1,905 research outputs found

    Fashion, Cooperation, and Social Interactions

    Full text link
    Fashion plays such a crucial rule in the evolution of culture and society that it is regarded as a second nature to the human being. Also, its impact on economy is quite nontrivial. On what is fashionable, interestingly, there are two viewpoints that are both extremely widespread but almost opposite: conformists think that what is popular is fashionable, while rebels believe that being different is the essence. Fashion color is fashionable in the first sense, and Lady Gaga in the second. We investigate a model where the population consists of the afore-mentioned two groups of people that are located on social networks (a spatial cellular automata network and small-world networks). This model captures two fundamental kinds of social interactions (coordination and anti-coordination) simultaneously, and also has its own interest to game theory: it is a hybrid model of pure competition and pure cooperation. This is true because when a conformist meets a rebel, they play the zero sum matching pennies game, which is pure competition. When two conformists (rebels) meet, they play the (anti-) coordination game, which is pure cooperation. Simulation shows that simple social interactions greatly promote cooperation: in most cases people can reach an extraordinarily high level of cooperation, through a selfish, myopic, naive, and local interacting dynamic (the best response dynamic). We find that degree of synchronization also plays a critical role, but mostly on the negative side. Four indices, namely cooperation degree, average satisfaction degree, equilibrium ratio and complete ratio, are defined and applied to measure people's cooperation levels from various angles. Phase transition, as well as emergence of many interesting geographic patterns in the cellular automata network, is also observed.Comment: 21 pages, 12 figure

    Stability and Diversity in Collective Adaptation

    Get PDF
    We derive a class of macroscopic differential equations that describe collective adaptation, starting from a discrete-time stochastic microscopic model. The behavior of each agent is a dynamic balance between adaptation that locally achieves the best action and memory loss that leads to randomized behavior. We show that, although individual agents interact with their environment and other agents in a purely self-interested way, macroscopic behavior can be interpreted as game dynamics. Application to several familiar, explicit game interactions shows that the adaptation dynamics exhibits a diversity of collective behaviors. The simplicity of the assumptions underlying the macroscopic equations suggests that these behaviors should be expected broadly in collective adaptation. We also analyze the adaptation dynamics from an information-theoretic viewpoint and discuss self-organization induced by information flux between agents, giving a novel view of collective adaptation.Comment: 22 pages, 23 figures; updated references, corrected typos, changed conten

    Adaptive Dynamics for Interacting Markovian Processes

    Get PDF
    Dynamics of information flow in adaptively interacting stochastic processes is studied. We give an extended form of game dynamics for Markovian processes and study its behavior to observe information flow through the system. Examples of the adaptive dynamics for two stochastic processes interacting through matching pennies game interaction are exhibited along with underlying causal structure

    Learning with Opponent-Learning Awareness

    Full text link
    Multi-agent settings are quickly gathering importance in machine learning. This includes a plethora of recent work on deep multi-agent reinforcement learning, but also can be extended to hierarchical RL, generative adversarial networks and decentralised optimisation. In all these settings the presence of multiple learning agents renders the training problem non-stationary and often leads to unstable training or undesired final results. We present Learning with Opponent-Learning Awareness (LOLA), a method in which each agent shapes the anticipated learning of the other agents in the environment. The LOLA learning rule includes a term that accounts for the impact of one agent's policy on the anticipated parameter update of the other agents. Results show that the encounter of two LOLA agents leads to the emergence of tit-for-tat and therefore cooperation in the iterated prisoners' dilemma, while independent learning does not. In this domain, LOLA also receives higher payouts compared to a naive learner, and is robust against exploitation by higher order gradient-based methods. Applied to repeated matching pennies, LOLA agents converge to the Nash equilibrium. In a round robin tournament we show that LOLA agents successfully shape the learning of a range of multi-agent learning algorithms from literature, resulting in the highest average returns on the IPD. We also show that the LOLA update rule can be efficiently calculated using an extension of the policy gradient estimator, making the method suitable for model-free RL. The method thus scales to large parameter and input spaces and nonlinear function approximators. We apply LOLA to a grid world task with an embedded social dilemma using recurrent policies and opponent modelling. By explicitly considering the learning of the other agent, LOLA agents learn to cooperate out of self-interest. The code is at github.com/alshedivat/lola

    Neural networks playing ‘matching pennies’ with each other: reproducibility of game dynamics

    Get PDF
    Reflection is an essential feature of consciousness and possibly the single most important one. This fact allows us to simplify the objective of the concept of ‘neural correlates of consciousness’ and to focus investigations on reflection itself. Reflexive games are the concentrated and pure embodiment of reflection manifestation without the addition of other higher cognitive functions. In this paper, we use the game ‘matching pennies’ ("Odd-Even") in order to trace the strategies and possible patterns of recurrent neural network operation. Experimental results show the splitting of all considered game patterns into two groups. A significant difference was observed in these groups of patterns, indicating a qualitative difference in game dynamics apparently due to the qualitatively different dynamic patterns of neuron excitations of the networks. A similar splitting of all players into two groups was found by other authors for human players, which differ in terms of the reflection availability. By this, we can assume that one of the causes of the splitting is that the presence of reflection in a particular group of recurrent neural networks dramatically changes the game meta-strategy
    corecore