44,697 research outputs found

    Evaluating Community Detection Algorithms for Progressively Evolving Graphs

    Full text link
    Many algorithms have been proposed in the last ten years for the discovery of dynamic communities. However, these methods are seldom compared between themselves. In this article, we propose a generator of dynamic graphs with planted evolving community structure, as a benchmark to compare and evaluate such algorithms. Unlike previously proposed benchmarks, it is able to specify any desired evolving community structure through a descriptive language, and then to generate the corresponding progressively evolving network. We empirically evaluate six existing algorithms for dynamic community detection in terms of instantaneous and longitudinal similarity with the planted ground truth, smoothness of dynamic partitions, and scalability. We notably observe different types of weaknesses depending on their approach to ensure smoothness, namely Glitches, Oversimplification and Identity loss. Although no method arises as a clear winner, we observe clear differences between methods, and we identified the fastest, those yielding the most smoothed or the most accurate solutions at each step

    Application Oriented Analysis of Large Scale Datasets

    Get PDF
    Diverse application areas, such as social network, epidemiology, and software engineering consist of systems of objects and their relationships. Such systems are generally modeled as graphs. Graphs consist of vertices that represent the objects, and edges that represent the relationships between them. These systems are data intensive and it is important to correctly analyze the data to obtain meaningful information. Combinatorial metrics can provide useful insights for analyzing these systems. In this thesis, we use the graph based metrics such as betweenness centrality, clustering coefficient, articulation points, etc. for analyzing instances of large change in evolving networks (Software Engineering), and identifying points of similarity (Gene Expression Data). Computations of combinatorial properties are expensive and most real world networks are not static. As the network evolves these properties have to be recomputed. In the last part of thesis, we develop a fast algorithm that avoids redundant recomputations of communities in dynamic networks

    An Ensemble Framework for Detecting Community Changes in Dynamic Networks

    Full text link
    Dynamic networks, especially those representing social networks, undergo constant evolution of their community structure over time. Nodes can migrate between different communities, communities can split into multiple new communities, communities can merge together, etc. In order to represent dynamic networks with evolving communities it is essential to use a dynamic model rather than a static one. Here we use a dynamic stochastic block model where the underlying block model is different at different times. In order to represent the structural changes expressed by this dynamic model the network will be split into discrete time segments and a clustering algorithm will assign block memberships for each segment. In this paper we show that using an ensemble of clustering assignments accommodates for the variance in scalable clustering algorithms and produces superior results in terms of pairwise-precision and pairwise-recall. We also demonstrate that the dynamic clustering produced by the ensemble can be visualized as a flowchart which encapsulates the community evolution succinctly.Comment: 6 pages, under submission to HPEC Graph Challeng

    Community Detection on Evolving Graphs

    Get PDF
    Clustering is a fundamental step in many information-retrieval and data-mining applications. Detecting clusters in graphs is also a key tool for finding the community structure in social and behavioral networks. In many of these applications, the input graph evolves over time in a continual and decentralized manner, and, to maintain a good clustering, the clustering algorithm needs to repeatedly probe the graph. Furthermore, there are often limitations on the frequency of such probes, either imposed explicitly by the online platform (e.g., in the case of crawling proprietary social networks like twitter) or implicitly because of resource limitations (e.g., in the case of crawling the web). In this paper, we study a model of clustering on evolving graphs that captures this aspect of the problem. Our model is based on the classical stochastic block model, which has been used to assess rigorously the quality of various static clustering methods. In our model, the algorithm is supposed to reconstruct the planted clustering, given the ability to query for small pieces of local information about the graph, at a limited rate. We design and analyze clustering algorithms that work in this model, and show asymptotically tight upper and lower bounds on their accuracy. Finally, we perform simulations, which demonstrate that our main asymptotic results hold true also in practice

    Detecting Community Structure in Dynamic Social Networks Using the Concept of Leadership

    Full text link
    Detecting community structure in social networks is a fundamental problem empowering us to identify groups of actors with similar interests. There have been extensive works focusing on finding communities in static networks, however, in reality, due to dynamic nature of social networks, they are evolving continuously. Ignoring the dynamic aspect of social networks, neither allows us to capture evolutionary behavior of the network nor to predict the future status of individuals. Aside from being dynamic, another significant characteristic of real-world social networks is the presence of leaders, i.e. nodes with high degree centrality having a high attraction to absorb other members and hence to form a local community. In this paper, we devised an efficient method to incrementally detect communities in highly dynamic social networks using the intuitive idea of importance and persistence of community leaders over time. Our proposed method is able to find new communities based on the previous structure of the network without recomputing them from scratch. This unique feature, enables us to efficiently detect and track communities over time rapidly. Experimental results on the synthetic and real-world social networks demonstrate that our method is both effective and efficient in discovering communities in dynamic social networks

    Community Detection in Dynamic Networks via Adaptive Label Propagation

    Full text link
    An adaptive label propagation algorithm (ALPA) is proposed to detect and monitor communities in dynamic networks. Unlike the traditional methods by re-computing the whole community decomposition after each modification of the network, ALPA takes into account the information of historical communities and updates its solution according to the network modifications via a local label propagation process, which generally affects only a small portion of the network. This makes it respond to network changes at low computational cost. The effectiveness of ALPA has been tested on both synthetic and real-world networks, which shows that it can successfully identify and track dynamic communities. Moreover, ALPA could detect communities with high quality and accuracy compared to other methods. Therefore, being low-complexity and parameter-free, ALPA is a scalable and promising solution for some real-world applications of community detection in dynamic networks.Comment: 16 pages, 11 figure
    • …
    corecore