71 research outputs found

    Design and Analysis of a Dynamic Mobility Management Scheme for Wireless Mesh Network

    Get PDF
    Seamless mobility management of the mesh clients (MCs) in wireless mesh network (WMN) has drawn a lot of attention from the research community. A number of mobility management schemes such as mesh network with mobility management (MEMO), mesh mobility management (M3), and wireless mesh mobility management (WMM) have been proposed. The common problem with these schemes is that they impose uniform criteria on all the MCs for sending route update message irrespective of their distinct characteristics. This paper proposes a session-to-mobility ratio (SMR) based dynamic mobility management scheme for handling both internet and intranet traffic. To reduce the total communication cost, this scheme considers each MC’s session and mobility characteristics by dynamically determining optimal threshold SMR value for each MC. A numerical analysis of the proposed scheme has been carried out. Comparison with other schemes shows that the proposed scheme outperforms MEMO, M3, and WMM with respect to total cost

    Mobility Support in User-Centric Networks

    Get PDF
    In this paper, an overview of challenges and requirements for mobility management in user-centric networks is given, and a new distributed and dynamic per-application mobility management solution is presented. After a brief summary of generic mobility management concepts, existing approaches from the distributed and peer-to-peer mobility management literature are introduced, along with their applicability or shortcomings in the UCN environment. Possible approaches to deal with the decentralized and highly dynamic nature of UCNs are also provided with a discussion and an introduction to potential future work

    Agile management and interoperability testing of SDN/NFV-enriched 5G core networks

    Get PDF
    In the fifth generation (5G) era, the radio internet protocol capacity is expected to reach 20Gb/s per sector, and ultralarge content traffic will travel across a faster wireless/wireline access network and packet core network. Moreover, the massive and mission-critical Internet of Things is the main differentiator of 5G services. These types of real-time and large-bandwidth-consuming services require a radio latency of less than 1 ms and an end-to-end latency of less than a few milliseconds. By distributing 5G core nodes closer to cell sites, the backhaul traffic volume and latency can be significantly reduced by having mobile devices download content immediately from a closer content server. In this paper, we propose a novel solution based on software-defined network and network function virtualization technologies in order to achieve agile management of 5G core network functionalities with a proof-of-concept implementation targeted for the PyeongChang Winter Olympics and describe the results of interoperability testing experiences between two core networks

    Applying SDN/OpenFlow in Virtualized LTE to support Distributed Mobility Management (DMM)

    Get PDF
    Distributed Mobility Management (DMM) is a mobility management solution, where the mobility anchors are distributed instead of being centralized. The use of DMM can be applied in cloud-based (virtualized) Long Term Evolution (LTE) mobile network environments to (1) provide session continuity to users across personal, local, and wide area networks without interruption and (2) support traffic redirection when a virtualized LTE entity like a virtualized Packet Data Network Gateway (P-GW) running on an virtualization platform is migrated to another virtualization platform and the on-going sessions supported by this P-GW need to be maintained. In this paper we argue that the enabling technology that can efficiently be used for supporting DMM in virtualized LTE systems is the Software Defined Networking (SDN)/OpenFlow technology

    Implementation of MHMIP and Comparing the Performance With MIP and DHMIP in Mobile Networks

    Get PDF
    Managing the mobility efficiently in wireless networks causes critical issue, in order to support mobile users. To support global mobility in IP networks The Mobile Internet Protocol (MIP) has been proposed. The Hierarchical MIP (HMIP) and Dynamic HMIP (DHMIP) strategies are also proposed for providing high signaling delay. Our proposal approach “Multicast HMIP strategy” limits the registration processes in the GFAs. For high-mobility MTs, MHMIP provides lowest mobility signaling delay compared to the HMIP and DHMIP approaches. However, it is resource consuming strategy unless for frequent MT mobility. Hence, we propose an analytic model to evaluate the mean signaling delay and the mean bandwidth per call according to the type of MT mobility. In our analysis, the MHMIP gives the best performance among the DHMIP and MIP strategies in almost all the studied cases. The main contribution of this paper is to implement the MHMIP and provide the analytic model that allows the comparison of MIP, DHMIP and MHMIP mobility management approaches
    • …
    corecore