380 research outputs found

    Dynamic Monopolies in Colored Tori

    Full text link
    The {\em information diffusion} has been modeled as the spread of an information within a group through a process of social influence, where the diffusion is driven by the so called {\em influential network}. Such a process, which has been intensively studied under the name of {\em viral marketing}, has the goal to select an initial good set of individuals that will promote a new idea (or message) by spreading the "rumor" within the entire social network through the word-of-mouth. Several studies used the {\em linear threshold model} where the group is represented by a graph, nodes have two possible states (active, non-active), and the threshold triggering the adoption (activation) of a new idea to a node is given by the number of the active neighbors. The problem of detecting in a graph the presence of the minimal number of nodes that will be able to activate the entire network is called {\em target set selection} (TSS). In this paper we extend TSS by allowing nodes to have more than two colors. The multicolored version of the TSS can be described as follows: let GG be a torus where every node is assigned a color from a finite set of colors. At each local time step, each node can recolor itself, depending on the local configurations, with the color held by the majority of its neighbors. We study the initial distributions of colors leading the system to a monochromatic configuration of color kk, focusing on the minimum number of initial kk-colored nodes. We conclude the paper by providing the time complexity to achieve the monochromatic configuration

    On dynamic monopolies of graphs: the average and strict majority thresholds

    Full text link
    Let GG be a graph and τ:V(G)→N∪{0}{\mathcal{\tau}}: V(G)\rightarrow \Bbb{N}\cup \{0\} be an assignment of thresholds to the vertices of GG. A subset of vertices DD is said to be a dynamic monopoly corresponding to (G,τ)(G, \tau) if the vertices of GG can be partitioned into subsets D0,D1,...,DkD_0, D_1,..., D_k such that D0=DD_0=D and for any i∈0,...,k−1i\in {0, ..., k-1}, each vertex vv in Di+1D_{i+1} has at least τ(v)\tau(v) neighbors in D0∪...∪DiD_0\cup ... \cup D_i. Dynamic monopolies are in fact modeling the irreversible spread of influence in social networks. In this paper we first obtain a lower bound for the smallest size of any dynamic monopoly in terms of the average threshold and the order of graph. Also we obtain an upper bound in terms of the minimum vertex cover of graphs. Then we derive the upper bound ∣G∣/2|G|/2 for the smallest size of any dynamic monopoly when the graph GG contains at least one odd vertex, where the threshold of any vertex vv is set as ⌈(deg(v)+1)/2⌉\lceil (deg(v)+1)/2 \rceil (i.e. strict majority threshold). This bound improves the best known bound for strict majority threshold. We show that the latter bound can be achieved by a polynomial time algorithm. We also show that α′(G)+1\alpha'(G)+1 is an upper bound for the size of strict majority dynamic monopoly, where α′(G)\alpha'(G) stands for the matching number of GG. Finally, we obtain a basic upper bound for the smallest size of any dynamic monopoly, in terms of the average threshold and vertex degrees. Using this bound we derive some other upper bounds

    On dynamic monopolies of graphs with general thresholds

    Get PDF
    Let GG be a graph and τ:V(G)→N{\mathcal{\tau}}: V(G)\rightarrow \Bbb{N} be an assignment of thresholds to the vertices of GG. A subset of vertices DD is said to be dynamic monopoly (or simply dynamo) if the vertices of GG can be partitioned into subsets D0,D1,...,DkD_0, D_1,..., D_k such that D0=DD_0=D and for any i=1,...,k−1i=1,..., k-1 each vertex vv in Di+1D_{i+1} has at least t(v)t(v) neighbors in D0∪...∪DiD_0\cup ...\cup D_i. Dynamic monopolies are in fact modeling the irreversible spread of influence such as disease or belief in social networks. We denote the smallest size of any dynamic monopoly of GG, with a given threshold assignment, by dyn(G)dyn(G). In this paper we first define the concept of a resistant subgraph and show its relationship with dynamic monopolies. Then we obtain some lower and upper bounds for the smallest size of dynamic monopolies in graphs with different types of thresholds. Next we introduce dynamo-unbounded families of graphs and prove some related results. We also define the concept of a homogenious society that is a graph with probabilistic thresholds satisfying some conditions and obtain a bound for the smallest size of its dynamos. Finally we consider dynamic monopoly of line graphs and obtain some bounds for their sizes and determine the exact values in some special cases

    Multicolored Dynamos on Toroidal Meshes

    Full text link
    Detecting on a graph the presence of the minimum number of nodes (target set) that will be able to "activate" a prescribed number of vertices in the graph is called the target set selection problem (TSS) proposed by Kempe, Kleinberg, and Tardos. In TSS's settings, nodes have two possible states (active or non-active) and the threshold triggering the activation of a node is given by the number of its active neighbors. Dealing with fault tolerance in a majority based system the two possible states are used to denote faulty or non-faulty nodes, and the threshold is given by the state of the majority of neighbors. Here, the major effort was in determining the distribution of initial faults leading the entire system to a faulty behavior. Such an activation pattern, also known as dynamic monopoly (or shortly dynamo), was introduced by Peleg in 1996. In this paper we extend the TSS problem's settings by representing nodes' states with a "multicolored" set. The extended version of the problem can be described as follows: let G be a simple connected graph where every node is assigned a color from a finite ordered set C = {1, . . ., k} of colors. At each local time step, each node can recolor itself, depending on the local configurations, with the color held by the majority of its neighbors. Given G, we study the initial distributions of colors leading the system to a k monochromatic configuration in toroidal meshes, focusing on the minimum number of initial k-colored nodes. We find upper and lower bounds to the size of a dynamo, and then special classes of dynamos, outlined by means of a new approach based on recoloring patterns, are characterized
    • …
    corecore