56,084 research outputs found

    On Real-Time Synthetic Primate Vision

    Get PDF
    The primate vision system exhibits numerous capabilities. Some important basic visual competencies include: 1) a consistent representation of visual space across eye movements; 2) egocentric spatial perception; 3) coordinated stereo fixation upon and pursuit of dynamic objects; and 4) attentional gaze deployment. We present a synthetic vision system that incorporates these competencies.We hypothesize that similarities between the underlying synthetic system model and that of the primate vision system elicit accordingly similar gaze behaviors. Psychophysical trials were conducted to record human gaze behavior when free-viewing a reproducible, dynamic, 3D scene. Identical trials were conducted with the synthetic system. A statistical comparison of synthetic and human gaze behavior has shown that the two are remarkably similar

    The Cat Is On the Mat. Or Is It a Dog? Dynamic Competition in Perceptual Decision Making

    Get PDF
    Recent neurobiological findings suggest that the brain solves simple perceptual decision-making tasks by means of a dynamic competition in which evidence is accumulated in favor of the alternatives. However, it is unclear if and how the same process applies in more complex, real-world tasks, such as the categorization of ambiguous visual scenes and what elements are considered as evidence in this case. Furthermore, dynamic decision models typically consider evidence accumulation as a passive process disregarding the role of active perception strategies. In this paper, we adopt the principles of dynamic competition and active vision for the realization of a biologically- motivated computational model, which we test in a visual catego- rization task. Moreover, our system uses predictive power of the features as the main dimension for both evidence accumulation and the guidance of active vision. Comparison of human and synthetic data in a common experimental setup suggests that the proposed model captures essential aspects of how the brain solves perceptual ambiguities in time. Our results point to the importance of the proposed principles of dynamic competi- tion, parallel specification, and selection of multiple alternatives through prediction, as well as active guidance of perceptual strategies for perceptual decision-making and the resolution of perceptual ambiguities. These principles could apply to both the simple perceptual decision problems studied in neuroscience and the more complex ones addressed by vision research.Peer reviewe

    Neural Representations for Sensory-Motor Control, II: Learning a Head-Centered Visuomotor Representation of 3-D Target Position

    Full text link
    A neural network model is described for how an invariant head-centered representation of 3-D target position can be autonomously learned by the brain in real time. Once learned, such a target representation may be used to control both eye and limb movements. The target representation is derived from the positions of both eyes in the head, and the locations which the target activates on the retinas of both eyes. A Vector Associative Map, or YAM, learns the many-to-one transformation from multiple combinations of eye-and-retinal position to invariant 3-D target position. Eye position is derived from outflow movement signals to the eye muscles. Two successive stages of opponent processing convert these corollary discharges into a. head-centered representation that closely approximates the azimuth, elevation, and vergence of the eyes' gaze position with respect to a cyclopean origin located between the eyes. YAM learning combines this cyclopean representation of present gaze position with binocular retinal information about target position into an invariant representation of 3-D target position with respect to the head. YAM learning can use a teaching vector that is externally derived from the positions of the eyes when they foveate the target. A YAM can also autonomously discover and learn the invariant representation, without an explicit teacher, by generating internal error signals from environmental fluctuations in which these invariant properties are implicit. YAM error signals are computed by Difference Vectors, or DVs, that are zeroed by the YAM learning process. YAMs may be organized into YAM Cascades for learning and performing both sensory-to-spatial maps and spatial-to-motor maps. These multiple uses clarify why DV-type properties are computed by cells in the parietal, frontal, and motor cortices of many mammals. YAMs are modulated by gating signals that express different aspects of the will-to-act. These signals transform a single invariant representation into movements of different speed (GO signal) and size (GRO signal), and thereby enable YAM controllers to match a planned action sequence to variable environmental conditions.National Science Foundation (IRI-87-16960, IRI-90-24877); Office of Naval Research (N00014-92-J-1309

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Behavioral biases when viewing multiplexed scenes:scene structure and frames of reference for inspection

    Get PDF
    Where people look when viewing a scene has been a much explored avenue of vision research (e.g., see Tatler, 2009). Current understanding of eye guidance suggests that a combination of high and low-level factors influence fixation selection (e.g., Torralba et al., 2006), but that there are also strong biases toward the center of an image (Tatler, 2007). However, situations where we view multiplexed scenes are becoming increasingly common, and it is unclear how visual inspection might be arranged when content lacks normal semantic or spatial structure. Here we use the central bias to examine how gaze behavior is organized in scenes that are presented in their normal format, or disrupted by scrambling the quadrants and separating them by space. In Experiment 1, scrambling scenes had the strongest influence on gaze allocation. Observers were highly biased by the quadrant center, although physical space did not enhance this bias. However, the center of the display still contributed to fixation selection above chance, and was most influential early in scene viewing. When the top left quadrant was held constant across all conditions in Experiment 2, fixation behavior was significantly influenced by the overall arrangement of the display, with fixations being biased toward the quadrant center when the other three quadrants were scrambled (despite the visual information in this quadrant being identical in all conditions). When scenes are scrambled into four quadrants and semantic contiguity is disrupted, observers no longer appear to view the content as a single scene (despite it consisting of the same visual information overall), but rather anchor visual inspection around the four separate “sub-scenes.” Moreover, the frame of reference that observers use when viewing the multiplex seems to change across viewing time: from an early bias toward the display center to a later bias toward quadrant centers

    The reentry hypothesis: linking eye movements to visual perception

    Get PDF
    Cortical organization of vision appears to be divided into perception and action. Models of vision have generally assumed that eye movements serve to select a scene for perception, so action and perception are sequential processes. We suggest a less distinct separation. According to our model, occulomotor areas responsible for planning an eye movement, such as the frontal eye field, influence perception prior to the eye movement. The activity reflecting the planning of an eye movement reenters the ventral pathway and sensitizes all cells within the movement field so the planned action determines perception. We demonstrate the performance of the computational model in a visual search task that demands an eye movement toward a target
    • 

    corecore