8 research outputs found

    Event detection and localization in distribution grids with phasor measurement units

    Get PDF
    The recent introduction of synchrophasor technology into power distribution systems has given impetus to various monitoring, diagnostic, and control applications, such as system identification and event detection, which are crucial for restoring service, preventing outages, and managing equipment health. Drawing on the existing framework for inferring topology and admittances of a power network from voltage and current phasor measurements, this paper proposes an online algorithm for event detection and localization in unbalanced three-phase distribution systems. Using a convex relaxation and a matrix partitioning technique, the proposed algorithm is capable of identifying topology changes and attributing them to specific categories of events. The performance of this algorithm is evaluated on a standard test distribution feeder with synthesized loads, and it is shown that a tripped line can be detected and localized in an accurate and timely fashion, highlighting its potential for real-world applications

    Multivariate detection of power system disturbances based on fourth order moment and singular value decomposition

    Get PDF
    This paper presents a new method to detect power system disturbances in a multivariate context, which i s based on Fourth Order Moment (FOM) and multivar iate analysis implemented as S ingular Value Decomposition (SVD). The motivati on for this development is that power systems are increasingly affected by various disturbances and t here is a requirement for the analysis of measurement s to detect these disturbances. The ap plication results on the measurements of an actual power system in Europe illustrate that the proposed multivariate detection method achieves enhanced detection reliability and sensitivity

    A Data-driven Approach to Power System Dynamic State Estimation

    Get PDF
    State estimation is a key function in the supervisory control and planning of an electric power grid. Typically, the independent system operator (ISO) runs least-squares based static state estimation once every few minutes. Inherently, however, a power system is mostly in a transient state owing to load fluctuations, outages and network switching. In such a scenario, dynamic state estimation facilitates real-time monitoring and control of the system. Dynamic state estimation is implemented using Kalman filtering techniques. Popular estimators for nonlinear systems include the extended Kalman filter (EKF) and unscented Kalman filter (UKF). Practical implementation, however, is inhibited by the lack of an accurate system model and the high computational complexity of Kalman filtering methods. I address the former issue of model unavailability and rely instead on measurement data from phasor measurement units for dynamic state estimation (DSE). I build an estimator for DSE which uses only measurement and input information, and operates without knowledge of the underlying system model. The algorithm considered uses a Gaussian process (GP) approximation of the state transition and observation functions in the implementation of a UKF-based state estimation. I analyze the performance of the estimator for different scenarios using root mean squared (RMS) error as the metric. The estimator, when evaluated on the IEEE 14-bus test case, gives a minimum accuracy rate of over 94% over all considered scenarios

    Wide-Area Monitoring of Power Systems Using Principal Component Analysis and k-Nearest Neighbor Analysis

    Get PDF
    Wide-area monitoring of power systems is important for system security and stability. It involves the detection and localization of power system disturbances. However, the oscillatory trends and noise in electrical measurements often mask disturbances, making wide-area monitoring a challenging task. This paper presents a wide-area monitoring method to detect and locate power system disturbances by combining multivariate analysis known as Principal Component Analysis (PCA) and time series analysis known as k-Nearest Neighbor (kNN) analysis. Advantages of this method are that it can not only analyze a large number of wide-area variables in real time but also can reduce the masking effect of the oscillatory trends and noise on disturbances. Case studies conducted on data from a four-variable numerical model and the New England power system model demonstrate the effectiveness of this method

    Short-Term Industrial Load Forecasting Based on Ensemble Hidden Markov Model

    Get PDF
    Short-term load forecasting (STLF) for industrial customers has been an essential task to reduce the cost of energy transaction and promote the stable operation of smart grid throughout the development of the modern power system. Traditional STLF methods commonly focus on establishing the non-linear relationship between loads and features, but ignore the temporal relationship between them. In this paper, an STLF method based on ensemble hidden Markov model (e-HMM) is proposed to track and learn the dynamic characteristics of industrial customer’s consumption patterns in correlated multivariate time series, thereby improving the prediction accuracy. Specifically, a novel similarity measurement strategy of log-likelihood space is designed to calculate the log-likelihood value of the multivariate time series in sliding time windows, which can effectively help the hidden Markov model (HMM) to capture the dynamic temporal characteristics from multiple historical sequences in similar patterns, so that the prediction accuracy is greatly improved. In order to improve the generalization ability and stability of a single HMM, we further adopt the framework of Bagging ensemble learning algorithm to reduce the prediction errors of a single model. The experimental study is implemented on a real dataset from a company in Hunan Province, China. We test the model in different forecasting periods. The results of multiple experiments and comparison with several state-of-the-art models show that the proposed approach has higher prediction accuracy

    Short-Term Industrial Load Forecasting Based on Ensemble Hidden Markov Model

    Get PDF
    Short-term load forecasting (STLF) for industrial customers has been an essential task to reduce the cost of energy transaction and promote the stable operation of smart grid throughout the development of the modern power system. Traditional STLF methods commonly focus on establishing the non-linear relationship between loads and features, but ignore the temporal relationship between them. In this paper, an STLF method based on ensemble hidden Markov model (e-HMM) is proposed to track and learn the dynamic characteristics of industrial customer’s consumption patterns in correlated multivariate time series, thereby improving the prediction accuracy. Specifically, a novel similarity measurement strategy of log-likelihood space is designed to calculate the log-likelihood value of the multivariate time series in sliding time windows, which can effectively help the hidden Markov model (HMM) to capture the dynamic temporal characteristics from multiple historical sequences in similar patterns, so that the prediction accuracy is greatly improved. In order to improve the generalization ability and stability of a single HMM, we further adopt the framework of Bagging ensemble learning algorithm to reduce the prediction errors of a single model. The experimental study is implemented on a real dataset from a company in Hunan Province, China. We test the model in different forecasting periods. The results of multiple experiments and comparison with several state-of-the-art models show that the proposed approach has higher prediction accuracy

    Real-time Prediction of Cascading Failures in Power Systems

    Get PDF
    Blackouts in power systems cause major financial and societal losses, which necessitate devising better prediction techniques that are specifically tailored to detecting and preventing them. Since blackouts begin as a cascading failure (CF), an early detection of these CFs gives the operators ample time to stop the cascade from propagating into a large-scale blackout. In this thesis, a real-time load-based prediction model for CFs using phasor measurement units (PMUs) is proposed. The proposed model provides load-based predictions; therefore, it has the advantages of being applicable as a controller input and providing the operators with better information about the affected regions. In addition, it can aid in visualizing the effects of the CF on the grid. To extend the functionality and robustness of the proposed model, prediction intervals are incorporated based on the convergence width criterion (CWC) to allow the model to account for the uncertainties of the network, which was not available in previous works. Although this model addresses many issues in previous works, it has limitations in both scalability and capturing of transient behaviours. Hence, a second model based on recurrent neural network (RNN) long short-term memory (LSTM) ensemble is proposed. The RNN-LSTM is added to better capture the dynamics of the power system while also giving faster responses. To accommodate for the scalability of the model, a novel selection criterion for inputs is introduced to minimize the inputs while maintaining a high information entropy. The criteria include distance between buses as per graph theory, centrality of the buses with respect to fault location, and the information entropy of the bus. These criteria are merged using higher statistical moments to reflect the importance of each bus and generate indices that describe the grid with a smaller set of inputs. The results indicate that this model has the potential to provide more meaningful and accurate results than what is available in the previous literature and can be used as part of the integrated remedial action scheme (RAS) system either as a warning tool or a controller input as the accuracy of detecting affected regions reached 99.9% with a maximum delay of 400 ms. Finally, a validation loop extension is introduced to allow the model to self-update in real-time using importance sampling and case-based reasoning to extend the practicality of the model by allowing it to learn from historical data as time progresses
    corecore