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ABSTRACT

State estimation is a key function in the supervisory control and planning of an electric

power grid. Typically, the independent system operator (ISO) runs least-squares based

static state estimation once every few minutes. Inherently, however, a power system is

mostly in a transient state owing to load fluctuations, outages and network switching. In

such a scenario, dynamic state estimation facilitates real-time monitoring and control of

the system. Dynamic state estimation is implemented using Kalman filtering techniques.

Popular estimators for nonlinear systems include the extended Kalman filter (EKF) and

unscented Kalman filter (UKF). Practical implementation, however, is inhibited by the lack

of an accurate system model and the high computational complexity of Kalman filtering

methods.

I address the former issue of model unavailability and rely instead on measurement

data from phasor measurement units for dynamic state estimation (DSE). I build an esti-

mator for DSE which uses only measurement and input information, and operates without

knowledge of the underlying system model. The algorithm considered uses a Gaussian

process (GP) approximation of the state transition and observation functions in the imple-

mentation of a UKF-based state estimation.

I analyze the performance of the estimator for different scenarios using root mean

squared (RMS) error as the metric. The estimator, when evaluated on the IEEE 14-bus test

case, gives a minimum accuracy rate of over 94% over all considered scenarios.
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NOMENCLATURE

ISO Independent System Operator

SCADA Supervisory Control and Data Acquisition

DSE Dynamic State Estimation

UKF Unscented Kalman Filter

PMU Phasor Measurement Unit

GP Gaussian Process

RMS Root Mean Squared

PSAT Power System Analysis Toolbox

GPML Gaussian Processes for Machine Learning

SE State Estimation

EKF Extended Kalman Filter

AVR Automatic Voltage Regulator (Exciter)
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1. INTRODUCTION

State Estimation is a key functionality in power system operation as it provides the

critical information for other fundamental processes like contingency analysis, load fore-

casting, optimal power flow and economic dispatch. Traditional state estimators compute

the weighted least squares (WLS) estimate [3] of the network state using the data provided

by the SCADA system. This static estimate is based on a steady-state model of the sys-

tem, and does not consider the dynamic behaviour of the system. This scheme has been

effective in estimating the state of transmission network in steady-state. Previously, it was

the only state estimation deployed since SCADA measurements were too infrequent to

consider dynamic state estimation (DSE).

With the rapidly rising deployment of phasor measurement units (PMUs), measure-

ment acquisition can occur at rates of 10 to 60 samples per second. A power network

equipped with PMU technology allows the estimator to capture transient behavior of the

system. DSE has an edge over static SE primarily due to the predictive capability of

Kalman filtering. The step-ahead prediction possible with DSE could open up new av-

enues in preventive control and, improved bad data detection and identification ([4], [5]).

The main obstacles to the practical implementation of DSE are the difficulty in modeling

large power networks with nonlinear dynamics and the high computational complexity

of Kalman filtering methods. I address the former issue of model unavailibilty. I build

an estimator for DSE which uses only measurement and input information, and operates

without knowledge of the underlying system model.

1



1.1 Background

Consider a power transmission network with n buses. Static SE aims to estimate the

network state which is given by:

Xnet := [θ1 V1 θ2 V2 · · · θn Vn]T (1.1)

where θi and Vi are respectively the voltage phasor magnitude and phase angle at bus i, for

i = 1, 2, ....n.

The dynamic state of the system is a different set of variables comprising rotor angles,

speeds, transient and subtransient voltages. The vector formed by stacking the state vari-

ables of all the generators connected to the network, is the dynamic state vector of the

system. Suppose the network has k generators, with the ith generator having a state X i
dyn.

Then, the dynamic state of the network is as follows.

Xdyn := [X1
dyn X

2
dyn · · · Xk

dyn]T (1.2)

1.2 Outline

The relevant variables of my model are as follows.

xk → state at time k

uk → control input at time k

zk → observation at time k

The general form of the process function is the following.

xk = g(uk−1, xk−1) + εk (1.3)

εk ∼ N (0, Qk) (1.4)

2



The observation function is represented in a similar fashion.

zk = h(xk) + δk (1.5)

δk ∼ N (0, Rk) (1.6)

Here, εk and δk represent the process noise and measurement noise respectively. The

objective is to find an estimate x̂k, given uk−1, x̂k−1 and zk, in the absence of knowledge

of mapping functions, g, and h.

Because g and h are nonlinear, even if xk−1 is Gaussian, xk is not necessarily Gaussian.

To proceed, g and h must be linearized. The extended Kalman filter (EKF) performs

linearization using Taylor series expansion around the most recent estimate. UKF applies

a more accurate, stochastic approximation using unscented transform. Unlike EKF, UKF

does not require complex Jacobian computations.

The unknown functions g and h are approximated using GPs. GP is an easily adapt-

able non-parametric Bayesian modeling tool for supervised learning problems. Often,

non-Gaussian processes can be approximated by a mixture of GPs. The use of a Gaus-

sian process (GP) to model nonlinear dynamics is inspired by the fact that averaging over

nonlinear regression models tends to a GP model [6].

The hyperparameters of the GP are learned from past measurements and corresponding

state estimates. The learned GP, in conjunction with the unscented Kalman filter, facili-

tates sequential state estimation. The resulting GP-UKF algorithm was first introduced by

Ko, Klein, Fox & Hahnel in 2007 [7]. The trained estimator is tested by repeatedly sim-

ulating cases from different scenarios - Network switching, parametric uncertainty, load

perturbations and noisy measurements on IEEE 14-bus test case.

3



2. POWER SYSTEM DYNAMICS

2.1 Transmission Line Dynamics

The power transmission grid is predominantly a network of three-phase transmission

lines carrying alternating current. A balanced phase transmission line is often represented

using an equivalent pi circuit. The equivalent circuit for such a transmission line between

bus k and bus m is shown in Fig. 2.1. Line resistance is the main cause of power loss

in the transmission line and is modeled by resistor R. The line inductance jX depends

on the arrangement of conductors, spacing between them and their material. The shunt

capacitance B/2 models the leakage of ac currents. It is the result of potential differences

between the conductors as well as that between the conductors and ground. The capaci-

tance element can be neglected for a short transmission line, one whose length is less than

80 km.

Figure 2.1: The π model for transmission line [1]
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The real and reactive powers entering bus k are given by the equations below.

Pk = V 2
k (gkm + gk0)− VkVm(gkmcos(θk − θm) + bkmsin(θk − θm)) (2.1)

Qk = −V 2
k (bkm + bk0)− VkVm(gkmsin(θk − θm)− bkmcos(θk − θm)) (2.2)

Similarly, the real and reactive powers leaving busm are given by the following equations.

Pm = V 2
m(gkm + gm0)− VkVm(gkmcos(θk − θm)− bkmsin(θk − θm)) (2.3)

Qm = −V 2
m(bkm + bm0) + VkVm(gkmsin(θk − θm) + bkmcos(θk − θm)) (2.4)

The apparent power flow is S =
√
P 2 +Q2.

2.2 Line Breakers

Circuit breakers are automatically operated switches meant to protect devices from

excess current flow. They divert current flow from the line in case of a fault in the line or

overloading. The breaker can be placed anywhere along the transmission line. When it is

opened, current flow in that line drops to zero. This causes steep transients in the state of

the system.

2.3 Generators

2.3.1 Slack generator

The slack generators are responsible for balancing the power system in terms of power

generation, load demand and losses. Additionally, the voltage at the corresponding buses

is kept constant at 16 0o pu. Hence, the slack generator is modeled as a V θ bus, having a

constant bus voltage magnitude and phase angle. The network must possess at least one

slack generator, since it provides the reference voltage for the rest of the system. If there

are multiple slack generators, only one of them is used as the reference. Only the single

5



Figure 2.2: Park-Concordia model for synchronous machine [1]

slack bus model has been considered for simulation.

2.3.2 PV generator

A PV generator fixes the voltage magnitude and power injected at the bus where it is

connected as follows.

P = Pg, V = Vo

2.3.3 Synchronous generator

The rotor of synchronous generator rotates in synchronization with the waveform of

the generated voltage. It is the primary dynamic component of my simulated network.

The generator dynamics are simulated using the Park-Concordia model for synchronous

machines, shown in Fig.2.2. Two axes are defined with respect to the rotor. The direct

axis, or d-axis is along the direction of magnetic flux generated by the field current. The

quadrature axis, or q-axis leads the d-axis by 90o. The machine voltage expressed as

6



components along the d and q axes is related to the network phasor V 6 θo as follows.

vd = V sin(δ − θ) (2.5)

vq = V cos(δ − θ) (2.6)

A simple oscillation stabilizer is used to stabilize the field voltage. It uses a feedback of the

rotor speed and active power produced by the machine as given in the following equation.

v∗f = vf +Kω(ω − 1)−KP (P (x, V, θ)− Po) (2.7)

Here, Kω is the speed feedback gain, KP is the active power feedback gain, and Po is the

initial electric power generated by the machine.

In Table 2.1, we define the parameters of the machine.

x =



δ

ω

e′q

e′d

e′′q

e′′d


, u =


Pm

Pe

v∗f

 , z =



θ

V

P

Q


(2.8)

In Eq. (2.8), x represents the state of the generator dynamics, u is the control input and

z comprises the observed variables. The variables involved in the these vectors are de-

scribed briefly in Table 2.2. The sixth order dynamics of the Park-Concordia model for

7



Symbol Description
xl Leakage Resistance
ra Armature resistance
xd d-axis synchronous reactance
x′d d-axis transient reactance
x′′d d-axis subtransient reactance
x′q q-axis transient reactance
x′′q q-axis subtransient reactance
T ′d0 d-axis open-circuit transient time constant
T ′′do d-axis open-circuit subtransient time constant
T ′q0 q-axis open-circuit transient time constant
T ′′qo q-axis open-circuit subtransient time constant
H Inertia constant
M = 2H Mechanical starting time
D Damping coefficient
Kω Speed feedback gain
KP Active power feedback gain
TAA d-axis additional time constant

Table 2.1: Synchronous generator parameters

Symbol Description
δ Rotor angle
ω Rotor speed
e′q q-axis transient voltage
e′d d-axis transient voltage
e′′q q-axis subtransient voltage
e′′d d-axis subtransient voltage
Pe Electrical demand(load) power
Pm Mechanical power input
v∗f Field voltage
θ Bus voltage phase angle
V Bus voltage magnitude
P Net active power injection at bus
Q Net reactive power injection at bus

Table 2.2: Synchronous generator variables

8



synchronous generators is described by the following set of differential equations.

δ̇ = Ωb(ω − 1)

ω̇ = (Pm − Pe −D(ω − 1))/M

ė′q = (−fs(e′q)− (xd − x′d −
T ′′do
T ′do

x′′d
x′d

(xd − x′d))id + (1− TAA
T ′do

v∗f )/T
′
do

ė′d = (−e′d + (xq − x′q −
T ′′qo
T ′qo

x′′q
x′q

(xq − x′q))iq)/T ′qo

ė′′q = (−e′′q + e′q − (x′d − x′′d +
T ′′do
T ′do

x′′d
x′d

(xd − x′d))id +
TAA
T ′do

v∗F )/T ′′do

ė′′d = (−e′′d + e′d + (x′q − x′′q +
T ′′qo
T ′qo

x′′q
x′q

(xq − x′q))iq)/T ′′qo

(2.9)

The power balance equation is as follows.

Pe = (vq + raiq)iq + (vd + raid)id (2.10)

Coupling equations between the generator and the bus are given in Eq. (2.11).

0 = vq + raiq − e′q + (x′d − xl)id

0 = vd + raid − (xq − xl)iq
(2.11)

The slack generator is simulated using the fifth order model which assumes that e′d = 0

and xq = x′q.

2.4 Controls

2.4.1 Turbine governor

Turbine governors provide the primary frequency regulation for synchronous genera-

tors. Turbine governors are simulated using the type I model in PSAT [2]. The parameters

of the type I turbine governor of Fig. 2.3 are defined in Table 2.3.

9



Figure 2.3: PSAT type I turbine governor [1]

Symbol Description
R Droop
Tmax Maximum turbine output
Tmin Minimum turbine ouptut
Ts Governor time constant
Tc Servo time constant
T3 Transient gain time constant
T4 Power fraction time constant
T5 Reheat time constant

Table 2.3: Synchronous generator variables

The set of equations corresponding to Fig. 2.3 are provided below.

T ∗in = Torder +
1

R
(ωref − ω)

Tin =


T ∗in, Tmin ≤ T ∗in ≤ Tmax

Tmax, T ∗in > Tmax

Tmin, T ∗in < Tmin

ṫ1 = (Tin − t1)/Ts

ṫ2 = ((1− T3

Tc
t1 − t2)/Tc

ṫ3 = ((1− T4

T5

)(t2 +
T3

Tc
t1)− t3)/T5

Tmech = t3 +
T4

T5

(t2 −
T3

Tc
t1)

(2.12)

10



Figure 2.4: IEEE std model I AVR [1]

In Eq. (2.12), the variable Tmech is equivalent to the mechanical power input to the gener-

ator, Pm in Table 2.1.

2.4.2 Automatic voltage regulator

AVR provides the primary voltage regulation in power system. The IEEE standard

model I AVR is illustrated in Fig. 2.4. The parameters used to model the AVR are specified

in Table 2.4.

The ceiling function, Se(vf ) which characterizes the saturation of the exciter, is given by:

Se(vf ) = Ae(e
Be|vf | − 1) (2.13)

The block diagram in Fig. 2.4 corresponds to the following set of equations.

11



Symbol Description
Ka Amplifier gain
Ta Amplifier time constant
Kf Stabilizer gain
Tf Stabilizer time constant
Te Field circuit time constant
Tr Measurement time constant
Ae First ceiling coefficient
Be Second ceiling coefficient

Table 2.4: AVR parameters

v̇m = (v − vm)/Tr

v̇r1 = (Ka(vref − vm − vr2 −
Kf

Tf
vf )− vr1)/Ta

vr =


vr1, vrmin ≤ vr1 ≤ vrmax

vrmax, vr1 > vrmax

vrmin, vr1 < vrmin

v̇r2 = −(
Kf

Tf
vf + vr2)/Tf

v̇f = −(vf (1 + Se(vf ))− vr)/Te

(2.14)

2.5 Load

The load considered is a PQ load, which is characterized by constant active and re-

active powers. After finding the initial power flow solution, i.e. before the time-domain

simulation, these are converted to constant impedances.

2.6 Power Flow

Before running the time domain simulation, I first arrive at the power flow solution for

the system. This forms the initial condition for the time-domain simulation. The objective
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is to find the solution to a set of nonlinear equations of the form:

ẋ =0 = f(x, y)

0 = g(x, y)

(2.15)

where the algebraic expressions g (g ∈ Rm) represent the power flow/balance equa-

tions, and f (f ∈ Rn) represents the differential equations. Correspondingly, y (y ∈ Rm)

comprises algebraic variables such as bus voltages and power flows while x (x ∈ Rn) is

the vector of state variables. The solution to the power flow problem is obtained using

the Newton-Raphson method [8]. In brief, the algorithm involves iteratively updating the

Jacobian of Eq. 2.15 and solving the following linear problem:

∆xi

∆yi

 = −

F i
x −F i

y

Gi
x Gi

y


−1 f i

gi


xi+1

yi+1

 =

xi
yi

 +

∆xi

∆yi


(2.16)

where Fx = ∇x fx, Fy = ∇y fy, Gx = ∇x gx and Gy = ∇y gy. The algorithm is stopped

once the increments ∆x and ∆y become lower than some pre-decided tolerance level ε, or

if the maximum number of iterations is reached.
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3. DYNAMIC STATE ESTIMATION

3.1 Notation

The relevant variables defined at sample time k are given in Table 3.1.

xk The state vector
uk The control input vector
zk The incoming measurement vector
x̂k|k A filtered vector: state estimate updated using current measurement
x̂(k+1)|k A predicted state estimate

Table 3.1: DSE variables for time instant k

3.2 Why DSE?

It has been established that PMU sensing can pave the way for dynamic state estima-

tion. However, I am yet to justify the necessity of DSE. The prime advantage of Kalman

filtering based DSE is the ability to predict the state of the system. This predictive capa-

bility can further be used in preventive control strategies, and load forecasting. When it

comes to bad data detection, specifically gross measurement errors, DSE offers promis-

ing options. For instance, the detection can be performed by comparing the measurement

values with the corresponding prediction. A few such DSE ’pre-filtering’ methods have

been proposed (Nishiya et al. [4], Leite da Silva [5]). It might also make the system robust

to short periods of unobservability, since, pseudo-measurements can be obtained from the

prediction x̂k|(k−1).
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3.3 Limitations of DSE

There are two main obstacles to the physical implementation of DSE in large scale

power systems. Firstly, it is challenging to find a model that is sufficiently accurate yet

simple enough for practical application. Additionally, the computational complexity of

Kalman filtering approach is proportional to n3, n being the size of state vector. This work

addresses the former concern, i.e, the lack of an accurate model by relying instead on PMU

data. The algorithm can be sped up by utilizing sparse matrix operations and parallelizing

computations (Karimipour et al. [9]).

3.4 Kalman Filtering

Consider a dynamic system modeled by a set of nonlinear equations.

xk = g(xk−1) + εk−1

εk−1 ∼ N (0, Qk−1)→ Process Noise
(3.1)

The measurements at time instant k are represented as a vector of non-linear functions of

the state variables x.

zk = h(xk) + δk

δk ∼ N (0, Rk)→ Measurement Noise
(3.2)

Initially, non-linear estimation problems were solved by a variant of the Kalman filter,

namely the Extended Kalman Filter (EKF). EKF uses an approximate linearization of the

system based on the Taylor series expansion of g(x). It also uses the Jacobian matrices of

nonlinear functions g and h, which may require complex computation and may not always

exist. Subsequently, extensions and generalizations have been developed for the Kalman

filtering of nonlinear systems. One such algorithm is the Unscented Kalman Filter. When
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g and h are highly nonlinear, EKF can perform poorly [10]. The UKF is seen to more

accurately determine the mean and covariance, for certain systems [11]. Moreover, UKF

does not involve Jacobian calculations which are far from trivial for a complex system.

3.4.1 Unscented transform

Consider the n-dimensional estimate x as having a Gaussian distribution with mean

µ and covariance Σ. Unscented transformation involves sampling the distribution over

the estimate at specific ’sigma’ points. The sampling is not random, but rather has a

specific algorithm that results in a sample mean and covariance of µ and Σ respectively.

Specifically, the sampling is:

X 0 = µ

X i = µ+ (
√

(n+ λ)Σ)i for i = 1, 2, ..., n

X i = µ− (
√

(n+ λ)Σ)i−n for i = n+ 1, ..., 2n

(3.3)

where, (
√

(n+ λ)Σ)i is the ith column of the matrix square root and λ is a weight param-

eter that controls how far apart the sample points lie.

The sampled points are subsequently passed through g (or h), thereby analyzing how

the noise-free system changes the shape of the Gaussian. The parameters of the resulting

Gaussian approximation are extracted from the mapped points Y i = g(X i) as follows.

µ′ =
2n∑
i=0

wiY i (3.4)

Σ′ =
2n∑
i=0

wi(Y i − µ′)(Y i − µ′)T (3.5)
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where the weights wi are chosen according to the following equations.

w0 =
λ

n+ λ
(3.6)

wi =
1

2(n+ λ)
for i = 1, 2, ...2n (3.7)

3.4.2 Unscented Kalman filter

Let the initial state mean and covariance be mo and Σo respectively. The UKF algo-

rithm has two stages.

Prediction

• Sample the posterior distribution of the previous estimate at 2n+ 1 sigma points:

Xk−1 = (µk−1 µk−1 + γ
√

Σk−1 µk−1 − γ
√

Σk−1) (3.8)

• Pass sigma points, Xk−1 through process function g : X̄k = g(Xk−1)

• Compute the predicted state by extracting a Gaussian distribution from X̄k with

mean and covariance:

µ̂k =
2n∑
i=0

wimX̄ i
k (3.9)

Σ̂k =
2n∑
i=0

wim(X̄ i
k − µ̂k)(X̄ i

k − µ̂k)T +Qk−1 (3.10)

Update

• Sample the posterior distribution of the prediction at 2n+ 1 sigma points:

X̂k = (µ̂k µ̂k + γ

√
Σ̂k µ̂k − γ

√
Σ̂k) (3.11)
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• Pass the sigma points, X̂k through observation function h : Ẑk = h(X̂k)

• Compute the predicted observation by extracting a Gaussian distribution from Ẑk

with mean and covariance:

ẑk =
2n∑
i=0

wimẐ
i
k (3.12)

Sk =
2n∑
i=0

wic(Ẑ
i
k − ẑk)(Ẑi

k − ẑk)T +Rk (3.13)

(3.14)

• Compute the cross covariance between the sigma points, X̂k and Ẑk.

Σ̂x,z
k =

2n∑
i=0

wic(X̂ i
k − µ̂k)(Ẑi

k − ẑk)T (3.15)

• Kalman gain: Kk = Σ̂x,z
k S−1

k

• State estimate:

µk = µ̂k +Kk(zk − ẑk) (3.16)

Σk = Σ̂k −KkSkK
T
k (3.17)
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4. GAUSSIAN PROCESSES AND GP-UKF

4.1 Gaussian Processes

Modeling time-series data is challenging, because it is difficult to determine a model

which can capture the nonlinearities of the data without overfitting. The use of Gaussian

process (GP) to model nonlinear dynamics is inspired by the fact that averaging over non-

linear regression models tends to a GP model. Gaussian processes have been used as a

nonlinear regression tool in many applications. For instance, Girard et al. used GPs for

multiple-step ahead prediction for time-series data [12]. In fact, GPs have proved to be

successful tools in complex nonlinear problems like tracking 3D human figures (Siden-

bladh et al. [13]).

4.1.1 Advantages of GP models

The application of a GP model to machine learning problems is inspired by the follow-

ing features.

• They are an easily adaptable non-parametric Bayesian modelling tool for supervised

learning problems.

• Given the hyperparameter values (spread of the Gaussian kernel and the peak lo-

cation), they can be optimized exactly. This allows for fine-tuning of the trade-off

between fitting of data and smoothing.

• They are especially reliable on small datasets because of this fine-tuned smoothing

and reasonably low computational burden.

• Often, non-Gaussian processes can be approximated by a mixture of GPs.
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4.1.2 Limitations of GP

They do not scale well. The computational burden is O(n3), so if the number of

features exceeds a few dozens, they might not be an efficient strategy. However, there

are tricks for dimensionality reduction which might improve their applicability to high-

dimension data.

4.1.3 GP for machine learning

Consider a general noisy observation of the form:

yi = f(xi) + ε, xi ∈ <n (4.1)

where ε ∼ N (0, σ2
n) is noise and yi is a scalar

Let

X = [x1,x2, ...,xn]

y = [y1, y2, ..., yn].

Then the distribution on y is given by Eq. (4.2).

p(y|X,Θ) = N (0, K(X,X) + σ2
nI) (4.2)

K(X,X) is a kernel matrix such that Kij = k(xi,xj), k being a kernel function based on

the measure of closeness between input vectors. The kernel function used to describe the

GPs in this thesis, is the squared exponential kernel given below.

k(x,x′) = σ2
fexp(

−(x− x′)W (x− x′)T

2
) (4.3)
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In Eq. (4.3), W is a diagonal matrix of the length scaling factors for each input dimension.

Learning GP Hyperparameters

The GP hyperparameter Θ = [W,σ2
f , σ

2
n] can be learned by maximizing the log likelihood

of the training outputs given the inputs.

Θmax = argmax
Θ

log(p(y|X,Θ)) (4.4)

The optimization problem in Eq. (4.4) can be solved in a number of ways, such as using

conjugate gradient descent [14].

log p(y|X,Θ) = −1

2
yTK−1

y y − 1

2
log|Ky| −

n

2
log 2π (4.5)

where Ky = K(X,X) + σ2
nI .

Each of the three terms has a recognizable interpretation. The first term is the only one

involving the target y, and is responsible for data fitting. The term log|Ky|/2 serves as a

complexity penalty, and n log 2π/2 is a normalization constant.

The partial derivative of the objective function with respect to the hyperparameters is

given below.

∂

∂θj
log p(y|X,Θ) =

1

2
yTK−1

y

∂Ky

∂θj
K−1
y y − 1

2
tr(K−1

y

∂Ky

∂θj
)

=
1

2
tr((ααT −K−1

y )
∂Ky

∂θi
)

(4.6)

where α = K−1
y y

Once K−1
y is known, the computational complexity of Eq. (4.6) is O(n2) per hyper-

parameter. Due to the relatively small computational overhead of computing derivatives,

gradient based optimizer is apt for training the GP.
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GP prediction

At a test point x∗, the predicted observation y∗ has a Gaussian distribution with mean,

GPµ(x∗, D) = k∗
T [K + σ2

nI]−1y (4.7)

and covariance matrix,

GPΣ(x∗, D) = k(x∗,x∗)− k∗
T [K + σ2

nI]−1k∗ (4.8)

where, k∗ = k(x∗,X).

4.2 GP-UKF

The GP-UKF algorithm is fundamentally similar to UKF but with one major differ-

ence. In place of g, I use the GP approximation GP g and in place of the observation

function, GP h. To determine these approximations, I collect training data. These exam-

ples are used to learn the hyperparameters that define the GP.

4.2.1 Learning prediction and observation models

The training data comprises the following.

Prediction data set: Dg = 〈(X,U), X ′〉

Observation data set: Dh = 〈(X,Z)〉

where X is the matrix of ground truth states, X ′ = [∆x1,∆x2, ....∆xk] is the matrix of

state transitions when applying the controls in U . Z is the matrix of observations.
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GP approximation of functions g and h are GP g and GP h respectively.

xk = GP g
µ([xk−1, uk−1], Dg) + εk

zk = GP h
µ (xk, Dh) + δk

εk ∼ N (0, GP g
Σ([xk−1, uk−1], Dg))

δk ∼ N (0, GP h
Σ(xk, Dh))

(4.9)

Each GP has a single global noise parameter σn. A separate GP must be learned for each

output dimension. The resulting separate variances are collected on the diagonal of a

Variance matrix.

4.2.2 The algorithm

Data:

• (µk−1,Σk−1, uk−1, zk)

• Prediction model training data: Dg

• Observation model training data: Dh

Result: µk,Σk

Initialization: µ0 = sample mean of Dg, Σ0 = sample covariance of Dg;
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Sigma points Xk−1 = (µk−1 µk−1 + γ
√

Σk−1 µk−1 − γ
√

Σk−1) ;

for i = 0, . . . , 2n do

X̄ i
k = GPµ(uk−1,X i

k−1, Dg) ;

end

Qk = GPΣ(uk−1, µk−1, Dg) ;

µ̂k =
∑2n

i=0w
i
mX̄ i

k ;

X̂k = (µ̂k µ̂k + γ
√

Σ̂k µ̂k − γ
√

Σ̂k) ;

for i = 0, . . . , 2n do

Ẑi
k = GPµ(X̂ i

k, Dh) ;

end

Rk = GPΣ(µ̂k, Dh) ;

ẑk =
∑2n

i=0w
i
mẐ

i
k ;

Sk =
∑2n

i=0 w
i
c(Ẑ

i
k − ẑk)(Ẑi

k − ẑk)T +Rk ;

Σ̂x,z
k =

∑2n
i=0w

i
c(X̂ i

k − µ̂k)(Ẑi
k − ẑk)T ;

Kk = Σ̂x,z
k S−1

k ;

µk = µ̂k +Kk(zk − ẑk) ;

Σk = Σ̂k −KkSkK
T
k ;

Algorithm 1: GP-UKF Algorithm [7]
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5. EVALUATION OF GP-UKF DYNAMIC STATE ESTIMATOR

5.1 Simulation Data

The estimator has been evaluated on the IEEE 14-bus test case shown in Fig. 5.1. The

complete data for the IEEE 14 bus system is given in Appendix A.

Firstly, the system must be initialized. This is done by running power flow operation on

PSAT for the system. This finds the steady state solution for the various currents, voltages

and power flows within the system. The results of power flow are listed in Appendix B.

5.1.1 Collecting training data

It is desirable to collect training data which reflects the dynamic behavior of the system.

The idea is to simulate a sudden change in network topology which will cause the system

to go into transient state. Multiple such stimulants can be given over a short period to get

small amounts of varied data. A simple scenario that was utilized for this purpose involved

opening both circuit breakers on the lines between bus 2 and bus 3, and between bus 2 and

bus 4 at time, t = 1 second.

5.2 Training the Gaussian Process Model

The training data is used to ’infer’ the posterior distribution on the process and ob-

servation functions, i.e. p(g|Dg) and p(h|Dh) respectively. The GPML toolbox [15] is

equipped with a few inference methods.

5.2.1 Exact inference

By imposing a Gaussian likelihood on the training data, it is possible to perform exact

inference of the posterior. In fact, the inference problem reduces to simply computing the

mean and covariance of a multivariate Gaussian distribution. This can be done using basic

25



Figure 5.1: IEEE 14-bus system with legend [2]
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matrix algebra.

5.2.2 The hyperparameters

Covariance function

A covariance function kψ : X x X → R with hyperparameters ψ is defined for every

GP f . It computes the covariance kψ(xi,xj) = E[(f(xi) − m(xi))(f(xj) − m(xj))]

between inputs xi and xj. The covariance function used is the squared exponential function

with automatic relevance detection, along with an additive measurement noise component.

Mathematically, the covariance function is given as:

k(x,y) = σ2
fexp((x− y)TP−1(x− y)) + σ2

nδ(x− y) (5.1)

where the relevance matrix is P = Λ2,Λ = diag(λ), λ ∈ RD
+ . Thus, the hyperparameters

to be trained are ψ = {λ, σf , σn}.

5.3 Training Phase

The trained estimator is first evaluated on the training data. The data for training is

generated by opening circuit breakers on two lines - one between bus 2 and bus 4 and the

other between bus 2 and bus 3, both at t = 1 second. The corresponding RMS error is

plotted in Fig. 5.2f. The maximum training error reached is 1.53%. Thus, the GP model

fits the training data with a 98.4% accuracy.

5.4 Validation Phase

Validation is a technique used to decide between models or external fixed parameters.

The data is split into training samples and validation sets. The trained estimators are

evaluated based on the errors observed with the validation set. The estimator with the

best performance is picked for testing. This strategy is used to pick between a handful

of inference models, mean functions and covariance functions. It is also used to pick a
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(a) Synchronous generator at bus 1 (b) Synchronous generator at bus 2

(c) Synchronous generator at bus 3 (d) Synchronous generator at bus 6

(e) Synchronous generator at bus 8 (f) RMS error

Figure 5.2: Training phase: Estimated (in red) and true (in blue) states - rotor angle and
speed of synchronous machines at buses 1, 3, 2, 8 and 6 respectively.
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good value for the weight parameter λ. Recall that, λ determines the spacing between

consecutive samples in the procedure for unscented transform. Larger λ values would

mean that samples are farther apart and capture more outlier data. However, these might

perform poorly since outlier scenarios are rarer. Thus, there is a trade-off between fitting

and generalization. This point is highlighted in the Fig. 5.3. Based on the validation error

observed for different states, a value of λ = 0.1 is picked.

Figure 5.3: Sum squared error over all samples for the state variable δ (generator at bus 1)
for different values of λ

5.5 Testing Conditions

5.5.1 Scenario 1: Topology change

Once I arrive at a set of learned hyperparameters, I start to evaluate the performance

of the particular GP. To do this, I simulate scenarios which differ in general pattern from

the training data. The first such scenario is a topology change using circuit breakers.

Specifically, the opening of a breaker on the line between bus 2 and bus 4 at t = 1 second.

29



Additionally, the circuit breaker on the line between bus 2 and bus 3 is opened at t = 10

seconds. The measurement data is collected over a span of 20 seconds. These are then

sequentially fed as input to the estimator. At each time step, a new estimate of the state

is generated. The time sequence of state estimate is plotted and compared against the

true state supplied by PSAT. The relative RMS error over all the states is plotted and the

maximum error is determined. At each time step, the relative error between the true and

estimated value is calculated for every state variable. The RMS value of these relative

errors is plotted against time in Fig. 5.4f. The error is seen to reach a maximum of 5.4%.

5.5.2 Scenario 2: Parametric uncertainty

In order to evaluate the robustness of the trained estimator to changes in generator

pattern, I introduce parametric uncertainty in generator parameters. One such experiment

involves changing the parameters of the synchronous generator at bus 8. The estimator

is trained on dynamic behaviour data obtained upon opening breakers between bus 2 and

bus 3, and between bus 2 and bus 4 at t = 1 second. The testing scenario is the same

as that used in scenario 1, but with perturbed generator parameters. For the synchronous

machine at bus 8, the inertia constant is increased by 50% and damping ratio is halved.

The performance of the estimator is illustrated in Fig. 5.5. The RMS error over the state

variables reaches a maximum of 5.4%, giving an accuracy of 94.6% in RMS terms.

5.5.3 Scenario 3: Noisy measurements

The IEEE standard for synchrophasor measurement does not specify noise character-

istics or distribution. Typically, zero-mean additive Gaussian noise is assumed. A wide

range of SNRs has been used to simulate noisy PMU measurements. Publications such as,

[16], [17], [18], [19] use a standard deviation of 0.002, 0.02, 0.15, 0.03 pu respectively.

An SNR of 92 dB has been used by Xie et al. [20]. A more recent paper by Brown et al.

[21] found the PMU measurements on EPFL campus to be around 45 dB.

30



(a) Synchronous generator at bus 1 (b) Synchronous generator at bus 3

(c) Synchronous generator at bus 2 (d) Synchronous generator at bus 8

(e) Synchronous generator at bus 6 (f) RMS error

Figure 5.4: Scenario 1: Estimated (in red) and true (in blue) states - rotor angle and speed
of synchronous machines at buses 1, 3, 2, 8 and 6 respectively
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(a) Estimated (in red) and true (in blue) states -
rotor angle and speed of generator at bus 8 (b) RMS error

Figure 5.5: Scenario 2: Parametric uncertainty

To see the impact of noisy measurements on the estimation scheme, noise is added to

the voltage measurement at bus 8. An SNR of 65 dB is considered when adding zero-mean

Gaussian noise to the measurement. This is done in addition to the opening of breakers on

lines between bus 2 and bus 4 and that between bus 2 and bus 3 at 1 second and 10 seconds

respectively. The RMS error over all the states for estimation with SNR 65 dB for bus 8

voltage measurement is given in Fig. 5.6f. The RMS error is below 2.2% after the initial

estimation steps.
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(a) Synchronous generator at bus 1 (b) Synchronous generator at bus 3

(c) Synchronous generator at bus 2 (d) Synchronous generator at bus 8

(e) Synchronous generator at bus 6 (f) RMS error

Figure 5.6: Scenario 3: Estimated (in red) and true (in blue) states - rotor angle and speed
of synchronous machines at buses 1, 3, 2, 8 and 6 respectively.
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5.5.4 Scenario 4: Load perturbations

Changes in the loading conditions could be another cause for change in the system

state. A good estimator would be able to predict the state even in the presence of load

perturbations. To evaluate the performance of the GP-UKF estimation scheme, I employ

the following methodology. First, I train the estimator as usual using the data collected

over a time span of 20 seconds. During this period, I open the breakers on lines between

bus 2 and bus 3, and between bus 2 and bus 4 at time, 1 second. Once the GP has been

has been optimized to the training data, I test the estimator under altered conditions. In

addition to the opening of breakers as described above, the load profile at bus 2 is changed

in the following manner. Starting at t = 0, the active load at bus 2 is increased linearly at

a rate of 0.217 p.u./s. The load is held constant once it reaches a value of 0.217 p.u. The

estimated rotor angle and rotor speed is compared with the true values generated by PSAT

as shown in Fig.5.7. The RMS value over the relative errors of all states is plotted in Fig.

5.7f. An overall accuracy of at least 96% is indicated by the RMS error.
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(a) Synchronous generator at bus 1 (b) Synchronous generator at bus 3

(c) Synchronous generator at bus 2 (d) Synchronous generator at bus 8

(e) Synchronous generator at bus 6 (f) RMS error

Figure 5.7: Scenario 4: Estimated (in red) and true (in blue) states - rotor angle and speed
of synchronous machines at buses 1, 3, 2, 8 and 6 respectively.
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6. CONCLUSIONS

The current standard for state estimation, based on a snapshot of the system, is per-

formed every few minutes. No relevance is given to how the system evolves over time.

Dynamic state estimation has been studied and envisioned as a realizable alternative. The

predictive capabilities of Kalman filtering techniques provide information for preventive

control. Additional benefits are improvements in observability analysis, bad data detec-

tion and detection of topology errors. Up until a decade ago, state estimation relied on

SCADA measurements which were too far apart to perform dynamic state estimation. But

with the widespread deployment of PMUs, system operators are privy to vast amounts of

measurement data delivered every few milliseconds. However, dynamic state estimation

remains an impractical functionality because it is difficult to find good models for large

transmission networks.

This thesis investigates a data-driven approach to dynamic state estimation which could

circumvent the need to model large, complex systems.

6.1 Contributions

This thesis studies and investigates the application of the GP-UKF algorithm for dy-

namic state estimation based solely on measurement and input data. By employing this

algorithm, I avoid determining a model for the system, while retaining the benefits of

Kalman filtering. The algorithm is evaluated on a simulated IEEE 14 bus test system.

Network topology changes. The estimator performs reasonably well when network

switching occurs through the operation of breakers placed on specific lines. It is able to

estimate the state of the network with an accuracy of 94.6%.

Parametric uncertainty. The estimator demonstrated some robustness to changes in

system parameters. A combination of network switching and parametric perturbation was
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simulated as a test case. The estimator performed just as well as it did with the network

switching alone.

Noisy measurement. The measurements were corrupted with additive white Gaussian

noise with SNR = 65 dB. The estimator performed at an accuracy rate of 97.8% when the

noise was added to a single measurement.

Load perturbation. To determine how the estimator performs with the system under

load perturbation, the active PQ load at a single bus is changed continuously over a short

interval. The GP-UKF estimate matched the true state with a 96% accuracy.

Over all the scenarios and states, the largest error seen was in the tune of 5.5%. The

estimation scheme is moderately accurate with the added advantage of not requiring a

dynamic model of the system.

6.2 Limitations and Future Research

The estimation has shown some promising results, however it is not without some

concerns. Each run of dynamic state estimation on an Intel i7-6500U CPU @2.50 GHz

takes on average 1.5 seconds. PMU measurements are captured every few milliseconds.

Parallel GPU implementation could cut this processing time by 90%, but that might still

not be at par with the measurement rate. Some form of dimensionality reduction may

become necessary to operate at an optimum rate.

The implementation itself is not without a few issues. Larger systems with renewable

penetration might behave differently than the IEEE 14-bus test system. However, this

thesis aims to initiate research into a more data-driven approach to state estimation in

power networks, so that we may fully exploit the capabilities of PMU sensing technology.
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APPENDIX A

SIMULATION DETAILS OF NETWORK COMPONENTS

Bus Power voltage Active Reactive Vmax Vmin
number rating(MVA) rating(kV) power(p.u.) power(p.u.) (p.u.) (p.u.)
11 100 13.8 0.035 0.018 1.2 0.6
13 100 13.8 0.135 0.058 1.2 0.6
3 100 69 0.942 0.19 1.5 0.8
5 100 69 0.076 0.016 1.2 0.6
2 100 69 0.217 0.127 1.2 0.8
6 100 13.8 0.112 0.075 1.5 0.6
4 100 69 0.478 0.04 1.2 0.6
14 100 13.8 0.149 0.05 1.2 0.5
12 100 13.8 0.061 0.016 1.2 0.6
10 100 13.8 0.09 0.058 1.2 0.6
9 100 13.8 0.295 0.166 1.2 0.6

Table A.1: Simulation details of PQ loads

Bus Power Voltage Voltage Qmax Qmin Vmax Vmin
number rating rating magnitude

(MVA) (kV) (p.u.) (p.u.) (p.u.) (p.u.) (p.u.)
6 100 13.8 1.07 0.24 -0.06 1.0701 0.6
3 100 69 1.01 0.4 0 1.0101 0.6
8 100 18 1.09 0.2517 -0.06 1.0901 0.6

Table A.2: Simulation details of static synchronous compensators
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Bus Power Voltage Active Voltage Qmax Qmin Vmax Vmin
number rating rating power magnitude

(MVA) (kV) (p.u.) (p.u.) (p.u.) (p.u.) (p.u.) (p.u.)
2 100 69 0.4 1.045 0.5 -0.4 1.0451 0.8

Table A.3: Simulation details of PV generator

Entity Gen1 Gen2 Gen3 Gen4 Gen5
Bus number 1 3 2 8 6
xl 0.2396 0 0 0.134 0.134
ra 0 0.0031 0.0031 0.0014 0.0014
xd 0.8979 1.05 1.05 1.25 1.25
x′d 0.2998 0.185 0.185 0.232 0.232
x′′d 7.4 6.1 6.1 4.75 4.75
xq 0.646 0.36 0.36 0.715 0.715
x′q 0.4 0.13 0.13 0.12 0.12
x′′q 0 0.3 0.3 1.5 1.5
T ′d0 0.03 0.04 0.04 0.06 0.06
T ′′do 0.646 0.98 0.98 1.22 1.22
T ′q0 0.033 0.0990 0.099 0.21 0.21
T ′′qo 10.296 13.08 13.08 10.12 10.12
M 2 2 2 2 2
D 1 1 1 1 1

Table A.4: Simulation details of synchronous generators

Bus ωref R Tmax Tmin Ts Tc T3 T4 T5

number (p.u.) (p.u.) (p.u.) (p.u.) (s) (s) (s) (s) (s)
2 1 0.02 1.2 0.3 0.1 0.45 0 12 50
1 1 0.02 1.2 0.3 0.1 0.45 0 12 50

Table A.5: Simulation details of turbine governors
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Entity Gen1 Gen2 Gen3 Gen4 Gen5
Bus number 1 3 2 8 6
Vr,max 7.32 4.38 4.38 6.81 6.81
Vr,min 0 0 0 1.395 1.395
Ka 200 20 20 20 20
Ta 0.02 0.02 0.02 0.02 0.02
Kf 0.002 0.001 0.001 0.001 0.001
Tf 1 1 1 1 1
Tc 0.2 1.98 1.98 0.7 0.7
Tr 0.001 0.001 0.001 0.001 0.001
Ae 0.0006 0.0006 0.0006 0.0006 0.0006
Be 0.9 0.9 0.9 0.9 0.9

Table A.6: Simulation details of AVRs
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APPENDIX B

INITIAL POWER FLOW SOLUTION

This section gives the initialization of the network variables based on the steady-state

solution of system equations.

Bus Voltage Voltage Active Reactive
number magnitude phase power power

(p.u.) angle (rad) (p.u.) (p.u.)
1 1.06 0 2.3258 -0.14978
2 1.045 -0.0871 0.183 0.36124
3 1.01 -0.22267 -0.942 0.08373
4 1.012 -0.1785 -0.478 -0.04
5 1.016 -0.15273 -0.076 -0.016
6 1.07 -0.25161 -0.112 0.1501
7 1.0493 -0.23091 0 0
8 1.09 -0.23091 0 0.25163
9 1.0328 -0.25853 -0.295 -0.166
10 1.0318 -0.26223 -0.09 -0.058
11 1.0471 -0.25897 -0.035 -0.018
12 1.0534 -0.26645 -0.061 -0.016
13 1.047 -0.2671 -0.135 -0.058
14 1.0207 -0.28018 -0.149 -0.05

Table B.1: Initialization of bus variables
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Symbolic Gen1 Gen2 Gen3 Gen4 Gen5
variable
δ 0.21704 -0.22363 0.24427 -0.2315 -0.25217
ω 1 1 1 1 1
e′q 1.0515 1.0954 1.1676 1.3104 1.2708
e′d - 0.00024 0.19109 0.00027 0.00023
e′′q 1.0476 1.0687 1.1119 1.2008 1.171
e′′d 0.08692 0.00037 0.29742 0.00059 0.00052

Table B.2: Initialization of state variables
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