11,102 research outputs found

    CNN Based 3D Facial Expression Recognition Using Masking And Landmark Features

    Get PDF
    Automatically recognizing facial expression is an important part for human-machine interaction. In this paper, we first review the previous studies on both 2D and 3D facial expression recognition, and then summarize the key research questions to solve in the future. Finally, we propose a 3D facial expression recognition (FER) algorithm using convolutional neural networks (CNNs) and landmark features/masks, which is invariant to pose and illumination variations due to the solely use of 3D geometric facial models without any texture information. The proposed method has been tested on two public 3D facial expression databases: BU-4DFE and BU-3DFE. The results show that the CNN model benefits from the masking, and the combination of landmark and CNN features can further improve the 3D FER accuracy

    Automatic Emotion Recognition: Quantifying Dynamics and Structure in Human Behavior.

    Full text link
    Emotion is a central part of human interaction, one that has a huge influence on its overall tone and outcome. Today's human-centered interactive technology can greatly benefit from automatic emotion recognition, as the extracted affective information can be used to measure, transmit, and respond to user needs. However, developing such systems is challenging due to the complexity of emotional expressions and their dynamics in terms of the inherent multimodality between audio and visual expressions, as well as the mixed factors of modulation that arise when a person speaks. To overcome these challenges, this thesis presents data-driven approaches that can quantify the underlying dynamics in audio-visual affective behavior. The first set of studies lay the foundation and central motivation of this thesis. We discover that it is crucial to model complex non-linear interactions between audio and visual emotion expressions, and that dynamic emotion patterns can be used in emotion recognition. Next, the understanding of the complex characteristics of emotion from the first set of studies leads us to examine multiple sources of modulation in audio-visual affective behavior. Specifically, we focus on how speech modulates facial displays of emotion. We develop a framework that uses speech signals which alter the temporal dynamics of individual facial regions to temporally segment and classify facial displays of emotion. Finally, we present methods to discover regions of emotionally salient events in a given audio-visual data. We demonstrate that different modalities, such as the upper face, lower face, and speech, express emotion with different timings and time scales, varying for each emotion type. We further extend this idea into another aspect of human behavior: human action events in videos. We show how transition patterns between events can be used for automatically segmenting and classifying action events. Our experimental results on audio-visual datasets show that the proposed systems not only improve performance, but also provide descriptions of how affective behaviors change over time. We conclude this dissertation with the future directions that will innovate three main research topics: machine adaptation for personalized technology, human-human interaction assistant systems, and human-centered multimedia content analysis.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133459/1/yelinkim_1.pd

    Artificial Intelligence Tools for Facial Expression Analysis.

    Get PDF
    Inner emotions show visibly upon the human face and are understood as a basic guide to an individual’s inner world. It is, therefore, possible to determine a person’s attitudes and the effects of others’ behaviour on their deeper feelings through examining facial expressions. In real world applications, machines that interact with people need strong facial expression recognition. This recognition is seen to hold advantages for varied applications in affective computing, advanced human-computer interaction, security, stress and depression analysis, robotic systems, and machine learning. This thesis starts by proposing a benchmark of dynamic versus static methods for facial Action Unit (AU) detection. AU activation is a set of local individual facial muscle parts that occur in unison constituting a natural facial expression event. Detecting AUs automatically can provide explicit benefits since it considers both static and dynamic facial features. For this research, AU occurrence activation detection was conducted by extracting features (static and dynamic) of both nominal hand-crafted and deep learning representation from each static image of a video. This confirmed the superior ability of a pretrained model that leaps in performance. Next, temporal modelling was investigated to detect the underlying temporal variation phases using supervised and unsupervised methods from dynamic sequences. During these processes, the importance of stacking dynamic on top of static was discovered in encoding deep features for learning temporal information when combining the spatial and temporal schemes simultaneously. Also, this study found that fusing both temporal and temporal features will give more long term temporal pattern information. Moreover, we hypothesised that using an unsupervised method would enable the leaching of invariant information from dynamic textures. Recently, fresh cutting-edge developments have been created by approaches based on Generative Adversarial Networks (GANs). In the second section of this thesis, we propose a model based on the adoption of an unsupervised DCGAN for the facial features’ extraction and classification to achieve the following: the creation of facial expression images under different arbitrary poses (frontal, multi-view, and in the wild), and the recognition of emotion categories and AUs, in an attempt to resolve the problem of recognising the static seven classes of emotion in the wild. Thorough experimentation with the proposed cross-database performance demonstrates that this approach can improve the generalization results. Additionally, we showed that the features learnt by the DCGAN process are poorly suited to encoding facial expressions when observed under multiple views, or when trained from a limited number of positive examples. Finally, this research focuses on disentangling identity from expression for facial expression recognition. A novel technique was implemented for emotion recognition from a single monocular image. A large-scale dataset (Face vid) was created from facial image videos which were rich in variations and distribution of facial dynamics, appearance, identities, expressions, and 3D poses. This dataset was used to train a DCNN (ResNet) to regress the expression parameters from a 3D Morphable Model jointly with a back-end classifier
    • …
    corecore