3 research outputs found

    Noise uncertainty effect on multi-channel cognitive radio networks

    Get PDF
    Achieving high throughput is the most important goal of cognitive radio networks. The main process in cognitive radio is spectrum sensing that targets getting vacant channels. There are many sensing methods like matched filter, feature detection, interference temperature and energy detection which is employed in the proposed system; however, energy detection suffers from noise uncertainty. In this paper a study of throughput under noise fluctuation effect is introduced. The work in this paper proposes multi-channel system; the overall multi-channel throughput is studied under noise fluctuation effect. In addition, the proficiency of the network has been examined under different number of channels and sensing time with noise uncertainty

    Comparative Analysis of Blind Detectors in a Cluster-Based Cooperative Spectrum Hole Detection

    Get PDF
    Prevention of authorized users from interference determine the accurate detection of Spectrum Hole (SH) is of great importance in a Spectrum Shearing Network (SSN). However, multipath fading and shadowing affect the accurate detection of SH resulting in interference. Cluster-Based Cooperative Spectrum Hole Detection (CBCSHD) used to address this problem depends on detector and number of clusters. Hence, comparative analysis of blind detectors in CBCSHD is carried out to evaluate its performance with various blind detectors and number of clusters. The CBCSHD is carried out using six Cognitive Users (CUs) that jointly carry out detection of SH and each of the CUs performs local sensing using Eigenvalue Detector (EVD), Energy Detector (ED) and Cyclostationary Detector (CD). The CUs form clusters to reduce reporting overhead between CUs. The local sensing results from individual user are combined at the Cluster Head (CH) using majority fusion rule. The performance of each of the detectors in CBCSHD is evaluated using Probability of Detection (PD) and Sensing Time (ST). PD values of 0.7661, 0.7160 and 0.6229 are obtained at SNR of 4 dB for ED, CD and EVD, respectively, while ST values of 3.0707, 3.7163 and 4.0907 s are obtained for ED, CD and EVD, respectively. The results obtained show that ED has the highest detection rate, followed by CD, while EVD shows the worst detection rate
    corecore