27,152 research outputs found

    Dynamic File-Access Characteristics of a Production Parallel Scientific Workload

    Get PDF
    Multiprocessors have permitted astounding increases in computational performance, but many cannot meet the intense I/O requirements of some scientific applications. An important component of any solution to this I/O bottleneck is a parallel file system that can provide high-bandwidth access to tremendous amounts of data in parallel to hundreds or thousands of processors. Most successful systems are based on a solid understanding of the characteristics of the expected workload, but until now there have been no comprehensive workload characterizations of multiprocessor file systems. We began the CHARISMA project in an attempt to fill that gap. We instrumented the common node library on the iPSC/860 at NASA Ames to record all file-related activity over a two-week period. Our instrumentation is different from previous efforts in that it collects information about every read and write request and about the mix of jobs running in the machine (rather than from selected applications). The trace analysis in this paper leads to many recommendations for designers of multiprocessor file systems. First, the file system should support simultaneous access to many different files by many jobs. Second, it should expect to see many small requests, predominantly sequential and regular access patterns (although of a different form than in uniprocessors), little or no concurrent file-sharing between jobs, significant byte- and block-sharing between processes within jobs, and strong interprocess locality. Third, our trace-driven simulations showed that these characteristics led to great success in caching, both at the compute nodes and at the I/O nodes. Finally, we recommend supporting strided I/O requests in the file-system interface, to reduce overhead and allow more performance optimization by the file system

    Towards Loosely-Coupled Programming on Petascale Systems

    Full text link
    We have extended the Falkon lightweight task execution framework to make loosely coupled programming on petascale systems a practical and useful programming model. This work studies and measures the performance factors involved in applying this approach to enable the use of petascale systems by a broader user community, and with greater ease. Our work enables the execution of highly parallel computations composed of loosely coupled serial jobs with no modifications to the respective applications. This approach allows a new-and potentially far larger-class of applications to leverage petascale systems, such as the IBM Blue Gene/P supercomputer. We present the challenges of I/O performance encountered in making this model practical, and show results using both microbenchmarks and real applications from two domains: economic energy modeling and molecular dynamics. Our benchmarks show that we can scale up to 160K processor-cores with high efficiency, and can achieve sustained execution rates of thousands of tasks per second.Comment: IEEE/ACM International Conference for High Performance Computing, Networking, Storage and Analysis (SuperComputing/SC) 200

    High Energy Physics Forum for Computational Excellence: Working Group Reports (I. Applications Software II. Software Libraries and Tools III. Systems)

    Full text link
    Computing plays an essential role in all aspects of high energy physics. As computational technology evolves rapidly in new directions, and data throughput and volume continue to follow a steep trend-line, it is important for the HEP community to develop an effective response to a series of expected challenges. In order to help shape the desired response, the HEP Forum for Computational Excellence (HEP-FCE) initiated a roadmap planning activity with two key overlapping drivers -- 1) software effectiveness, and 2) infrastructure and expertise advancement. The HEP-FCE formed three working groups, 1) Applications Software, 2) Software Libraries and Tools, and 3) Systems (including systems software), to provide an overview of the current status of HEP computing and to present findings and opportunities for the desired HEP computational roadmap. The final versions of the reports are combined in this document, and are presented along with introductory material.Comment: 72 page

    Preparing HPC Applications for the Exascale Era: A Decoupling Strategy

    Full text link
    Production-quality parallel applications are often a mixture of diverse operations, such as computation- and communication-intensive, regular and irregular, tightly coupled and loosely linked operations. In conventional construction of parallel applications, each process performs all the operations, which might result inefficient and seriously limit scalability, especially at large scale. We propose a decoupling strategy to improve the scalability of applications running on large-scale systems. Our strategy separates application operations onto groups of processes and enables a dataflow processing paradigm among the groups. This mechanism is effective in reducing the impact of load imbalance and increases the parallel efficiency by pipelining multiple operations. We provide a proof-of-concept implementation using MPI, the de-facto programming system on current supercomputers. We demonstrate the effectiveness of this strategy by decoupling the reduce, particle communication, halo exchange and I/O operations in a set of scientific and data-analytics applications. A performance evaluation on 8,192 processes of a Cray XC40 supercomputer shows that the proposed approach can achieve up to 4x performance improvement.Comment: The 46th International Conference on Parallel Processing (ICPP-2017
    corecore