable, so that play will return to this allocation after any shock to behavior.

Our analysis is based on results on potential games developed in Sandholm
(2001).  A potential game is a game which admits a potential function:  a real valued
function defined on the space of strategy distributions which any reasonable
evolutionary process must ascend.10  By executing a variable price scheme, the social
planner ensures that regardless of the realization of demand, the players face a
potential game whose potential function is proportional to the social welfare
measure.  Because of this, we can establish that under the variable price schemes,
players always learn to make socially optimal decisions about both whether and how
to play the game.
                                                
9 If equal weights are chosen, the welfare measure is simply consumer surplus.  However, other
weights are sometimes desirable.  For example, driving causes pollution, an externality which is not
directly accounted for in our model.  If the planner values clean air, he may want to attach extra
importance to lowering aggregate driving time when assessing the welfare of a driving pattern.
10 An early application of potential functions can be found in Beckmann, McGuire, and Winsten (1956),
who use a potential function to characterize equilibria in an elastic demand traffic model.  Rosenthal
(1973) introduces congestion games with finite numbers of players and uses a potential function argument
to establish the existence of a pure strategy equilibrium.  Building on the latter paper, Monderer and
Shapley (1996) define finite player potential games.  They show that maximizers of potential are both
the only equilibria of these games and the only possible limits of better reply strategy adjustment
processes.  In Sandholm (2001), we define infinite player potential games and prove related results
characterizing equilibrium and evolution; some of these results are presented below.  We also establish
conditions under which equilibria are efficient, and characterize our infinite player potential games as
the limits of Monderer and Shapley's (1996) finite player games.
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 Recent papers by Cabrales (1999), Cabrales and Ponti (2000), and Ponti (2000) use
techniques from evolutionary game theory to evaluate well-known mechanisms
from the implementation literature, obtaining mixed results.11  Cabrales (1999)
shows that a modified version of the Nash implementation mechanism of Repullo
(1987) has strong evolutionary stability properties.  He also establishes an instability
result for Abreu and Matsushima's (1994) mechanism, which relies on the iterated
elimination of weakly dominated strategies.  Similarly, Cabrales and Ponti (2000)
show that Sjöström's (1994) mechanism can possess weakly dominated Nash
equilibria which do not yield the desired outcome but which are limit points of
payoff monotone evolutionary dynamics.  Ponti (2000) proves a related result for
Glazer and Ma's (1989) solution to King Solomon's dilemma, and provides an
alternative mechanism with better evolutionary properties.
 The papers described above all concern implementation in settings with hidden
information but without hidden actions, in which well-known mechanisms can be
employed.  In contrast, to address the network planner's problem we must devise
new mechanisms which explicitly allow for the players' anonymous choices.  W e
exhibit pricing mechanisms which possess strong evolutionary stability properties,
and which seem possible to administer using current tolling methods.

We open our analysis by studying price schemes for network congestion games
with inelastic demand.  Section 2 introduces congestion games, potential games, and
admissible evolutionary dynamics.  Section 3 describes the planner's problem and
defines our evolutionary notion of implementation.  Section 4 presents the variable
and fixed price schemes, showing that the former can be used to ensure efficient play
when demand to use the network is unknown, and that the latter can be used to
maintain efficient play after the efficient allocation is discovered.  Section 5, 6, and 7
present definitions and results for the more complicated case of elastic demand.
Section 8 concludes.

                                                
11  Other papers which address the dynamics of implementation include Muench and Walker (1983),
Walker (1984), Jordan (1986), de Trenqualye (1988, 1989), and Vega-Redondo (1989); see Cabrales (1999)
for a discussion.
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2.  Games and Evolution under Inelastic Demand

2.1  Games with Continuous Player Sets

Each player in a game with continuous player sets is a member of a population i n
the set R = {1, … ,   r }, each element of which corresponds to a different player role.  A
typical population is denoted r ∈  R.  The mass of each population is   m

r , and the
vector m = (    m

1, … ,   m
r ) lists the masses of all populations.  

 We let   S
r  be the set of strategies available to population r, and let   n

r  be the
number of such strategies.  We also let S = 

    Sr

r R∈U  denote the union  of all

populations' strategy sets, and let n  =   nr

r R∈∑  equal the total number of strategies

available to all populations.
  A typical strategy distribution is x  ∈  Xm = {x ∈      R+

n :    xii Sr∈∑  =   m
r  for all r}, where xi

is the mass of players in population r who choose strategy i ∈    S
r .  The payoff

function for strategy i is denoted Fi: Xm → R, while the payoff functions for all
strategies are collectively denoted F: Xm →     R

n .  A strategy distribution x ∈  Xm is a
Nash equilibrium  if all players choose strategies which maximize their payoffs
given their opponents' behavior:

Fi(x) = 
    
max ( )

j S
jr

F x
∈

 whenever i ∈    S
r  and xi > 0.

2.2  Congestion Games

Consider a group of drivers who live in a collection of towns connected by a
network of streets.  Each driver must commute from his hometown to the town of
his workplace. He does so by selecting a route (i.e., a subset of the streets) leading
from home to work.  A driver's total travel time is the sum of the delays on each
street, which are each increasing functions of the number of drivers on that street.
 An inelastic demand congestion model is a collection {R,   m

r

r R{ } ∈
,   S

r

r R{ } ∈
,   Φi i S{ } ∈

,

  
cφ{ }φ ∈Φ

}.  R is a set of one or more populations, one for each home/work location

pair.  The finite set Φ  = 
    Φii S∈U  contains all available streets.  Each strategy i ∈    S

r
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corresponds to a complete route (i.e. a non-empty collection of streets) Φi ⊂  Φ which
connects the home and work pair r.12

 Let ρ(φ) = {i ∈  S: φ ∈  Φi} denote the set of routes which require street φ.  The
utilization of street φ ∈  Φ is the total mass of the players who drive on that street:

    uφ (x) = 
    

xi
i∈
∑
ρ φ( )

.

The cost functions cφ: R+ → R report the delay on a street as a function of the
number of drivers using that street.  As some streets (e.g., the narrower ones) are
more prone to delays than others, different streets will typically have different cost
functions.  We assume that each cost function cφ is non-negative, continuously
differentiable, and strictly increasing:  cφ(u) ≥ 0 and     ′c uφ ( ) > 0 for all u.13

  The total delay from using route i ∈  S is determined by adding the delays on the
streets in the route.  Hence, Ci: Xm → R, the cost of using strategy i as a function of the
overall strategy distribution, is given by

Ci(x) = 
    

c u x
i

φ φ
φ

( ( ))
∈
∑

Φ
.

To define a congestion game , we must specify payoff functions for all strategies.
Here, payoffs are simply the negations of delay costs:  Fi(x) = –Ci(x).
 To describe the inelastic demand implementation problem, we suppose that at
some initial stage, Nature specifies that each player is of one of two types:  "stay
home" or "commute".  The demand vector m  = (    m

1, … ,   m
r ) represents the realized

numbers of active commuters in each population.  
 Because the planner does not know which realization of m  occurs, payoffs must
be defined for all possible realizations.  If the number of potential commuters i n
population r is   M

r , then the realized number of active commuters will lie between
0 and   M

r .  Hence, the set of possible demand vectors is M =     [ , ]0 Mr

r R∈∏ , while the

set of possible strategy distributions is X = 
      Xmm∈MU  = {x ∈      R+

n :    xii Sr∈∑  ≤   M
r  for all r}.

Fortunately, our earlier definitions of the cost and payoff functions on the set Xm do

                                                
12 We do not assume any graph theoretic structure on the set of streets Φ.  Hence, all of our results can
be used to study congestion in settings in which the facilities φ ∈  Φ are not arranged in a network.
13 Allowing   ′cφ  to equal zero has only a minor impact on our analysis.
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not depend on the demand vector m ; therefore, these definitions extend
immediately to all of X.14

 For convenience, we assume throughout the paper that strategy distributions are

distinguishable:  for each distinct pair x, y ∈  X, there is a street φ ∈ Φ such that uφ(x) ≠
uφ(y).  While this assumption simplifies our analysis, it is not essential – see
footnote 18 below.

2.3  Evolutionary Dynamics

  The rationalistic approach to justifying Nash equilibrium requires players to
know their opponents' intentions.  When the number of players is large this
requirement is quite strong.  But if the game is played repeatedly, we can avoid this
assumption by modeling behavior as a myopic adjustment process during which
players switch to strategies which improve their current payoffs.

An evolutionary dynamic is described by a vector field V: X →     Rn .  This vector
field defines an equation of motion     ̇x  = V(x) on the space of strategy distributions.
We call V  admissible with respect to the game F if it satisfies the following five
conditions:

(LC) V is Lipschitz continuous.
(FI 1) Vi(x) ≥ 0 whenever xi = 0.

 (FI 2)     V xii Sr ( )
∈∑  = 0 for all x ∈  X and r ∈  R.

(PC) V(x) · F(x) > 0 whenever V(x) ≠     
v
0 .

(NC) V(x) =     
v
0  implies that x is an equilibrium of F.

 The first three conditions are technical requirements which ensure the existence
of unique solution trajectories which stay in the space X.15  The more important
conditions are the last two, which link the dynamic to the game's payoffs.  To
interpret condition (PC), note that by forward invariance condition (FI 2),

V(x) · F(x) = 
    

V x F xi i
i Sr R r

( ) ( )
∈∈
∑∑

                                                
14  When they are defined on all of X, the payoffs F do not define a single congestion game, but a
collection of congestion games, one for each demand vector m. Nevertheless, we will sometimes abuse
terminology and refer to F itself as a game.
15  Condition (FI 1) requires that the mass of players using each strategy never becomes negative, and
condition (FI 2) requires that the mass of players in each population remains constant.



–10–

  = 
    

( ( ) – )( ( ) ( ))V x F x F xi i n jj S
i Sr R

r r
r

0 1−




∈

∈∈
∑∑∑

 = 
    

n Cov V x F xr r r

r R

( ( ), ( ))
∈
∑ ,

where     Cov V Fr r( , )  is the covariance of growth rates and payoffs in population r.
Thus, condition (PC) requires a positive correlation between growth and payoffs.
While this condition holds if there is a positive covariance in each population, it
only requires the weighted sum of the covariances of all populations to be positive.
Positive correlation is the weakest monotonicity condition used the evolutionary
game theory literature; for some comparisons, see Sandholm (2001).
 We call condition (NC) noncomplacency.  It requires that a population that is not
playing a Nash equilibrium continue to adjust its behavior.  When behavior is not
in equilibrium, there are players who would benefit from switching strategies;
noncomplacency requires that some players eventually avail themselves of this
opportunity.16

2.4  Potential Games

We now review results from Sandholm (2001) which we need to analyze our
price schemes.  We call a game with continuous player sets a potential game  if there
is a function f which satisfies

 
  

∂
∂

f
xi

(x) = Fi(x) for all x ∈  X and i ∈ S.

We call f the game's potential function.  If a game admits a potential function, this
function can be used to determine the game's Nash equilibria and to characterize
evolutionary dynamics.  In particular, Sandholm (2001), building on work of
Beckmann, McGuire, and Winsten (1956), Rosenthal (1973), and Monderer and
Shapley (1996), establishes the following result.

                                                
16 An example of an admissible dynamic is the Brown-von Neumann-Nash (BNN) dynamic; see
Brown and von Neumann (1950), Weibull (1996), Berger and Hofbauer (2000), or Sandholm (2001).  The
replicator dynamic is not admissible because it fails condition (NC).  However, our analysis can be
extended to this dynamic – see the discussion at the end of the next section.
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Lemma 1:  (i)  Let F be a potential game, and let V be a dynamic which is admissible

with respect to F.  Then every solution trajectory of V converges to a connected set

of Nash equilibria of F.
 (ii)  Suppose that in addition, the potential function f of F is strictly concave, a n d

fix a demand vector m .  Then the maximizer of f on the set Xm is the unique N a s h

equilibrium of F in Xm and is the global attractor under V of all trajectories in Xm.

For completeness, the proof of this result is presented in the Appendix.
In general, evolutionary dynamics of games need not converge to Nash

equilibria:  solution trajectories may converge to non-Nash rest points or to limit
cycles, and can even exhibit chaotic behavior.  However, if a game admits a potential
function, all solution trajectories of all admissible dynamics converge to connected
sets of Nash equilibria.17  If the potential function is strictly concave, the equilibrium
is unique, and therefore globally stable.18

  For intuition, observe that the definitions of potential and positive correlation
imply that any solution trajectory {xt}t≥0 of an admissible dynamic V must satisfy

     
d
dt tf x( ) =     ∇f xt( )  ·     ̇xt  = F(xt) · V(xt) ≥ 0.

That is, profitable behavior adjustments must increase potential.  Local maximizers
of potential reflect the absence of profitable adjustments, and hence are Nash
equilibria.  If the potential function is strictly concave, profitable adjustments must
lead to its unique maximizer, which is the unique equilibrium of the game.
 It is easily verified that all congestion games admit the potential function

f(x) = 
    
− cφ (z)dz

0

uφ (x)

∫
φ ∈Φ
∑ .

Lemma 2 shows that when costs are strictly increasing, this function is strictly

                                                
17  It is known that if an interior solution trajectory of a payoff monotone dynamic (see below)
converges to a unique limit point, this point must be a Nash equilibrium, regardless of whether the
underlying game is a potential game.  In potential games, setwise convergence of all solution trajectories
of all admissible dynamics is guaranteed.
18  If the potential function is concave but not strictly so, equilibrium need not be unique, but the set of
Nash equilibria is equal to the closed, convex set of maximizers of potential.  For this reason, the strict
concavity assumptions used below are not essential.  In fact, the only role of our distinguishability
assumption is to ensure that concavity of potential holds strictly (see the proof of Lemma 2), so this
assumption is dispensable as well.
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concave.  Hence, Lemma 1 implies that in any congestion game in which congestion
is a "bad", there is a unique, globally stable equilibrium for each demand vector.

Lemma 2:  Any congestion game with distinguishable strategy distributions a n d
with cost functions satisfying   ′cφ  > 0 has a strictly concave potential function.

Proof:  Let x, y ∈  X; it is enough to show that the potential function is strictly
concave on the line segment joining x and y.  For λ ∈  [0, 1], let z(λ) = λx + (1 – λ)y,
and let zφ(λ) = uφ(λx + (1 – λ)y).  Then since 

    
u xˆ ( )

φ
 ≠ 

    
u yˆ ( )

φ
 for some   φ̂  ∈  Φ by

distinguishability, 
    

′z ˆ ( )
φ

λ  = 
    
u xˆ ( )

φ
 – 

    
u yˆ ( )

φ
 ≠ 0 for this   φ̂ , and so

    
d

d
f z

2

2( )
( ( ))

λ
λ  = 

    
− ′ ′( )

∈
∑c z zφ φ φ
φ

λ λ( ( )) ( )
2

Φ
 < 0.  ■

In restricting attention to dynamics which satisfy the noncomplacency condition
(NC), we rule out the replicator dynamic.  This dynamic can be interpreted as a
model of evolution through imitation of successful agents.19  Consequently,
strategies which are initially absent from the population are never used, and so the
dynamic admits non-Nash rest points on the boundary of the state space.  In the
Appendix, we consider evolution under payoff monotone dynamics, a class of
dynamics which includes the replicator dynamic but whose members all violate
condition (NC).  We show (Proposition A1) that in games with a strictly concave
potential functions, all solution trajectories of these dynamics from interior initial
conditions converge to the game's unique Nash equilibrium.  Hence, versions of all
of the results which follow can be proved for payoff monotone dynamics under this
restriction on initial behavior.

3.  Evolutionary Implementation under Inelastic Demand

Equilibria of congestion games are typically inefficient, as easily congested streets
tend to be overused relative to the social optimum.  The planner would like to
ensure that players learn to behave efficiently, but must do so without knowing
demand.  Furthermore, because the players' behavior is anonymous, the planner
cannot simply tell each player how to act, but must influence their choices through

                                                
19  See Björnerstedt and Weibull (1996) and Schlag (1998).
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some incentive scheme which respects their anonymity.
One way the planner can influence behavior while respecting these restrictions is

to set prices for the use of each route.  Formally, a price scheme  is a function P: X →

    R
n .  Its components Pi: X → R represent the payments a player choosing route i must

make to the planner as a function of society's aggregate behavior.  By introducing a
price scheme, the planner creates a new game whose payoffs are

    F̂i (x) = Fi(x) – Pi(x) = –Ci(x) – Pi(x).

The planner would like to choose prices in such a way that regardless of the demand
vector m , myopic adjustment with respect to the new payoffs     ̂F  leads to efficient
behavior with respect to the original payoffs F.
 To express this idea more precisely, we define a social choice function σ: M → X
to be a map which specifies a strategy distribution σ(m) ∈ Xm for each demand vector
m.  The price scheme P globally implements  the social choice function σ if for each
demand vector m , the distribution σ(m) is globally stable under any dynamic V

which is admissible with respect to the augmented game     ̂F .  By introducing a price
scheme which globally implements the efficient state, the planner ensures that
regardless of its demand or its initial behavior, a population of players who revise
their choices in a reasonable fashion will learn to behave efficiently.
 If the price scheme P globally implements the social choice function σ, then for
each demand vector m, the strategy distribution σ(m) is the unique rest point in Xm

of any admissible dynamic, and is hence the game's unique Nash equilibrium (see
Lemma A1 in the Appendix).  Therefore, global implementation implies Nash
implementation.  However, since even a unique Nash equilibrium may not be
globally or locally stable under admissible dynamics, the converse implication is
false:  of the two notions of implementation, global implementation is strictly more
demanding.

In principle, the price Pi(x) for route i may depend on the entire strategy
distribution x without violating the players' anonymity.  But since x lists the
numbers of players choosing each complete route, keeping track of the full strategy
distribution is a demanding task.  We therefore require prices to be of the form

Pi(x) = 
    

p u x
i

φ φ
φ

( ( ))
∈
∑

Φ
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for some functions pφ: R+ → R.  We call a price scheme separable if it can be
decomposed in this way.  Under a separable scheme, the total price Pi of each route i

can be expressed as the sum of prices pφ on each street along the route.  This allows
transfers to be collected as the drivers use each street, obviating the need to know
any driver's complete route.  Furthermore, the price of each street only depends on
the number of drivers who take that street, so the prices themselves can be
determined in a decentralized fashion.  We will see below that the separability of
our optimal price schemes follows from the separability of each route delay function
Ci(x) = 

    
c u x

i
φ φφ
( ( ))

∈∑ Φ
 into functions describing delays on each street along the

route.20

4.  Congestion Pricing under Inelastic Demand

Lemmas 1 and 2 guarantee that once demand is fixed, any congestion game with
increasing cost functions has a unique, globally stable Nash equilibrium.
Unfortunately, this equilibrium is unlikely to be efficient.  We define efficiency i n
terms of the aggregate payoff function   F : X → R, given by

    F x( ) = 
    

x F xi i
i S

( )
∈
∑  = 

    
−

∈
∑ x C xi i
i S

( ).

The social planner would like to choose a price scheme that implements an efficient
social choice function x*, defined by

x*(m) ∈  
    
arg max ( )

x Xm

F x
∈

.

The price scheme creates a new game whose payoffs combine transfer payments
with the costs of delay.  If the scheme can be chosen in such a way that the new game
admits a potential function which is proportional to aggregate payoffs, we can use
Lemma 1 to show that myopic adjustment with respect to the new payoffs always
leads to efficient play.

                                                
20  Under inelastic demand, the planner's information problem would not exist were it not for his
inability to observe the strategy distribution x:  if the planner knew x, he could easily compute the
masses of active players mr.  This need not be possible if only the numbers of drivers on each street are
observed.  Of course, the hidden information and hidden action problems are independent when demand
is elastic, since in this case even complete knowledge of the strategy distribution reveals little about
the distribution of types.
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Let     F̂i : X → R denote the payoff functions of the new game, which are the

differences between the original payoffs and the prices charged by the social planner:

    F̂i (x) ≡ Fi(x) – Pi(x).

We would like the new game to admit a potential function     f̂  which is proportional

to aggregate payoffs:

    f̂ (x) ≡ κ    F x( ) for some κ > 0.

Moreover, we would like to create this new game using a separable price scheme.
 To determine whether such a price scheme exists, we first differentiate the
second identity with respect to xi to obtain

    F̂i (x) =     κ
∂

∂xi
F x( ).

When κ  = 1, this equation tells us to set an individual's total payoff from choosing
an action equal to the marginal social payoff of that action.  Hence, the price scheme
we derive will be a form of marginal cost pricing.  More generally, individuals'
payoffs are set proportional to marginal social payoffs.  Players may bear costs which
are larger or smaller than their marginal social impact, but each always agrees with
the social planner about the relative costs of any action pair.
 Now, recalling that payoffs in congestion games are of the form Fi(x) = –Ci(x) =
–

    
c u x

i
φ φφ
( ( ))

∈∑ Φ
, and observing that

    

∂
∂

φu

x
x

j

( ) = 
    

1
0

if 
otherwise,

φ ∈



Φ j ,

we can solve for the price scheme.

(T) Pi(x) = Fi(x) –     F̂i (x)
 = Fi(x) –     κ

∂
∂xi

F x( )

= Fi(x) – 
    
κ ∂

∂F x x xi j
j S

F

x
j

i
( ) ( )+






∈
∑ .

= 
    
κ κ∂

∂x x C xj
j S

C

x i
j

i
∈
∑







+ −( ) ( ) ( )1 .

= 
    
κ κφ φ

φ
φ φ

φ
x c u x c u xj

j S i j i∈ ∈ ∩ ∈
∑ ∑ ∑′



















 + −







( ( )) ( ) ( ( ))

Φ Φ Φ
1
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= 
    
κ κφ φ φ

φ
φ φ

φ
u x c u x c u x

i i

( ) ( ( )) ( ) ( ( ))′ + −
∈ ∈
∑ ∑

Φ Φ
1

= 
    

κ κφ φ φ φ φ
φ

u x c u x c u x
i

( ) ( ( )) ( ) ( ( ))′ + −( )
∈
∑ 1

Φ
.

 Equation (T) shows that because the original payoff functions Fi are separable i n
φ, the price scheme we have constructed is separable as well.  To create a game
whose potential function is proportional to aggregate payoffs, a social planner need
only set prices for the use of each individual street φ, and the price of each street
need only depend on the number of drivers who take that street.  Thus, the price
scheme can be imposed in a decentralized fashion.
 Letting η  =   

1
κ  – 1 > –1, we define the variable price scheme   P

η  by

  Pi
η (x) = 

    
p u x

i

φ
η

φ
φ

( ( ))
∈
∑

Φ
,

where the street prices   pφ
η  are given by

    p uφ
η ( )  =     

1
1η φ φη+ ′ −( )uc u c u( ) ( ) .

We use the word "variable" to highlight the fact that prices in these schemes vary
with current utilization levels, and to contrast these schemes with the fixed price
schemes defined below.
 To interpret the price schemes more easily, we define

ηφ(u) = 
    

u ′cφ (u)
cφ (u)

to be the cost elasticity of street φ.  Then when cφ(u) > 0, we can express the street
prices as

    p uφ
η ( )  =     

c u
uφ

η φη η( ) ( )+ −( )1 .

The parameter η , which we call the elasticity threshold, has a simple interpretation.
When the cost elasticity of a street is exactly η , the price of that street is set to zero; at
cost elasticities higher than η , positive prices are charged; at cost elasticities lower
than η , negative prices (i.e., subsidies) are offered.

We now characterize behavior under the variable price schemes.
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Theorem 1:  Suppose that the cost functions satisfy     u ′′cφ (u) >     −2 ′cφ (u)  for all φ and u .

Then each variable price scheme    P
η  globally implements the efficient social choice

function x*.

Proof:  The condition on the cost functions cφ implies that the augmented street
costs cφ +   pφ

η  are strictly increasing:

     
d

du c u p uφ φ
η( ) ( )+( ) = 

    
d

du uc u c u1
1η φ φ+ ′ +( )( )( ) ( )  =     

1
1 2η φ φ+ ′′ + ′( )uc u c u( ) ( )  > 0.

Hence, Lemma 2 implies that the potential function     f̂  is strictly concave.

 Now, fix any demand vector m.  Lemma 1(ii) implies that the unique state which
maximizes     f̂  on Xm is globally stable on Xm under all dynamics which are admissible

with respect to     ̂F .  But     f̂ (x) =   
1

1η +     F x( ) and   
1

1η +  > 0, so this global attractor is the

efficient state x*(m).  ■

 Since the potential function of the new game is proportional to aggregate payoffs,
one can show that regardless of the shapes of cost functions cφ, the distribution
which maximizes aggregate payoffs is a locally stable Nash equilibrium.  However,
this distribution need only be globally stable if the potential function is concave,
which is only guaranteed if the cost functions are never too concave.

We observe that an elasticity threshold of η  = 0 (which corresponds to κ = 1)
yields a generalization of marginal cost pricing.  In this case, the variable prices are
given by     p uφ

0( ) =     uc u′φ ( ) :  players are always charged the marginal social cost of the

congestion they currently create.  It is not surprising that these prices render the
efficient state x*(m ) an equilibrium.  However, Theorem 1 goes much further:  it
shows that if street prices are always adjusted to represent current marginal social
costs, then the efficient state is the only equilibrium, is globally stable under any
admissible adjustment process, and can be implemented without knowledge of the
demand vector m or the efficient state x*(m).
 By employing a variable price scheme, the planner ensures that the efficient
allocation x*(m ) is ultimately played.  Even after convergence to this state occurs,
the planner still faces a hidden action problem, and must continue to use tolls to
maintain efficient play.  Fortunately, his knowledge of the efficient state enables
him to do so using an especially simple price scheme.  For each η  > –1, we define
the fixed price scheme     Π η ,m by



–18–

    Π i
mη ,  = 

    
πφ

η

φ

,m

i∈
∑

Φ
,  where     πφ

η ,m  =     p u x mφ
η

φ( ( *( ))).

Under the fixed price scheme     Π η ,m, the planner always sets the prices charged by the
variable price scheme   P

η  at the efficient state x*(m).  By employing this scheme, the
planner ensures that the players will return to the efficient state after any shock to
their behavior.

Theorem 2:  Suppose that the demand vector is m, and that the planner imposes t h e

fixed price scheme     Π η ,m.  Then the efficient distribution x*(m ) is globally stable

under any admissible dynamics V.

Proof:  Let     
(
F  denote payoffs under the fixed price scheme     Π η ,m:  that is,     

(
F i(x) =

Fi(x) –     Π i
mη , .  By the definition of πφ

η ,     
(
F (x*(m)) =     ̂F (x*(m)), while by construction,

x*(m ) is a Nash equilibrium of the variable price game     ̂F .  Therefore, x*(m ) must
also be a Nash equilibrium of the fixed price game     

(
F .  Moreover, since the original

cost functions cφ(u) are strictly increasing, so are the cost functions     
(
cφ (u) = cφ(u) +

    πφ
η ,m  of the fixed price game     

(
F .  Hence, Lemma 2 implies that the potential function

of     
(
F  is strictly concave.  It then follows from Lemma 1 that     

(
F  has a unique

equilibrium, and that this equilibrium is globally stable under all dynamics which
are admissible with respect to     

(
F .  The equilibrium must be x*(m).  ■

We observe that Theorem 2 does not require any assumption about the
convexity of costs:  when prices are fixed, that delay costs cφ are increasing is enough
to ensure global convergence to equilibrium.
 By choosing a price scheme with an arbitrary elasticity threshold and then
observing the drivers' behavior, the planner can determine the efficient state.  After
doing so, the planner can select other thresholds which have interesting properties
in equilibrium.  For example, for any demand vector m  the planner can compute
the threshold

    ηmin( )m  = 
    
min ( ( *( )))
φ φ φη

∈Φ
u x m .

Recall that once the threshold is fixed, streets whose cost elasticities lie above the
threshold are assigned positive prices, while those with elasticities below the
threshold are given negative prices.  Thus, setting the threshold to     ηmin( )m , the
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lowest cost elasticity obtaining at the efficient state x*(m), yields the price scheme
with the lowest non-negative equilibrium prices.  As long as all facilities are
sensitive to congestion,     ηmin( )m  will exceed zero, so these prices will be strictly less

than those which obtain under marginal cost pricing.
Since each of the price schemes induces the same strategy distribution x*(m ),

higher prices must yield higher toll revenues.  By adjusting the elasticity threshold,
what range of revenues can the social planner obtain?

Corollary 1:  If the demand vector m is not zero, each point in the interval (    F x m( *( )) ,
∞ ) can be achieved as the equilibrium toll revenue through an appropriate choice o f

elasticity threshold.

 Proof:  Let     uφ*  = uφ(x*(m)).  Observe that if     uφ*  > 0, then 
    
lim ( *)
η φ

η
φ↓−1

p u  = ∞, 
    
lim ( *)
η φ

η
φ↑∞

p u  =

    – ( *)c uφ φ , and

    
∂

∂η φ
η

φp u( *) = 
    

− ′ +
+

( * ( *) ( *))
( )

u c u c uφ φ φ φ φ

η 1 2  < 0.

Hence, equilibrium toll revenue Rm(η ) = 
    

u p uφ φ
η

φφ
* ( *)∑ is a smooth, strictly

decreasing function which satisfies 
    
lim ( )
η

η
↑∞

Rm  = 
    
– * ( *)u c uφ φ φφ∑ =     F x m( *( ))  and

    
lim ( )

–η
η

↓ 1
Rm  = ∞.  ■

Since     F x m( *( ))  < 0, Corollary 1 implies that for each demand vector m , there is a
price scheme which yields a revenue of zero:  by choosing an elasticity threshold of

    ηz m( ) ≡     Rm
−1 0( ), the amount of revenue generated from tolls on highly congested

streets can be exactly offset by subsidies paid to drivers on less congested streets.
Indeed, the global stability of the efficient strategy distribution can be achieved along
with any positive level of revenue, as well as a wide range of negative revenues.21

Of course, Corollary 1 depends crucially on the inelasticity of demand.
Generating large revenues means imposing large tolls, which we would expect to
cause some drivers to abandon their commute.  Fortunately, our variable price
schemes are still quite effective when the demand to drive depends on the cost of
the trip.
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5.  Elastic Demand

We now extend our model to allow for elastic demand.  Elastic demand
introduces a new source of inefficiency:  not only may players distribute themselves
over the roads inefficiently, but the players who choose to drive may not be those
who would drive at the social optimum.  Nevertheless, our variable price schemes
continue to yield efficient play.

5.1  Congestion Games

 To introduce elastic demand, we suppose that while all players who choose the
same route experience the same delays, different players to attach different values to
completing their commutes.  Let   D

r : [0,   L
r ] → [0,   M

r ] denote the demand curve for
population r, so that   D

r (v) is the mass of commuters from population r for whom
the value of the commute is at least v .  We assume that each   D

r  is onto,
differentiable, and strictly decreasing:      

d
dv

rD v( ) < 0.  These assumptions imply that
the inverse demand curves     ̃D

r : [0,   M
r ] → [0,   L

r ] are well defined and satisfy     
d
dz

rD z˜ ( )

< 0.     ̃D
r (z) is the "zth highest" value of commuting among players from population r,

where z ∈  [0,   M
r ].

 If a player with valuation v  commutes via route i, his payoff is v  – Ci(x); if he
stays home, his payoff is zero.  In principle, the valuations of the commuters who
are active at any moment in time could be an arbitrary subsets of the sets [0,   L

r ].
However, in order to make our dynamic analysis tractable, we make the simplifying
assumption that whenever a player whose valuation is v  commutes, all players i n
his population who have higher valuations commute as well.22

 Under this assumption, behavior in all populations can be fully described by an
element x of the state space X = {x ∈      R+

n :    xii Sr∈∑  ≤   M
r  for all r ∈  R}.  Since the high

valuation commuters are the ones who opt to drive, if we let   x
r  =   xii Sr∈∑  denote

the number of active drivers in population r, then     ̃ ( )D xr r  is the valuation of the
marginal active driver.  The payoffs of this marginal driver are therefore given by
the (reduced form) payoff functions     F̃i : X → R:

                                                                                                                                                            
21 Since the variable and fixed price schemes charge the same prices at the efficient state x*(m),
Corollary 1 describes the equilibrium revenues obtained under either class of schemes.
22  This ordering property clearly must hold in any equilibrium of the game; we require it to hold out of
equilibrium as well.
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    F̃i (x) =     ̃ ( )D xr r  – Ci(x)   for i ∈    S
r .

If     F̃i (x) > 0, then the marginal driver would rather commute via route i than stay
home; if     F̃i (x) < 0, he would rather stay home.
 While     F̃i  represents the payoffs of the marginal active driver, it also captures all

players' relative payoffs to choosing different routes.23  Therefore, in using the
reduced form payoffs to specify our evolutionary dynamics, we capture all players'
incentives for deciding between different routes, and we capture the incentives faced
by the marginal active drivers in deciding whether or not to drive.

Nash equilibria of the elastic demand game must satisfy two conditions.  First,

    F̃i (x) = 
    
max ˜ ( )( )j S jr i F x

∈
 whenever xi > 0:  within each population, all routes which are

used perform equally well, at least as well those which are not used.  Second, we
must ensure that the marginal player is indifferent between commuting and staying
home.  When   x

r  ∈  (0,   M
r ), the condition we need is that 

    
max ˜ ( )

j S jr F x
∈

 = 0.  When

this condition holds, the valuation of the marginal player,     ̃ ( )D xr r , is equal to the cost
of taking an optimal route, 

    
min ( )

j S jr C x
∈

.  Players with higher valuations opt to

commute, while players with lower valuations stay home.24

5.2  Evolutionary Dynamics

Evolutionary dynamics under elastic demand are once again defined by vector
fields V: X →     R

n .  Since the number of active players can change over time, we must
replace the forward invariance condition (FI 2), which kept the population masses
constant, by

(FI 2') For each r,     V xii Sr ( )
∈∑  ≤ 0 whenever   x

r  =   M
r ,

which ensures that the number of players in each population never exceeds the
upper bound of   M

r .  
 We must also modify the positive correlation condition:

                                                
23 That is, the difference between a players' payoffs to choosing route i and choosing route j equals (v –
Ci(x)) – (v – Cj(x)) = Cj(x) – Ci(x) =     F̃i (x) –     F̃j (x), regardless of the player's valuation v.
24 If   x

r  = 0, so that no players in population r commute, then equilibrium requires that 
    
max ˜ ( )

j Sr j
F x

∈
 ≤

0.  If   x
r  =   M

r , so that all players commute, then equilibrium requires that 
    
max ˜ ( )

j Sr j
F x

∈
 ≥ 0.
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(PC') V(x) ·     ̃F (x) > 0 whenever V(x) ≠     
v
0 .

To see that this condition has the desired interpretation, let     V x
or ( ) ≡ –    V xii Sr ( )

∈∑  and

    F̃or (x) ≡ 0 denote the growth rate and payoffs of the outside option in population r.
Then since 

    
V xii S or r ( )

{ }∈ ∪∑  = 0, we see that

 V(x) ·     ̃F (x) = 
    

V x F xi i
i Sr R r

( ) ˜ ( )
∈∈
∑∑

 = 
    

V x F xi i
i S or R r r

( ) ˜ ( )
{ }∈ ∪∈

∑∑

= 
    

( ( ) )( ˜ ( ) ˜ ( ))
{ }

{ }

V x F x F xi i n jj S o
i S or R

r r r
r r

− −





+ ∈ ∪
∈ ∪∈

∑∑∑ 0 1
1

= 
    

( ) ( ( ), ˜ ( ))n Cov V x F xr r r

r R

+
∈
∑ 1 .

Hence, (PC') still requires positive correlation between growth rates and payoffs, but
now the lists of strategies include outside options, and the payoffs considered are
those of the marginal active player.
 Finally, we state the noncomplacency condition in terms of the reduced form
payoffs     ̃F .

(NC') V(x) =     
v
0  implies that x is a Nash equilibrium of     ̃F .

5.3  Potential Games

The definition of potential games under elastic demand is analogous to that
under inelastic demand:      ̃F  is a potential game if it admits a potential function     f̃

which satisfies

 
    

∂
∂

f̃
xi

(x) =     F̃i (x) for all x ∈  X and i ∈  S.

Congestion games with elastic demand are therefore potential games with the
potential function25

                                                
25  Beckmann, McGuire, and Winsten (1956) use an analogous potential function to characterize
equilibria in their elastic demand congestion model.
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    f̃ (x) = 
    

˜ ( )D z dzrx

r R

r

0∫∑
∈

 
    
− ∫∑

∈

c z dz
u x

φ
φ

φ
( )

( )

0
Φ

.

Importantly, versions our lemmas from Section 2.4 can be established in this new
setting.

Lemma 3:  (i)  Let     ̃F  be an elastic demand potential game , and let V be a dynamic

which is admissible with respect to     ̃F .  Then every solution trajectory of V

converges to a connected set of Nash equilibria of     ̃F .
  (ii)  If the potential function     f̃  of     ̃F  is strictly concave, then the maximizer of     f̃

on the set X is the unique equilibrium of     ̃F  and is globally stable under V.

Since demand is elastic, the number of active players can vary; hence, the
uniqueness and global stability results in part (ii) of the lemma are with respect to all
of X rather than just the subsets Xm.

Lemma 4:  Any elastic demand congestion game with distinguishable strategy
distributions and with cost functions satisfying   ′cφ  > 0 has a strictly concave potential

function.

 Proofs:  The proof of Lemma 3 is a simple extension of the proof of Lemma 1.  To
prove Lemma 4, let x, y ∈  X; it is enough to show that the potential function is
strictly concave on the line segment joining x and y.  For λ ∈  [0, 1], let z(λ) = λx + (1 –
λ)y, let zφ(λ) = uφ(λx + (1 – λ)y), and let   z

r (λ) = λ   x
r  + (1 – λ)  y

r .  Then since 
    

′z ˆ ( )
φ

λ  ≠ 0

for some   φ̂  ∈  Φ, we see that

    
d

d
f z

2

2( )
˜( ( ))

λ
λ  = 

    
d
dz

r r

r R

rD z z˜ ( ( )) ( ) ( )λ λ
∈
∑ ′( )2

    
− ′ ′( )

∈
∑c z zφ φ φ
φ

λ λ( ( )) ( )
2

Φ
 < 0.  ■

 Examining the proof of Lemma 4, we see that the first component of the
potential function is concave as long as the demand curves   D

r  are downward
sloping; no other conditions on demand are required.  Hence, to establish the
concavity of the potential function, it is enough to place restrictions on the cost
functions cφ.
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6.  Evolutionary Implementation

When demand is inelastic, efficiency only requires that players distribute
themselves over the streets in an optimal fashion.  Under elastic demand, efficiency
also requires that the right players choose to drive.  The planner would like to
ensure efficient behavior by imposing a price scheme, but must do so without any
information about the values players attach to completing their commutes.

Formally, we let D = (    D
1, … ,   D

r ) denote a profile of demand functions, and let D

denote the set of all such profiles.  A social choice function σ: D → X maps every
demand profile to a strategy distribution in X.  A price scheme is once again a map P:
X →     R

n  which for each strategy distribution x specifies the price Pi(x) which users of
strategy i must pay.
  The price scheme creates a new elastic demand game with the same strategies as
the original game.  The reduced form payoffs of the new game are denoted     

)
F :

    
)
Fi (D, x) =     F̃i (D, x) – Pi(x).

Our notation makes explicit that both reduced form payoff functions depend on the
demand profile D, but that the price scheme does not.  We say that the price scheme
P globally implements the social choice function σ if for each demand profile D, the
strategy distribution σ(D) is globally stable under any dynamic V which is admissible
with respect to the augmented game     

)
F (D, ·).

7.  Congestion Pricing

We measure welfare under elastic demand using the function

    W D xk ( , )  = 
    

˜ ( )D z dzrx

r R

r

0∫∑
∈

 + k    F x( ) = 
    

˜ ( )D z dzrx

r R

r

0∫∑
∈

 – k
    

x C xi i
i S

( )
∈
∑ ,

where k is some strictly positive constant.  The first component of   W
k  captures the

benefits obtained by drivers who decide to commute; each integral measures the
area under the demand curve from zero through the number of active players   x

r .
The second component aggregates the driving times of all active players.  Of course,
tolls are excluded from the calculation of welfare.

The constant k measures the ratio of costs to benefits used in measuring welfare.
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If k  = 1, costs and benefits are weighted equally, and   W
k  equals consumer surplus.

However, since driving causes pollution, a "bad" not accounted for in the payoff
functions, a social planner may wish to give extra weight to costs in determining
welfare.  By varying k  (in particular, by choosing k  > 1), a social planner can attach
added importance to reducing total driving time, which serves as a proxy for any
indirect externalities which driving creates.

The social planner would like to implement the social choice function   x
k : D → X

defined by

  x
k (D) ∈  

    
arg max ( , )

x X

kW D x
∈

.

To do so, he chooses a mechanism which creates a new game     
)
F :

    
)
Fi (D, x) ≡     F̃i (D, x) – Pi(x).

He would like the new game to have a potential function equal to the welfare
function   W

k .

    
)
f (D, x) ≡     W D xk ( , ) .

It is not immediately clear that a mechanism with both of these properties exists.
However, differentiating the second identity with respect to xi yields

    
)
Fi (D, x) =     ̃ ( )D xr r  + k    

∂
∂xi

F x( ).

Solving for Pi, we find that

Pi(x) =     F̃i (D, x) –     
)
Fi (D, x)

 = (    ̃ ( )D xr r  + Fi(x)) – (    ̃ ( )D xr r  + k    
∂

∂xi
F x( ))

= Fi(x) – k    
∂

∂xi
F x( ).

 Since this last expression does not depend on D, prices can be chosen
independently of the demand profile.  In fact, the last expression is equivalent to
equation (T), which defined the variable price scheme   P

η  (with η  =     
1
k  – 1).  Thus,

the same separable price schemes which guarantee efficient behavior under inelastic
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demand also do so under elastic demand.

Theorem 3:  Suppose that the cost functions satisfy     u ′′cφ (u) >     −2 ′cφ (u)  for all φ and u .

Then the variable price scheme    P
η  with elasticity threshold η  =     

1
k  – 1 globally

implements the social choice function   x
k .

The proof of Theorem 3 is analogous to that of Theorem 1, with Lemmas 3 and 4
used in place of Lemmas 1 and 2.  We observe that the only property of demand
curves required to establish this result is that they are downward sloping.

Our analysis of the inelastic demand case showed that if the number of active
players in each population is fixed, the variable price schemes lead the players to
distribute themselves over the streets efficiently.  This suggests that if these schemes
are used under elastic demand, the players who decide to stay in the game will
behave efficiently.  It therefore remains to show that the optimal number of players
from each population will choose to stay in the game.

Were there only one population of players, the intuition for the latter claim
would be simple.  Lowering the elasticity threshold η  increases the street prices.
Hence, by varying η , the planner can choose the level of demand; since the
allocation of drivers will be efficient, any weighted welfare optimum can be
achieved.  Unfortunately, this simple argument fails when there are multiple
populations.  In this case, each choice of threshold η  yields some equilibrium
demand vector (    x

1 (η ), … ,   x
r (η ), … ,   x

r (η )).  By varying η , we can obtain demand
vectors lying on a one-dimensional path through     R+

r .  It is not obvious that this
path should trace out the demand vectors in     R+

r  which lead to welfare optimality.
To see why it does, let     C x( ) = –    F x( ) equal aggregate costs, and let     

ˆ ( )C xi  = Ci(x) +
Pi(x) =     –

ˆ ( )F xi  denote the augmented strategy costs.  We designed the variable price

scheme in the inelastic demand setting to set individuals' costs proportional to
marginal social costs (    

ˆ ( )C xi  =     k C xxi

∂
∂ ( )).

  Suppose that demand is inelastic.  In equilibrium, the augmented costs of all
strategies i used by a single population r are equal (    

ˆ ( )C xi  =   cr  whenever xi > 0).
Consequently, the marginal social costs of these strategies are equal (    k C xxi

∂
∂ ( )  =   c

r),

and so aggregate behavior is efficient.
Now suppose that demand is elastic.  In equilibrium, the augmented cost of each

strategy which is used must equal the valuation of the marginal driver (    
ˆ ( )C xi  =

    ̃ ( )D xr r  whenever xi > 0).  It then follows from the definition of the price scheme that
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marginal social costs are proportional to this valuation (    k C xxi

∂
∂ ( )  =     ̃ ( )D xr r ).  Since

the valuation of the marginal driver represents the marginal social benefit of
further entry, this last equation implies welfare optimality.  Finally, since the
variable price schemes yield games with concave potential functions, each scheme
guarantees the global stability of the welfare maximizing state.

We can also explain our price schemes directly in terms of the potential
functions.  In the inelastic demand setting, we chose the variable prices so that the
potential function     f̂  was equal to k  times aggregate payoffs, so that admissible

dynamics would ascend the aggregate payoff function.  Under elastic demand, the
potential function     

)
f  and the welfare function   W

k  both have a new term capturing

players' valuations.  But in each case, this term is 
    

D̃rx

r

r

0∫∑ .  Therefore, the variable

prices which equate     f̂  and   k F  also equate     
)
f  and   W

k , and so ensure welfare

optimality.
More intuitively, a social planner is able to set the relative costs of playing the

various strategies appropriately while fixing the absolute costs at any desired scale.  If
the social planner chooses this scale correctly, then a player comparing his benefit
from joining the game to his cost of participating will decide to join precisely when
it is socially desirable for him to do so.
 After imposing the variable price scheme, the planner can learn the efficient
state x*(D) by observing the players' behavior.  Since behavior is anonymous,
maintaining efficient play also requires the use of a price scheme.  As before, this
maintenance can be accomplished by administering a fixed price scheme.  For each
demand vector D, define the fixed price scheme     Π η ,D by

     Π i
Dη ,  = 

    
πφ

η

φ

,D

i∈
∑

Φ
,  where     πφ

η ,D  =     p u x Dk
φ
η

φ( ( ( ))) and k =   
1

1η + .

A variation on the proof of Theorem 2 establishes the following result.

Theorem 4:  Suppose that the demand profile is D, and that the planner imposes t h e
fixed price scheme     Π η ,D with η  =     

1
k  – 1.  Then the efficient distribution   x

k (D) is

globally stable under any admissible dynamics V.

Again, no convexity condition on street costs cφ is required.
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 Under elastic demand, the central role of the choice of η  ∈  (–1, ∞) is to allow the
implementation of efficient behavior under different welfare measures; hence,
different choices of η  generate different equilibrium behaviors.  Nevertheless, we
can give some indication of the equilibrium toll revenues generated by different
choices of η .26   For η  near –1 (and hence k  =   

1
1η +  very large), toll revenue is zero:

prices are so high that no one commutes.  Whenever η  ≤ 0, all prices are weakly
positive, so toll revenues are weakly positive as well.  Similarly, when η  ≥ ηmax =
maxφ,uηφ(u), prices and revenues are weakly negative.  A continuity argument then
shows that for any demand profile D, there is an elasticity threshold   ηz (D) ∈  [0, ηmax]

which is revenue neutral in equilibrium.  This threshold typically corresponds to a
welfare measure with k  < 1, which places relatively little weight on keeping
aggregate delays small.

8.  Discussion

We considered a problem faced by a planner who would like to ensure the
efficient use of a highway network.  The problem entails both hidden information
and hidden actions.  We showed that the planner can guarantee efficient behavior
by introducing a separable, variable price scheme.  After using this scheme to
resolve his information problem, the planner can maintain efficient behavior using
a separable, fixed price scheme.
 Throughout our analysis, we have assumed that the planner is fully patient,
only caring about the final outcomes of the evolutionary process.  Alternatively, one
could consider a less patient planner who cares about the entire time path of play.
For example, the planner might evaluate the time path of play by aggregating the
welfare of behavior over time using some fixed discount rate.  To study this issue,
one would need to introduce conditions on dynamics specifying the speed at which
behavior adjustment takes place; for instance, one could assume that the difference
between strategies' growth rates is monotone in the difference between their payoffs.
In this case, price schemes that dramatically penalize the use of crowded routes
would lead to faster adjustment towards the efficient state.  If demand is inelastic,
this would favor the use of schemes with low elasticity thresholds η , as such
schemes magnify payoff differences between routes.  However, low values of η  also
generate high tolls; if demand is elastic, such tolls might reduce network usage to
                                                
26  For simplicity, we assume here that delay costs satisfy cφ(0) > 0 for all streets φ ∈  Φ.
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undesirably low levels.  The planner might strike a compromise between these
issues by judiciously adjusting η  over time.
 Our study of congestion pricing has focused on traffic during a single usage
period.  An important use of congestion pricing which we do not address here is
that of smoothing peak demand over different usage periods:  that is, setting prices
to encourage driving before and after the period of peak demand.27  Allowing
commuters the choice of when to drive introduces new modeling issues which we
hope to address in future research.

While this paper has focused on pricing roadway networks, the techniques
developed here seem applicable in principle to the pricing of computer networks.28

Like roadway networks, computer networks are used by large numbers of
individuals who are primarily concerned with the speed of their own conveyance
through the network.  On the other hand, there are some important differences
between the two types of networks.  For one, routing decisions in computer
networks are presently made by routing devices positioned throughout the network
rather than by individual users.  In addition, different network applications require
vastly different levels of service:  while a real-time video conference requires a
constant, high bandwidth connection throughout its duration, e-mail messages
require little bandwidth, and can be sent after some delay without significantly
reducing user benefits.  For these reasons, a realistic model of computer network
congestion would be significantly different from the model considered here.
Nevertheless, evolutionary implementation in computer networks seems an
important topic for future research.

Appendix

The Proof of Lemma 1:
 Suppose that the dynamic V  is admissible with respect to the game F.  Since the
potential function f is a global Lyapunov function the for this dynamic  (i.e., since

    
d
dt tf x( ) =     ∇f xt( )  ·     ̇xt  = F(xt) · V(xt) ≥ 0), Proposition 1 of Losert and Akin (1983) and

Theorem 5.4.1 of Robinson (1995) imply that every solution trajectory of the

                                                
27  This aspect of congestion pricing is considered by Vickrey (1963, 1969) and Arnott, de Palma, and
Lindsey (1990, 1993).
28 Congestion pricing in computer networks is studied by Cocchi et. al . (1993), MacKie-Mason and
Varian (1995), Shenker et. al. (1996), and Crémer and Hariton (1999).
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dynamic converges to a connected set of rest points.  Condition (NC) tells us that all
rest points of the dynamic are Nash equilibria of F, proving part (i) of the lemma.
 The proof of part (ii) requires the following preliminary results.

Lemma A1:  Suppose that the dynamic V  is admissible with respect to the game  F.
Then  x* is a rest point of the dynamic if and only if it is a Nash equilibrium of F .

 Proof:  The "only if" direction follows directly from condition (NC), so we need
only consider the "if" direction.  Let x be a Nash equilibrium of F.  Let   Sd

r (x) be the set
of strategies in   S

r  that are in decline at x:   Sd
r (x) = {i ∈    S

r : Vi(x) < 0}.  Since   Sd
r (x) can

only contain strategies which are used at x (by condition (FI 1)), and since all such
strategies must be optimal, we see that   Sd

r (x) ⊂  
    
arg max ( )

j S jr F x
∈

.  But     V xii Sr ( )
∈∑  = 0 by

the forward invariance condition (FI 2).  Thus, the inclusion implies that

    V x F xii S ir ( ) ( )
∈∑  ≤ 0.  Summing over r, we see that     V x F xii S ir R r ( ) ( )

∈∈ ∑∑  ≤ 0.  W e

therefore conclude from condition (PC) that V(x) =     
v
0 .  ❏

Lemma A2:  Suppose that F is a potential game with potential function f.  Then  x* is

a Nash equilibrium of F if and only if it satisfies the Kuhn-Tucker first order

conditions for a maximizer of f on Xm:  that is, for some µ  ∈      R
r  and some λ  ∈      R

n ,

(KT1)   
∂
∂

f
xi

(x) =   µ
r  –   λi for all i ∈    S

r  and r ∈  R,

(KT2)   λi ix  = 0 for all i ∈ S, and

(KT3)   λi  ≥ 0  for all i ∈ S.

Proof:  Suppose that x is a Nash equilibrium of F.  Since Fi(x) =     
∂
∂

f
xi

x( ) , (KT1),

(KT2), and (KT3) are satisfied by x,   µ
r  = 

    
max ( )

j S jr F x
∈

, and   λi  =   µ
r  – Fi(x) for i ∈    S

r .
The proof of the converse is similar.  ❏

 Now suppose that f is strictly concave.  Then f has a unique maximizer x* on Xm,
which is the unique point satisfying (KT1), (KT2), and (KT3) (see, e.g., Theorems 4.38
and 4.39 of Avriel (1976)).  Thus, Lemma A2 implies that x* is the unique Nash
equilibrium of F, and so Lemma A1 implies that x* is the unique rest point of     ̇x  =
V(x).  Hence, part (i) of the lemma implies that x* is a global attractor under     ̇x  =
V(x).  ■
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 We now consider evolution under payoff monotone  dynamics.  Payoff
monotone dynamics are dynamics of the form

 (PM)     ̇xi  = xi gi(x) for all i ∈   S
r  and r ∈  R,

where the percentage growth rates gi: X → R satisfy the monotonicity condition

 gi(x) > gj(x) if and only if Fi(x) > Fj(x)

for all populations r ∈  R and strategies i, j ∈    S
r .  In addition, the functions gi are

required to be Lipschitz continuous (which implies condition (LC)), and must satisfy

    x g xi ii Sr ( )
∈∑  = 0 for all populations r ∈  R (which is condition (FI2)).

 An important example of a payoff monotone dynamic is the replicator dynamic,
which is defined by

 (R)     ̇xi  = xi (Fi(x) –     
1

mr     
x F xj jj Sr ( )

∈∑ )    for all i ∈   S
r  and r ∈  R.

In words, the replicator dynamic requires that the percentage growth rate of each
strategy is given by the difference between that strategy's payoff and the average
payoff in its population.  This dynamic can be interpreted as a model of evolution
through imitation – see Björnerstedt and Weibull (1996) and Schlag (1998).
 It is easy to see that in addition to satisfying conditions (LC) and (FI2), payoff
monotone dynamics also satisfy condition (FI1).  We now show that in these
dynamics also satisfy the positive correlation condition (PC).

Lemma A3:  Every payoff monotone dynamic satisfies condition (PC).

 Proof:  Let (PM) be a payoff monotone dynamic, and suppose that x ∈ X is not a
rest point of (PM).  Then the set of populations which are not at rest at x,     ̃R  = {r ∈  R:
xi gi(x) ≠ 0 for some i ∈    S

r }, is nonempty.  Condition (FI2) then implies that for all
populations r ∈      ̃R , the sets of strategies   G

r  = {i ∈    S
r :  gi(x) > 0} and   S

r  –   G
r  are

nonempty.  Thus, for such populations, the scalars   l
r  =     min ( )

i G ir F x
∈

 and   h
r  =

    max ( )
i S G ir r F x
∈ −

 are well-defined, and, by payoff monotonicity, satisfy   l
r  >   h

r .
Therefore, since     x g xi ii Gr ( )

∈∑  = –    x g xi ii S Gr r ( )
∈ −∑  by condition (FI2), we find that

 V(x) · F(x) = 
    

( ( )) ( )x g x F xi i i
i Sr R r∈∈
∑∑
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 ≥ 
    

l x g x h x g xr
i i

i G

r
i i

i S Gr R r r r

( ) ( )
˜ ∈ ∈ −∈

∑ ∑∑ +






 = 
    

( ) ( )
˜

l h x g xr r
i i

i Gr R r

−




∈∈

∑∑  > 0.  ■

  Payoff monotone dynamics admit many rest points which are not Nash
equilibria, and therefore fail condition (NC).  To describe the rest points of these
dynamics, we define the set of restricted equilibria of the game F by

RE = {x ∈  Xm:  [xi > 0 ⇒  Fi(x) = 
    

max ( )
:j S x

jr
j

F x
∈ >0

] for all i ∈    S
r  and r ∈  R}.

Thus, x is a restricted equilibrium of F if it is a Nash equilibrium of a restricted
version of F in which only strategies in the support of x can be played.  (For example,
every pure strategy profile is a restricted equilibrium.)  It is easily verified that the
rest points of a payoff monotone dynamic are precisely the restricted equilibria of the
underlying game.  Nevertheless, if the game F has a strictly concave potential
function, we can establish the following result.

Proposition A1:  Suppose that the game F admits a strictly concave potential

function f.  Then under any payoff monotone dynamic, any solution trajectory

starting from an interior initial condition converges to the unique N a s h

equilibrium of F.

 Proof:  We begin by showing that the set of restricted equilibria of F, and hence
the set of rest points of the payoff monotone dynamic, is finite.  To see this, consider
any restricted version of F in which each population is constrained to choose from
some nonempty subset of its pure strategies from F.  Then by definition, the original
potential function f also serves as potential function for this restricted game.  Since f

is strictly concave, Lemma A2 and the argument which follows it show that the
restricted game has a unique Nash equilibrium, which is the point which
maximizes f on the appropriate subset of Xm.  This Nash equilibrium is a restricted
equilibrium of the original game F, and all restricted equilibria are of this form.
Since the number of restricted games which can be derived from F is finite, so too is
the number of restricted equilibria.
 Now, since the dynamic satisfies condition (PC) by Lemma A3, it admits the
global Lyapunov function f.  Thus, Proposition 1 of Losert and Akin (1983) and
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Theorem 5.4.1 of Robinson (1995) imply that every solution trajectory converges to a
connected set of rest points.  Since the number of rest points is finite, convergence
must always be to a unique limit point, which is a restricted equilibrium.
 Let {xt}t≥0 be a solution trajectory of the dynamic with interior initial condition x0;
then xt lies in the interior of Xm for all finite times t (see, e.g., Weibull (1995, p. 195)).
Let y = limt→∞ xt, and suppose that y is a restricted equilibrium of F which is not a
Nash equilibrium of F.  Then for some population r ∈  R, there is a strategy i ∈    S

r

such that yi = 0 and such that Fi(y) > Fj(y) for each j ∈    S
r  in the support of y.  It then

follows from payoff monotonicity and the fact that y is a rest point that gi(y) > gj(y) =
0.  Since the function gi is continuous, it follows that for some ε > 0, there exists a δ >
0 such that gi(x) > ε whenever   x y−  < δ.  Now since {xt}t≥0 converges to y, there exists

a T such that   x yt −  < δ whenever t ≥ T.  At such times t,     ( ˙ )xt i  > (xt)i ε > 0.  Hence, (xt)i

= (xT)i + 
    

( ˙ )x dss iT

t

∫  ≥ (xT)i > 0 for all t ≥ T, contradicting the definition of the trajectory.

We therefore conclude that {xt}t≥0 approaches the unique Nash equilibrium of F.  ■
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