
University of Nebraska at Omaha
DigitalCommons@UNO

Student Work

12-2011

Application Oriented Analysis of Large Scale
Datasets
Prashant Shivaji Paymal
University of Nebraska at Omaha

Follow this and additional works at: https://digitalcommons.unomaha.edu/studentwork

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by
DigitalCommons@UNO. It has been accepted for inclusion in Student
Work by an authorized administrator of DigitalCommons@UNO. For
more information, please contact unodigitalcommons@unomaha.edu.

Recommended Citation
Paymal, Prashant Shivaji, "Application Oriented Analysis of Large Scale Datasets" (2011). Student Work. 2877.
https://digitalcommons.unomaha.edu/studentwork/2877

http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2877&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2877&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2877&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2877&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2877&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2877&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork/2877?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2877&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2877&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2877&utm_medium=PDF&utm_campaign=PDFCoverPages

Application Oriented Analysis of Large Scale Datasets

A Thesis

Presented to the

Department of Computer Science

and the

Faculty of the Graduate College

University of Nebraska

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Major: Computer Science

University of Nebraska at Omaha

by

Prashant Shivaji Paymal

December, 2011

Supervisory Committee:

Dr. Sanjukta Bhowmick

Dr. Hesham Ali

Dr. Harvey Siy

Dr. Dhundy Bastola

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 1508494
Copyright 2012 by ProQuest LLC.

UMI Number: 1508494

Application Oriented Analysis of Large Scale Datasets

Prashant Shivaji Paymal, M.S.

University of Nebraska, 2011

Advisor: Dr. Sanjukta Bhowmick

Abstract

 Diverse application areas, such as social network, epidemiology, and software

engineering consist of systems of objects and their relationships. Such systems are

generally modeled as graphs. Graphs consist of vertices that represent the objects, and

edges that represent the relationships between them. These systems are data intensive and

it is important to correctly analyze the data to obtain meaningful information.

Combinatorial metrics can provide useful insights for analyzing these systems. In this

thesis, we use the graph based metrics such as betweenness centrality, clustering

coefficient, articulation points, etc. for analyzing instances of large change in evolving

networks (Software Engineering), and identifying points of similarity (Gene Expression

Data). Computations of combinatorial properties are expensive and most real world

networks are not static. As the network evolves these properties have to be recomputed.

In the last part of thesis, we develop a fast algorithm that avoids redundant re-

computations of communities in dynamic networks.

i

Acknowledgement

 I am extremely grateful and indebted to my thesis advisor, Dr. Sanjukta

Bhowmick, for accepting me as her student. Her constant guidance, encouragement, and

support throughout the completion of my work were the key for my thesis. I owe a

special thanks to Dr. Hesham Ali and Dr. Harvey Siy for their invaluable guidance and

enlightening discussions on the topic which made this thesis possible. I am also grateful

to Dr. Dhundy Bastola for providing valuable feedback and comments on my thesis.

I would like to thank all the professors of the Computer Science department at

University of Nebraska - Omaha, who taught great courses. I would also like to thank

several students in our research group, and my friends for their support, motivation, and

help during my stay here at Omaha.

Most importantly, I would like to thank my mother and father, Kanchan and

Shivaji Paymal, and brother Kedar, who have cared for me continuously, in every

possible way, from halfway around the world.

ii

Table of Contents

1. Introduction ...1

1.1 Contribution ..2

1.2 Outline of Thesis ...3

2. Background ..4

2.1 Graph Terminology ...4

2.1.1 Vertex Based Properties ...5

2.1.2 Network Based Properties ..7

2.2 Brief Outline of Our Applications ...8

 2.2.1 Software Engineering ...8

2.2.2 Bioinformatics ..9

2.2.3 Community Detection ..10

2.3 Relating Graph Properties to Application Domains ..11

3. Analysis of Software Networks ..13

3.1 Introduction ...13

3.2 Methodology ...14

3.3 Results and Analysis ...16

 3.3.1 Network and Vertex Properties ..16

3.3.2 Identifying Crucial Vertices ...25

3.3.3 Analysis of Newly Added Vertices ..26

3.3.4 Analysis of Community Properties ..27

3.3.5 Impact on Quality ...29

iii

3.4 Discussion ...30

4. Analysis of Gene Expression Data ...32

4.1 Introduction ...32

4.2 Background ...33

4.3 Our Contribution ...37

4.4 Results and Assessment ..42

 4.4.1 Synthetic Datasets ..43

4.4.2 Real Datasets ..44

4.5 Discussion ...47

5. Efficient Algorithm to Finding Communities in Dynamic Networks 48

5.1 Community Detection ...48

5.2 CNM Algorithm / Static Community Detection Algorithm 49

5.3 Our Contribution / Dynamic Community Detection Algorithm 51

5.4 Results ...56

5.5 Discussion ...60

6. Conclusion and Future Work ...62

References ..64

iv

List of Figures

Figure 2.1: Undirected Graph ..5

Figure 3.1: In-degree Distribution across the six versions of JHotDraw18

Figure 3.2: Out-degree Distribution across the six versions of JHotDraw 19

Figure 3.3: Positive correlation between in-out degrees and betweenness centrality 22

Figure 3.4: Negative correlation between clustering coefficient and betweenness

centrality. ..23

Figure 3.5: Networks representing Version 1 and Version 2. ..24

Figure 3.6: Percentage breakdown of all vertices in each version 26

Figure 3.7: Percentage of new vertices per impact group with respect to the total number

of vertices added ...27

Figure 4.1: Clustering and biclustering of a gene expression matrix 33

Figure 4.2: Examples of different types of biclusters ..36

Figure 4.3: Example of graph representation of gene expression matrix 39

Figure 5.1: The CSR Format for a network ... 54-55

Figure 5.2: Difference in maximum modularity of the static and dynamic method over

each network ...57

Figure 5.3: Difference in maximum modularity of the static and dynamic method over

each network ...58

Figure 5.4: Percentage speedup of the dynamic method over the static method 59

Figure 5.5: Percentage speedup of the dynamic method over the static method 60

v

 List of Tables

Table 2.1: Relations of graph properties and application domains 12

Table 3.1: Commits with perfective changes in JHotDraw ...15

Table 3.2: Network-Based properties of different versions of JHotDraw 17

Table 3.3: Change in vertex-based properties across different versions of JHotDraw . 20-

21

Table 3.4: Analysis of similarities between large communities 29

Table 3.5: Bug Frequencies after Each Version ..29

Table 4.1: Gene Expression Data Matrix ...34

Table 4.2: Results on synthetic dataset ..44

Table 4.3: Real Dataset Description ..45

Table 4.4: Biclustering results for Dataset_1 ...46

Table 4.5: Biclustering results for Dataset_2 ...46

Table 5.1: Network Information ..56

1

Chapter 1

Introduction

Analysis of large datasets is a crucial component in advancing our understanding

in diverse applications areas, such as social networks [1], epidemiology [2] and software

engineering. The data from these fields are generally represented as systems of

interacting entities. Two popular methods of expressing this information are (i) as

networks where vertices are the objects and edges associated relations (for example,

social networks) or (ii) as matrices where the rows represent the entities and the columns

the features defining them (for example differentially expressed levels of genes). Most

analysis techniques are application agnostic that is they are not designed with the end

objective in mind. The mathematical models are rarely corroborated from an application

user’s point of view. In this thesis, we demonstrate how combinatorial properties relate to

application characteristics and validate our results by analyzing evolving networks from

two very different application areas; software engineering and bioinformatics.

Understanding how networks evolve over time is an important analysis task.

However, due to the large number of components in most real world systems, it is

difficult to get a quick summary of network evolution. Therefore, there has been little

study in understanding the change in dynamic networks. In the first part of this thesis, we

explore combinatorial metrics to quantify the difference between networks representing

the evolution of JHotDraw software over several versions.

2

In the second part of this thesis, we explore combinatorial metrics to find the

similarities between networks. We apply our similarity criteria to develop a new

biclustering algorithm for improve analysis of microarray data. Biclustering represents an

ideal approach for mining meaningful relationships from the massive data because it

allows simultaneous clustering of both the entities and conditions.

Computation of combinatorial properties is a key to network analysis. However,

real world networks are not static they evolve with the time. Therefore, for each evolution

the graph properties have to be recomputed. In the final part of this thesis, we develop

community detection algorithm, an important network characteristics, that reduces

redundant computations on dynamic networks.

1.1 Contribution

Given below is list of our significant contributions,

• We have explored combinatorial metrics to quantify and evaluate the difference

between networks. Our results provide important insights in understanding the

rate of evolution networks.

• We have done a comprehensive research on different biclustering algorithms and

developed a new biclustering algorithm based on network similarity.

• We have designed an efficient community detection algorithm for real-time

dynamic networks that takes advantage of the information computed in previous

time steps to avoid extra computations.

3

1.2 Outline of Thesis

 This thesis is organized as follows. In Chapter 2, we discuss background

information about graph theory. In Chapter 3, we present use of combinatorial metrics to

analyze the evolution of networks representing JHotDraw software. In Chapter 4, we

explore the combinatorial properties to find the similarities between networks and present

a new biclustering algorithm for analysis of microarray data. In Chapter 5, we study

analysis of dynamic networks and present community detection algorithm for dynamic

networks. In Chapter 6, we discuss our concluding remarks and present potential ideas

for further research.

4

Chapter 2

Background

A graph is a mathematical object that captures the notion of connection. Many

problems of practical interest can be represented by graphs. In computer science, graphs

are used to represent different networks such as social networks, software engineering

networks, and biological networks, etc. Each of these networks consists of set of vertices

and edges. For instance, people in the social networks, classes in the software engineering

networks represent vertices in a graph and connection between people and classes

represent edges in the social networks and software engineering networks respectively.

Here, we introduce some network or graph terminology (based on the definitions

provided in [3]). We classify the list of graph properties as, (i) vertex based properties,

and (ii) network based properties. Vertex based properties are defined per vertex of the

network and network based properties are defined over entire network.

2.1 Graph Terminology

A graph is collection of vertices and edges. Formally, � � ��, �� consists of set

of vertices � and edges �, where � 	 �
 �. There are two types of graphs directed and

undirected. A graph is directed if edges point in one direction from one vertex to another

vertex, otherwise a graph is undirected. A directed graph � � ��, �� consists of a finite,

nonempty set of vertices � and a set of edges �. Each edge is an ordered pair ��, �� of

vertices. An undirected graph � � ��, �� consists of a finite, nonempty set of vertices �

and a set of edges �. Each edge is a set
�, �� of vertices.

5

Figure 2.1: Undirected Graph

Graph Properties

2.1.1 Vertex Based Properties

• Degree

The degree of a vertex in a graph is the number of edges the vertex has with the

other vertices. The degree of vertex � is denoted as deg� ��. In directed graph,

vertices have two different degrees, in-degree: the number of incoming edges and

out-degree: the number of outgoing edges. In Figure 2.1, degree of vertices are, deg

(V1) = 4, deg (V2) = 3, deg (V3) = 5, deg (V4) = 6, deg (V5) = 4, deg (V6) = 5, deg

(V7) = 3, deg (V8) = 3, deg (V9) = 2, deg (V10) = 1.

• Betweenness Centrality

Most of the shortest paths in a network go through the vertices with the high

betweenness centrality. Therefore, these vertices become more the central point

controlling the communication. Betweenness Centrality of a vertex � is calculated as

 1 3

 4

 6 5

 7

 2

 8 9 10

6

sum of the ratio of the number of shortest path in the graph include vertex � to the

total number of shortest path in the graph. The betweenness centrality �� ��� of a

vertex � � � is the sum over all pairs of vertices �, � � �, of the fraction of shortest

paths between u and w that pass through v

�� ��� � � �� ������ ��,� � �� � � ��

Where �� ���� denotes the total number of shortest path between � and � that pass

through vertex � and �� � denotes the total number of shortest paths between �

and �.

 In Figure 2.1, top three vertices with the highest betweenness centrality values are

vertex 8 = 28, vertex 3 = 16.67, and vertex 6 = 16.67.

• Clustering Coefficient

Clustering coefficient is a measure of degree to which nodes in a graph tend to

cluster together. It is calculated as the ratio of the edges between the neighbors of a

vertex to the total possible connection between them. The higher the clustering

coefficient it is more likely that a vertex is part of a dense module with closely

interconnected dependencies. Formally, the clustering coefficient of a vertex � is as,

�� � 2�� �� � ! 1�

 Where �� denotes the number of links connecting the � neighbors of vertex # to

each other.

7

In Figure 2.1, top three vertices with highest clustering coefficient values are

Vertex 2 = 1.0, Vertex 7 = 1.0, and Vertex 1 = 0.67.

2.1.2 Network Based Properties

• Vertices

Total number of vertices in a graph. There are total 10 vertices in the graph from

Figure 2.1.

• Edges

Total number of edges in a graph. There are total 36 edges in the graph from

Figure 2.1.

• Degree Distribution

The degree distribution is the probability distribution of degrees of the vertices

over the network. Most scale free system like social and biological networks observe

a power law based distribution [4] that is there are many vertices with low degree and

the number of vertices exponentially go down as the degree increases. In Figure 2.1,

degree of vertices are, deg (V1) = 4, deg (V2) = 3, deg (V3) = 5, deg (V4) = 6, deg

(V5) = 4, deg (V6) = 5, deg (V7) = 3, deg (V8) = 3, deg (V9) = 2, deg (V10) = 1.

Degree distribution is (d1, d2, …, dn-1), where dk is the number of vertices with degree

k. Degree Distribution for graph in Figure 2.1 is (1, 1, 3, 2, 2, 1).

• Shortest Path and Diameter

Shortest path is a path between two vertices in a graph such that sum of weights

of participating edges is minimized. The diameter of a graph is the largest value of all

the shortest paths. In Figure 2.1, shortest path between vertex 1 and vertex 9 is 3 and

diameter of a graph is 4, because that is the maximum value of all the shortest paths.

8

• Articulation Point

A vertex in a connected undirected graph is an articulation point if removal of that

vertex and all edges incident to it result in a disconnected graph. Articulation points

in a graph are critical to communication; all paths between certain vertices have to

pass through articulation point. In Figure 2.1, vertex 8 and vertex 9 are the

articulation points.

• Modularity

Modularity is a property of a network and a specific proposed division of that

network into communities. Modularity in a network is computed as, ∑ ���� ! %�&�,�

where ��� is the percentage of the number of edges per community �� and %� is the

percentage of the edges connected to Community ��.
Modularity of the graph in Figure 2.1 is 0.057 with the communities, Community

1: Vertex 1, 2, and 3, Community 2: Vertex 4, 5, 6, and 7, Community 3: Vertex 8, 9,

and 10.

2.2 Brief Outline of Our Applications

2.2.1 Software Engineering

We can represent different versions of software systems as networks. The usage

dependencies in each version can be modeled as a directed network, where vertices

represent different modules in the software system and each edge ��, �� represents a

dependency from module � to module �. We compute several graph properties for each

network such as, in-degree and out-degree: which gives number of dependencies of a

module in the software system, diameter of a network gives critical path in the system,

9

high betweenness centrality represents more calls to the module representing vertex in the

system, articulation points represent important module in systems, etc. Our goal is to

investigate several ways of measuring the amount of disruption by examining changes in

combinatorial properties across the different software version.

Several researchers have also applied graph theory measures to study software

systems. Myers [5] analyzed 6 software projects and found them to be scale-free, small-

world networks. Chatzigeorgiou et al. [6] applied graph theory to detect design patterns,

and improve coupling and cohesion. They performed a case study on three software

systems and observed that software networks are scale-free. Wang et al. [7] conducted an

analysis of 223 versions of the Linux kernel, and also observed these networks to be

scale-free and satisfy small-world properties. Savic et al. [8] arrived at the similar

conclusion in an analysis of 5 open source projects.

2.2.2 Bioinformatics

Microarray data analysis emerges in the decade as a key method for obtaining

correlation among genotype and phenotype information. DNA microarray technology

measures the gene expression level of thousand of genes under multiple experiment

conditions [9]. This technology has been widely used in many areas of biology. It helps

in the identification of new genes, and to understand their functioning and expression

levels under different conditions. Microarray technology also helps researches to learn

more about different diseases especially the study of cancer. It can also be used in the

study of correlation between therapeutic responses to drugs and the genetic profiles of the

patients, and impact of toxins on the cells and their passing on to the progeny. Large

amount of data is produced in the microarray technology and it’s very difficult to

10

understand such a large data. Proper analysis of the data is important to extract

biologically relevant information. Microarray data can be represented as matrix where

rows correspond to different genes and columns to experimental conditions. One

important analysis of microarray data is the discovery of biclusters, which are groups of

genes that show similar behavior across specific group of experimental conditions.

The term biclustering was first used by Cheng and Church [10] in gene expression

data analysis. It is also referred as “direct clustering” [11], “box clustering” [12],

“subspace clustering” [13], and “co-clustering” [14]. Biclustering problem has been

shown to be NP-hard [11] [15], and almost all the approaches presented to date are

heuristics. Many approaches for biclustering in expression data have been proposed.

Several surveys about biclustering techniques have been published [16-18]. Some of the

prominent biclustering methods are Cheng and Church [10], xMotifs [19], SAMBA [20],

ISA [21], OPSMs [22], CPB [23], BiMax [24].

2.2.3 Community Detection

Community structure is a network characteristic describing the propensity of

groups of vertices to form dense connection within the group than across the groups. This

characteristic is used in the analysis of networks for many applications including

hierarchies of organization [25], collaboration networks [26], protein interactions [27],

and stability of electrical grids [28]. The problem of community detection involves

finding such connected groups in a given network has become popular algorithm in

recent years.

11

Newman and Girvan [29] proposed a greedy agglomerative approach based on

maximization of modularity for hierarchical community detection. Clauset, Newman and

Moore [30] proposed fast implementation of a previous technique proposed by Newman

et al. [29]. Guimera and Amaral [31] proposed community detection algorithm based on

exhaustive modularity optimization via simulated annealing. However, Modularity

maximization fails to identify communities smaller than a certain scale, therefore bring a

resolution limit on the communities detected by a pure modularity optimization approach.

Blondel et al. [32] proposed new technique based on a local optimization of Newman and

Girvan modularity in the neighborhood of each vertex. This algorithm solves resolution

method problem due to the intrinsic multi level nature of the algorithm.

Tantipathananandh et al. [33] proposed an offline clustering framework based on

finding optimal graph colorings. They presented heuristic algorithm which find near

optimal solutions. Ning et al. [34] proposed an incremental algorithm which is initialized

by a standard spectral clustering algorithm, followed by the updates of the spectral as the

dataset evolves. Leung et al. [35] discussed the potential of the label propagation

algorithm for dynamic network data. Mucha et al. [36] generalized the Laplacian

dynamics approach to obtain a version of the modularity measure for multi slice (i.e.

dynamic) networks.

2.3 Relating Graph Properties to Application Domains

The Table 2.1 presents the relation of different graph properties with the two

application areas, software engineering, and bioinformatics. This provides an example of

12

how we can translate application characteristics into graph properties and use these

properties to analyze the underlying systems.

Graph

Property

Software Systems Biological Relevance

Vertices Modules in the software systems Genes in gene expression matrix

Edges Dependencies between modules in the

software systems

Similarity between genes under an

experimental condition

In-degree Number of dependencies of a module

in the software systems

Number of genes with the similar

behavior under an experimental

condition

Out-degree

Diameter Critical paths of the software systems Critical path of the biological

networks

Betweenness

Centrality

High: the more calls to the module

representing the vertex

In protein networks, it represents key

connector proteins, i.e. bottlenecks,

with particular functional properties

Clustering

Coefficient

High: set of interdependent modules High: set of interdependent genes

Articulation

Point

Important module in the software

systems

Important gene / protein in the

biological network

Modularity A high modularity indicates that the

two groups of modules have high

probability of belonging to same

community

High value of modularity indicate the

two groups of genes have high

probability of belonging to same

community

Table 2.1: Relation of graph properties and application domains

13

Chapter 3

Analysis of Software Networks

3.1 Introduction

Software maintenance consists of four parts, Corrective Maintenance, Adaptive

Maintenance, Perfective Maintenance, and Preventive Maintenance [37]. Corrective

maintenance is performed after a fault or problem emerges in a system with the goal of

restoring the functionality of the system. Adaptive maintenance required to adapt the

software to new environment. Perfective maintenance is the process of receiving requests

for enhancement or modifications and implementing them. Finally, Preventive

maintenance deals with updating documentation to make the software more maintainable.

Corrective Maintenance is considered as ‘traditional maintenance’, while others are part

of ‘software evolution’.

Understanding the evolution of networks is an important analysis task. However,

due to large number of components in real world systems, it is difficult to get a quick

summary of network changes. In this section, we explore different combinatorial metrics

to quantify the difference between networks. We are interested in measuring the amount

of disruptions by examining changes in combinatorial properties across networks. We

demonstrate the use of combinatorial properties in understanding the evolution of

software system networks. It is important to understand the evolution of software systems

for assessing their long term maintainability. Inter-class relationships play important role

in object oriented systems. We are interested in quantifying the extent to which such

14

relationships are disrupted or preserved in the midst of software evolution [38]. We

explore combinatorial metrics to quantify and evaluate the difference between networks

representing several versions of JHotDraw software. Our results show that these statistics

provide important insights in understanding how the JHotDraw code evolved over time.

3.2 Methodology

We used six versions of JHotDraw 5 [39] from March 2001 to January 2004.

These are referred as Version 1 to Version 6 in this document. The specific versions are

listed in Table 3.1. We extracted use relationships such as inheritance and

implementation, method calls and class member access, object declaration and

instantiation from each version using SPARS-J [40-41]. Next, we represented each

version as a directed graph, where vertices represent classes from software code and each

edge (u, v) is a dependency from class u to class v. Our objective is to find the

evolutionary characteristics such as: points of significant change in the software and how

these changes affect crucial classes in the network using combinatorial or graph based

metrics.

We compute the values of the graph properties discussed in chapter 2 and their

change in rankings to analyze these networks. We use the Matlab BGL library [42] to

compute most of the properties. The communities are computed using a Matlab code

based on the modularity maximization algorithm described in [30].

15

Version Date Files Commit Messages

Version 1 3/9/2001 304 Merge to JHotDraw 5.2 (using JFC/Swing GUI

components)

Version 2 10/24/2001 720 Before merge for version 5.3 (dnd, undo, …),

merge dnd (before 5.3)

Version 3 8/4/2002 392 After various merges.. (before 5.4 release)

Version 4 11/8/2002 2 Refactor to use Standard Storage Format as a

superclass

Version 5 5/8/2003 44 Refatoring of Cursor. – java.awt.Cursor (class)

has been systematically replaced

Version 6 1/9/2004 484 After renaming the CH.ifa.draw to org. jhotdraw

Table 3.1: Commits with perfective changes in JHotDraw

We measure the overall change in values and rankings of the vertices across

different version by developing the following formulas,

'%� (#)*�+,#-� � ∑ | '%� �/0� ! '%� �� |� � 122 �345�6378-,%9 �:*,:; <�=>:*

�%9�: (#)*�+,#-� � ∑ | �%9�:�/0� ! �%9�:�� |� � 122 �345�637?%; ��%9�:�/0�
Where, Ranki, and Valuei represent the rank and value of the corresponding property in

version i.

16

3.3 Results and Analysis

(Text in this section is mostly paraphrased from our publication [43])

In this section, we present results of the combinatorial properties discussed in the

section 3.2 and discuss how they provide us knowledge about the evolution of JHotDraw.

3.3.1 Network and Vertex Properties

The number of vertices in a network represents the number of classes in the

network. As the versions evolve, some vertices are deleted and new ones are added. A

comparison between the number of added, deleted and retained vertices in the network

provides a rouge estimate of the difference between the versions. The number of edges in

the network represents the dependencies in the software. Similar to vertices, as the

versions evolve, some edges are deleted and new ones are added. A comparison between

the number of added, deleted and retained edges across different versions gives an

estimate of the scale of the evolution.

Table 3.2 presents the values of network based properties for six version of

JHotDraw software. The highest and second highest changes in additions and deletion of

vertices, edges and articulation points are shown in bold and italic respectively. A value

of vertices and edges increase across the versions this indicates that network grows over

the time. We see that major changes happen in Version 2 to Version 3 and Version 4 to

Version 5, because all the bold and italic values are under Version 3 and Version 5 in

Table 3.2. Diameter and average path length do not grow that much this indicate that the

new classes are added together as interdependent modules to the periphery rather than

individually scattered across the systems. Articulation point’s increases version by

version and this tells that in later versions there are more regions of potential disconnect.

17

The number of communities also increases version by version and it indicates that there

are larger numbers of modules present in later versions. We also note that most of the

vertices are concentrated amongst the top two communities, and most of the elements in

consecutive communities are retained. The increase in communities is therefore due to

the newly added vertices.

Property V1 V2 V3 V4 V5 V6

Vertices 159 177 302 339 528 544

Add (Delete) 0 (0) 18 (0) 125 (0) 38 (1) 190 (1) 16 (0)

Edges 775 832 1454 1684 2136 2167

Add (Delete) 0 (0) 74 (17) 655 (33) 256 (26) 466 (14) 64 (33)

Articulation Points 7 8 26 33 104 105

Add (Delete) 0 (0) 1 (0) 18 (0) 7 (0) 71 (0) 1 (0)

Diameter 6 6 7 9 9 9

Average Path Length 2.27 2.29 2.54 2.7 3.4 3.3

Communities 6 5 9 10 20 19

Top Two Communities 112 139 211 233 335 304

Common Elements 0 .80 .62 .84 .61 .88

Table 3.2: Network-Based properties of different versions of JHotDraw. The Add

(Delete) rows correspond to the properties in the previous row. The highest change in

rows 3, 5 and 7 is marked by bold and the second highest by italics.

18

Figure 3.1 and 3.2 show the degree distribution of the in-degrees and out-degrees

of the six versions. Both the distributions observe the power law based degree

distribution, where the numbers of vertices per degree exponentially decrease the value of

the degree. The in-degree distribution shows this property more prominently than the out-

degree distribution. As per our previous findings, there is big change in Version 2 to

Version 3 and Version 4 to Version 5 and out-degree distribution graph support that

finding, as we clearly see similarity and difference between versions.

Figure 3.1: In-degree Distribution across the six versions of JHotDraw

19

Figure 3.2: Out-degree Distribution across the six versions of JHotDraw

Table 3.3 shows the values of vertex-based properties of the network. It shows

change in the value disruption and rank disruption values across six versions calculated

using formulas mentioned in section 3.2. The highest and second highest changes are

marked as bold and italic fonts respectively. Here also, we see that there is significant

change in the evolution of Version 2 to Version 3 and Version 4 to Version 5. We also

compare the top 25 highest ranked vertices for each property. Retained Vertices present

the vertices that are common in the set of top 25 vertices for consecutive versions.

Vertices in Vi only means vertices that are present in the set of top 25 in Version Vi but

not in Vi+1. Similarly Vertices in Vi+1 means vertices that are present in the top 25 in

Version Vi+1 but not in Vi. Newly added vertices refer to the vertices which are newly

20

added in Vi+1 and present in top 25 highest ranked vertices. There is least number of

retained vertices across the versions for clustering coefficient, which indicates once again

that the changes involves adding a set of interdependent modules rather than adding

modules separately to different parts of the software. There is no significant change for

in-degree, out-degree and betweenness centrality in the highest ranked vertices. This

shows that the critical paths of software are probably left unchanged.

Property V1 – V2 V2 – V3 V3 – V4 V4 – V5 V5 – V6

In Degree

Value Disruption .0022 .0138 .0025 .0083 .0007

Rank Disruption .014 .252 .06 .112 .016

Change in Set of Top 25 Vertices

Retained Vertices 24 20 20 21 23

Vertices in Vi only 1 5 5 4 2

Vertices in Vi+1 only 1 1 2 3 2

Newly Added

Vertices

0 4 3 1 0

Out Degree

Value Disruption .0025 .0213 .009 .002 .002

Rank Disruption 0.45 .292 .069 .209 .009

Change in Set of Top 25 Vertices

Retained Vertices 24 17 20 24 24

Vertices in Vi only 1 8 5 1 1

Vertices in Vi+1 only 1 4 4 1 1

Newly Added

Vertices

0 4 1 0 0

21

Betweenness Centrality

Value Disruption .0004 .0027 .0017 .0107 .0016

Rank Disruption .051 .286 .074 .212 .012

Change in Set of Top 25 Vertices

Retained Vertices 24 17 20 17 22

Vertices in Vi only 1 8 5 8 3

Vertices in Vi+1 only 1 5 3 7 3

Newly Added

Vertices

0 3 2 1 0

Clustering Coefficient

Value Disruption 0 .0088 0 .0056 0

Rank Disruption .078 .370 .074 .157 .021

Change in Set of Top 25 Vertices

Retained Vertices 16 13 21 14 19

Vertices in Vi only 8 12 3 11 3

Vertices in Vi+1 only 1 2 3 2 3

Newly Added

Vertices

8 10 0 9 3

Table 3.3: Change in vertex-based properties across different versions of JHotDraw. The

table shows the disruption in values and rank. It also compares the set of the top (highest

ranked) 25 vertices. The highest and second highest change in disruption is marked by

bold and italic.

Figure 3.3 shows the correlation between in-out degree and betweenness

centrality. There is positive correlation between degree and betweenness centrality.

Classes with high importance (high in-out degree) have high dependencies (high

betweenness centrality). Figure 3.4 shows the correlation between clustering coefficient

22

and betweenness centrality. Unlike the correlation between degree and betweenness

centrality, there is negative correlation between clustering coefficient and betweenness

centrality. We see that betweenness centrality value increases due to increase in edges

and vertices. However, clustering coefficient values do not increase. Once again this

observation indicates that the newly added vertices are clusters of interdependent

modules added at the end of the paths.

Figure 3.3: Positive correlation between in-out degrees and betweenness centrality

23

Figure 3.4: Negative correlation between clustering coefficient and betweenness

centrality. Note that this plot was clipped at y = 500 to highlight the correlation.

Figure 3.5 shows the spring layout graphs of networks, Version 1 and Version 2

using GraphViz [44]. The vertex color and size represents the value of betweenness

centrality and clustering coefficient respectively. The lighter color vertex indicates vertex

with the high betweenness centrality value and the large size vertex represent the vertex

with the high clustering coefficient value. We can see that there is negative correlation

between clustering coefficient and betweenness centrality because the vertices at the

peripheries are dark and larger in size. This also confirms our hypothesis that the newly

added vertices are clusters of interdependent modules added at the end of the paths.

24

Version 1

Version 2

Figure 3.5: Networks representing Version 1 and Version 2. Lighter vertices indicate

high betweenness centrality. Larger vertices indicate high clustering coefficient

25

3.3.2 Identifying Crucial Vertices

We divide the vertices into four groups; High, Extra High, Low and Extra Low. A

vertex is classify as ‘High’, if it is in top 25 rank for at least one of the following

categories; high in-degree, high out-degree, high betweenness centrality and high

clustering coefficient. A vertex is marked as ‘Extra High’, if it is in top 25 rank for at

least two categories listed above. On the other hand, a vertex is consider as ‘Low’, if it

has zero value for any one of the categories and it is not listed as a ‘High’ vertex. A

vertex is marked as an ‘Extra Low’, if it has zero value for betweenness centrality as well

as clustering coefficient. All remaining vertices go into category ‘Other’. “Extra High’

and ‘High’ vertices represent important classes in the software on the other hand ‘Low’

and ‘Extra Low’ vertices represent classes which are not important. They are peripheral

classes and do not have any significant impact on the software as a whole.

Figure 3.6 shows the percentage breakdown of all vertices in each category for all

versions. We see that Version 1 - Version 2 show similar breakdown of vertices as does

Version 3 – Version 4 and Version 5 – Version 6. This matches our previous observation

that the major changes occurred between Version 2 to Version 3 and Version 4 to

Version 5. Also, Version 1 and Version 2 have the largest number of ‘High’ and ‘Extra

High’ vertices i.e. all important classes in the software are added in earlier versions of

software. On the other hand, Version 5 and Version 6 have the largest number of ‘Low’

and ‘Extra Low’ vertices, which shows that as the software matures more peripheral

functionalities are added.

26

Figure 3.6: Percentage breakdown of all vertices in each version

3.3.3 Analysis of Newly Added Vertices

Figure 3.7 shows the classification of newly added vertices for each transition. In

Version 1 to Version 2 transition, maximum percentage of newly added vertices are high

clustering coefficients i.e. well connected modules have been added into Version 2. In

transition from Version 4 to Version 5 and Version 5 to Version 6 most of the newly

added vertices are zero betweenness centrality and zero clustering coefficient. Again, it

confirms our previous finding that in later versions of software newly added vertices

represent peripheral classes.

27

Figure 3.7: Percentage of new vertices per impact group with respect to the total number

of vertices added

3.3.4 Analysis of Community Properties

In large networks, communities represent subset of the network with highly

connected vertices. For software networks, identifying communities help in discovering

the working architecture of the software system where the communities are aggregate

components consisting of classes that interact highly with each other. We applied a

community detection algorithm [30] to discover such aggregate components and to track

the stability of these components over time. In Table 3.2, we see that the number of

communities increases. We also note that, most of the vertices are concentrated amongst

the top two communities and most of the elements in consecutive communities are

retained. The community detection method, though extensively used is still heuristics and

has some drawbacks such a resolution limit, i.e. can’t find communities smaller than a

certain size and sensitivity to tie-breakers, i.e. result can be significantly altered due to

choices in tie-breaking [45]. In particular, later versions of the software have more

28

communities; most of the new communities have very few vertices (about two to three

elements). Due to sensitivity of the algorithm these small communities are not

meaningful and we therefore focus on the communities with larger membership (at least

8 members).

We note that each version has two large communities (over 50% of all of vertices)

Table 3.4 compares these top two communities across all versions. We see that there is a

large intersection between corresponding communities in consecutive versions, as

indicated by the row ‘Common Elements’. We find that vertices in these large

communities tend to be retained from one version to the next. The fact that these tend to

be stable across versions gives us confidence of the validity of the community detection

algorithm. In particular, across all versions, two large communities seem to be centered

on two key interfaces, ‘draw.framework.Figure’, the main interface for all figures, and

‘draw.framework.DrawingView’, the main interface for rendering drawings. A closer

inspection across all versions indicates that one community has mostly figure and

handler-related classes while the other has mostly drawing and toolbar-related classes.

We observe that ‘Figure’ and ‘DrawingView’ are in the same package but ended up in

different communities. Likewise, many detected communities cut across the hierarchical

package structure, which seems to indicate that the working subset of classes are not

confined to packages, but to some different aggregate. This hints at a potential division of

classes for restructuring.

29

Property V1-V2 V2-V3 V3-V4 V4-V5 V5-V6

Elements in Vi 112 139 211 233 335

Elements in Vi+1 139 211 233 335 304

Common Elements 112 132 197 204 269

Percentage w.r.t Vi 1 .94 .93 .87 .80

Percentage w.r.t Vi+1 .80 .62 .84 .61 .88

Table 3.4: Analysis of similarities between large communities

3.3.5 Impact on Quality

After each version, we looked at all changed files during the transition of that

version. The number of file involved in each revision is counted and we looked for the

keyword “bug fix” in each file. Table 3.5 shows bug frequency after each version. We

can see that after Version 3 it has the highest number of bug fixes and second highest

after Version 5. These intervals with the high percentage of bug fixes follow the periods

with the highest measures of disruption (Version 2 to Version 3 and Version 4 to Version

5).

Interval Total Files Changed Bug Fixes Percentage

Post Version 1 94 0 0.00%

Post Version 2 176 0 0.00%

Post Version 3 172 38 22.09%

Post Version 4 1720 120 6.98%

Post Version 5 50 6 12.00%

Post Version 6 89 1 1.12%

Table 3.5: Bug Frequencies after Each Version

30

3.4 Discussion

We have applied different combinatorial or graph-theory based metrics to study

the evolution of networks representing JHotDraw 5 software. These metrics provide

insight to understand disruption between versions. Our observations can be summarized

as follows,

a. The significant evolutionary changes occur between Version 2 to Version 3 and

Version 4 to Version 5.

b. Degree Distribution for all versions follows the power law an indication that these

are scale free networks.

c. The network has grown cumulatively. Newer vertices tend to get added in the

peripheries.

d. There is positive correlation between betweenness centrality and in-out degree.

On the other hand there is negative correlation between betweenness centrality

and clustering coefficient.

e. The top 25 rankings of vertices were generally stable across versions. This

indicates stability in the design.

f. The bug frequency is higher after Version 3 and Version 5. The degree of

disruption can help explain why bug incidence increases.

g. The top two communities contained the bulk of the vertices in each version. There

was significant overlap between corresponding communities across consecutive

versions.

31

From these observations, it appears the original design was maintained throughout

the different versions. One of the important finding is the quantification of the amount of

disruption caused by different versions of code. We also note that the bug incidence is

higher after version 3 and 5. The degree of disruption can contribute to explaining why

the bug increases.

32

Chapter 4

Analysis of Gene Expression Data

4.1 Introduction

Gene expression datasets are constructed in matrices, where each gene in a matrix

corresponds to one row and each condition corresponds to one column. Each element in

the matrix represents the expression level of a gene under a specific condition. There are

number of methods for analyzing gene expression matrices, one of the most used

methods is clustering such as hierarchical clustering [46], k-means clustering [47], etc.

Clustering techniques use to group either genes (or conditions), such that genes (or

conditions) of one group are similar to each other and different from other groups. Most

of the clustering algorithms consider all the conditions to group genes and all the genes to

group conditions. Traditional clustering algorithms have been successfully applied in

many contexts. However, they suffer from some limitations in the analysis of large and

heterogeneous collections of gene expression data. Standard clustering group genes (or

conditions) based on global similarities in their expression profiles. However, due to

large amount of diverse data, biologically related genes may not show similar behavior

across all the conditions but in a subset of them. Also, traditional clustering generally set

each gene in a single cluster, but many genes can be involved in different biological

processes.

Biclustering techniques have been presented as an alternative approach to

traditional clustering. It performs clustering on genes and conditions simultaneously in

order to identify subsets of genes that display similar expression patterns across subset of

33

conditions and vice versa. In traditional clustering algorithms, cluster of genes is selected

considering all the conditions and cluster of conditions is selected considering all the

genes. However, in biclustering algorithms, cluster of genes is defined using subset of

conditions. Similarly, cluster of conditions is defined using subset of genes. Figure 4.1

demonstrates the clustering and biclustering of a gene expression matrix. Clusters of

genes (rows) (Figure 4.1 (a)) must contain all conditions (columns), and clusters of

conditions (columns) (Figure 4.1 (b)) must contain all genes (rows). Biclusters (Figure

4.1 (c)) correspond to arbitrary subsets of genes (rows) and conditions (columns).

 Conditions Conditions Conditions

(a) Clusters of Genes (b) Clusters of Conditions (c) Biclusters

Figure 4.1: Clustering and biclustering of a gene expression matrix

4.2 Background

Consider gene expression data matrix, ‘A’ with set of rows ‘X’ and set of

columns ‘Y’. Rows represent ‘n’ number of genes and columns represent ‘m’ number of

conditions. Each cell of gene expression matrix represents expression level of gene under

condition.

Bicluster 1

Bicluster 2

G
e
n
e
s

G
e
n
e
s

G
e
n
e
s

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Cluster 1 Cluster 2

34

 Condition 1 Condition 2 … … Condition m

Gene 1 a11 … … … a1m

Gene 2 … … … … …

… … ... … … …

… … … … … …

Gene n an1 … … … anm

Table 4.1: Gene Expression Data Matrix

A cluster of rows (genes) is subset of rows (genes) that shows similar behavior

across all the columns (conditions).

A cluster of rows (genes) � �@, A� where, @ �
#1, #2, … , # � C and D� �

Similarly, a cluster of columns (conditions) is subset of columns (conditions) that

shows similar behavior across all the rows (genes).

A cluster of columns (conditions) � �E, C� where, E �
F1, F2, … , F � A and

 D� =

On the other hand, a bicluster is a subset of rows (genes) that shows similar

behavior across the subset of columns (conditions) and vice versa.

A bicluster � �@, E� where,

@ �
#1, #2, … , # � C, and D� �,

E �
F1, F2, … , F � A, and D� =

So given a gene expression data matrix our goal is to identify different biclusters,

such that each bicluster satisfies some specific characteristics of homogeneity.

35

Figure 4.2 illustrates types of biclusters proposed by Madeira et al. [16], They

divided biclusters into four major classes, (i) Biclusters with constant values; where all

the values are constant (Figure 4.2 (a)) (ii) Biclusters with constant values on rows or

columns; where either rows or column values are constant (Figure 4.2 (b) (c)) (iii)

Biclusters with coherent values; where each row and columns is obtained by addition or

multiplication of the previous row and column by a constant value (Figure 4.2 (d) (e))

and (iv) Biclusters with coherent evolutions; where the direction of change of values is

important rather than the coherence of the value. The first three categories are based on

the actual numeric values of the data matrix and try to find subsets of rows and columns

with similar behavior. The fourth category tries to find coherent behaviors regardless of

exact numeric values in the data matrix. Each of these types of biclusters have different

significant for discovering important knowledge from gene expression data.

Bozdag et al. [19] classifies biclustering patterns into two categories; (i) local

pattern, and (ii) global pattern. A bicluster pattern is considers as local pattern, if it is

defined on a single bicluster. All types of biclusters explained in the Figure 4.1 are come

under local pattern, where no information is required about the elements outside the

bicluster. On the other hand, in global pattern, the membership of a row (column) to a

bicluster depends on the element of a row (column) external to the bicluster and/or on the

membership of the row (column) to other biclusters.

36

 (a) (b) (c)

 (d) (e) (f)

Figure 4.2: Examples of different types of biclusters [16] (a) Constant bicluster, (b)

Constant rows bicluster, (c) Constant columns bicluster, (d) Coherent values (Addictive

model), (e) Coherent values (Multiplicative model), (f) Coherent evolutions bicluster

In recent years, several algorithms have been proposed to find different types of

biclusters. Some of the widely known algorithms include Cheng and Church [10],

Iterative Search Algorithm [21], Correlated Pattern Biclusters [23], OPSM [22], xMotif

[19], HARP [48], MSSRCC [49], SAMBA [20]. Most of the algorithms use greedy

approach that start with either all rows or columns, and then iteratively eliminate them to

optimize the objective function or they start with a random initial seed and use heuristics

to converge to the final bicluster. Every biclustering algorithm focuses on few

biclustering types shown in Figure 4.2. Cheng and Church algorithm finds constant

values, constant rows and constant columns types of biclusters. HARP finds constant

values and constant rows types of biclusters but not other types of biclusters. xMotif is

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

1 2 6 4

2 3 7 5

4 5 9 7

3 4 8 6

1 4 2 6

2 8 4 12

6 24 12 36

3 12 6 18

37

meant to find biclusters with constant columns. Some of the biclustering algorithms

address the problem of finding coherent evolutions across the rows and/or columns of the

data matrix regardless of their exact values. OPSM is designed to find coherent trends of

up-down regulations in biclusters. Similarly, Correlated Pattern Biclusters algorithm

focuses on biclusters with coherent evolutions. Cheng and Church, OPSM, HARP and

Correlated Pattern Bicluster algorithms discover ‘local patterns’, while MSSRCC and

SAMBA algorithms discover ‘global pattern’. Some algorithms are designed to find

overlapping biclusters, for e.g. Iterative Search Algorithm, SAMBA, and OPSM.

4.3 Our Contribution

We propose new biclustering algorithm which is based on the technique similar to

graph alignment. Graph alignment is the problem of finding similarities between the

structures of two or more graphs. Graph alignment is analogous to sequence alignments

between genomes. Alignment in biological networks is very useful in bioinformatics

research. Graph Aligner (GRAAL) [50] is one of the widely used algorithms for graph

alignment. This algorithm is based on the network topology, which is the shape or

structure of a network. GRAAL aligns pairs of vertices from different network based on

their graphlet degree signature similarities [51], where a higher signature similarity

between two vertices corresponds to higher topological similarity between their

neighborhoods. GRAAL produces a global network alignment i.e. it aligns each vertex in

smaller network to exactly one vertex in larger network. Thus, they do not allow gaps in

alignments i.e. vertices without alignment in smaller network. Instead of finding

alignment for all the vertices in smaller network with the larger network, we try to find

38

similar vertices between two networks using combinatorial properties, such as Clustering

Coefficient, Betweenness Centrality, etc. (explained in Chapter 2). We divide our

algorithm into three steps;

Step 1: Graph Representation of Gene Expression Matrix

We represent gene expression data matrix in a graph format by creating a graph

for each condition. So, we get < number of graphs where < is the number of conditions

in a given input gene expression data matrix. In each undirected graph � � ��, ��,

vertices (V) represent genes and edges (E) represent connections between genes

according to the similarity criteria. There is an edge between two genes, if they show

similar behavior under that condition. According to dataset, we set threshold value to

decide the edge between genes. If the distance between expression values of two genes

(e.g. G1 and G2) under that condition (e.g. C1) is less than the threshold value (Neighbor

Threshold Value), then we add edge between G1 and G2 to the graph which is related to

C1. There is an edge between two genes in a graph if,

(#),%�G: >:,�::� ,�- H:�:) D� <:#HI>-* 8I*:)I-9J �%9�:
Figure 4.2 demonstrates how we represent gene expression matrix in a graph

format. Figure 4.2 (a) is a sample gene expression matrix with 5 genes and N conditions.

Figure 4.2 (b) is a graph representation of Condition 1 of gene expression matrix shown

in figure 4.2 (a). In that graph there is an edge between vertex 1 (Gene 1) and vertex 2

(Gene 2) because the distance between Gene 1 and Gene 2 is less than 2 (assume

‘Neighbor Threshold’ value is 2). We apply similar procedure for all other conditions of

gene expression matrix.

39

 C1 C2 … … Cn

G1 10 … … … a1n

G2 8 … … … …

G3 10 ... … … …

G4 4 … … … …

G5 6 … … … Amn

(a) Gene Expression Matrix

(b) Graph representation for Condition 1 (Neighbor Threshold Value = 2)

Figure 4.3: Example of graph representation of gene expression matrix

Step 2: Similar Vertices (Genes) between Graphs

Next, we find the similar vertices between different graphs. First, we compute a

difference matrix D of differences between vertices in two graphs. Rows of D correspond

to vertices in Graph 1 and columns correspond to vertices in Graph 2. When computing

the differences between a vertex u from Graph 1 with a vertex v in Graph 2, we consider

clustering coefficient and betweenness centrality values (explained in the Chapter 2) of

all the vertices. The higher the clustering coefficient it is more likely that a vertex is a

part of dense module with closely interconnected components and betweenness centrality

of a vertex represents how often it occurs in dependency path.

1 2

3 4

5

40

We calculate the clustering coefficient and betweenness centrality value for every

vertex in Graph 1 and Graph 2.

�9�),:*#�H �-:KK#G#:�, ���� (#KK:*:�G: �#, F� is calculated as,

�� �%9�: -K �:,:; # K*-= �*%+I 1 ! �� �%9�: -K �:,:; F K*-= �*%+I 2
�:,�::��:)) �:�,*%9#,L ���� (#KK:*:�G: �#, F� is calculated as,

�� �%9�: -K �:,:; # K*-= �*%+I 1 ! �� �%9�: -K �:,:; F K*-= �*%+I 2
Then, we compare all the vertices of Graph 1 and Graph 2 to find the difference

between clustering coefficient and betweenness centrality values and calculate the matrix

D.

(#KK:*:�G: ?%,*#; �#, F� � �� (#KK:*:�G: �#, F� M �� (#KK:*:�G: �#, F�
We consider ‘�:*,:; #’ of Graph 1 is similar to ‘�:*,:; F’ of Graph 2, if

(#KK:*:�G: ?%,*#; �#, F� D� N#=#9%*#,L 8I*:)I-9J �%9�:

Using above procedure, we find the similar vertices between two graphs. First

step gives us < graphs (< is the total number of conditions in gene expression matrix: G1,

G2…, and Gn). We can compare all the graphs by two ways in order to find similar

vertices between them, (i) compare G1 and G2, G2 and G3 and so on, and (ii) compare G1

and G2, G1 and G3, …, G1 and Gn, G2, and G3, …, G2 and Gn and so on. At the end of this

step, we get similar vertices between different graphs i.e. pair of genes which shows

similar behavior under conditions.

41

Step 3: Finding Biclusters

In the previous step, we get the similar vertices across different graphs; using that

information in this step, we find different biclusters. Assume, we get the following

similar vertices in different graph comparisons, In Comparison of Graph 1 and Graph 2;

similar vertices are V1 – V2, V4 – V8, V5 – V7, etc.

Comparison 1 (Graph 1 and Graph 2): V1 – V2, V4 – V8, V5 – V7, …

Comparison 2 (Graph 4 and Graph 5): V7 – V9, V4 – V8, V1 – V10, V5 – V7, …

Comparison 3 (Graph 5 and Graph 6): V4 – V8, V15 – V16, V5 – V7, V11 – V22, …

Comparison 4 (Graph 8 and Graph 9): V1 – V3, V4 – V8, V5 – V7, …

In this step, we find the common pairs of similar vertices between different graph

comparisons. In above example, we get following common vertices in different graphs,

Common Vertices (Genes): 4, 8, 5, And 7 in

Graphs (Conditions): 1, 2, 4, 5, 6, 8, And 9

In our graph representation of gene expression matrix, vertices represent genes

and graphs represent the conditions. Therefore, we get the set of vertices (Genes), which

are common across different graphs (set of conditions). In other words, we get the set of

genes which shows similar behavior across set of conditions. Similarly, we find all

common pairs of similar vertices between different graph comparisons. Then, we filter

42

the results by applying two conditions (i) minimum number of genes in a bicluster, and

(ii) minimum number conditions in a bicluster.

4.4 Results and Assessment

Many Biclustering algorithms produce different results for same gene expression

datasets. Moreover, same algorithm produces different results for different parameter

settings. One of the important things in deciding the better algorithm is to check

correctness of the results. All validations techniques of traditional clustering algorithms

can be divided in to two types; internal validation measures and external validation

measures [52]. Internal validation techniques are based on the data intrinsic to the data

alone; they don’t use additional knowledge in the form of true clusters. On the other

hand, external validation measures evaluate clustering results based on the correct

clusters. In cases where true clusters are not available internal validation measure is

useful. In most of the biclustering papers, external validation measures have been used to

evaluate the results. Most of them recommend external validation measures because it is

not clear how to extend notions such as homogeneity and separation to the biclustering

context [53] and there are some issues with internal validation measures [52-53]. We

used two types of datasets to test our algorithm, (i) synthetic datasets, and (ii) real

datasets. For synthetic datasets, we used external validation techniques, because we

already knew the true results, and for real datasets, where we did not know the true

biclusters, we used internal validation techniques to validate the results.

43

4.4.1 Synthetic Datasets

We generated synthetic datasets by implanting fixed size biclusters in matrices.

All matrices are of size 50 rows (genes), and 50 columns (conditions). We implanted 10

non-overlapping biclusters (with four genes and four conditions each) in every matrix

with no noise. We created three different matrices for three types, namely Constant

Biclusters, Constant Rows Biclusters, and Constant Columns Biclusters. Matrix 1 has 10

implanted biclusters of type constant biclusters, matrix 2 has 10 implanted biclusters of

type constant rows biclusters, and matrix 3 has 10 implanted biclusters of type constant

columns bicluster.

In order to validate the bicluster results, Prelic et al. [54] have used following

gene match score formulae, which reflects the average of the maximum match scores for

all biclusters in M1 with respect to the biclusters in M2

N �?1, ?2� � 1| ?1 | � =%;�O&,P&��Q& | �1 R �2 || �1 S �2 |�O0,P0��Q0

In biclustering, genes as well as conditions play an important role. We need to

check genes as well as conditions to validate the biclustering results. So, we added

Jaccard coefficient [56] score of conditions
| P0 R P& || P0 S P& | in above gene match score formula.

Instead of only Jaccard coefficient score of genes, we took the average of Jaccard

Coefficient score for genes and conditions, i.e. %�H T| O0 R O& || O0 S O& | %�J | P0 R P& || P0 S P& |U.

N �?1, ?2� � 1| ?1 | � =%;�O&,P&��Q& �O0,P0��Q0 %�H V| �1 R �2 || �1 S �2 | %�J | �1 R �2 || �1 S �2 |W

44

Consider M1 = Result of an algorithm and M2 = True Result, then we calculate

two scores, both scores take the maximum value of 1, if both the results are similar (M1 =

M2). NG-*: 1: N �?1, ?2�

#. :. Z-� =�GI +:*G:�,%H: -K ,I: %9H-*#,I=’) *:)�9, #) #�G9�J:J #� ,I: ,*�: *:)�9,)

NG-*: 2: N �?2, ?1�

#. :. Z-� =�GI +:*G:�,%H: -K ,I: ,*�: *:)�9,) #) #�G9�J:J #� ,I: %9H-*#,I=’) *:)�9,)
Table 4.2 shows results for synthetic datasets. All biclusters with constant values,

constant rows, and constant columns found by our method, because both the scores for all

three matrices are 1,

Dataset Number of Biclusters Found Score 1 Score 2

Matrix 1 (Constant) 10 1 1

Matrix 2 (Constant Rows) 10 1 1

Matrix 3 (Constant Columns) 10 1 1

Table 4.2: Results on synthetic dataset

4.4.2 Real Datasets

We used two real datasets (sample datasets from “Biclustering Analysis Toolbox

V2.2” [55]) to test on our algorithm. Table 4.3 shows description of these two datasets.

Dataset_1 has 34 genes, 153 conditions and Dataset_2 has 419 genes and 70 conditions.

45

Dataset Number of Genes Number of Samples

Dataset_1 34 153

Dataset_2 419 70

Table 4.3: Real Dataset Description

Here, we did not know the true biclusters, so we decided to use internal validation

measures. As a first step, we calculated compactness of the bicluster. It measures how

closely related the objects in a bicluster are. There are different measures estimate the

cluster compactness based on the distance, such as maximum or average pair wise

distance, and maximum or average center-based distance. We calculated the Euclidean

distance [57] between each pair of conditions in a bicluster, and found the maximum

distance between conditions in a bicluster.

��G9#J:%� J#),%�G: ��1, �2� � \���2� ! �1��&]
�^0

Then, we calculated average maximum distance between two conditions in a

bicluster for all biclusters in a result. We compare our results with Cheng and Church,

Iterative Search Algorithm, OPSM and BiMax biclustering algorithms (using BicAT

Analysis Toolbox [55]). If we consider the constant biclusters, constant rows biclusters

and constant columns biclusters, then the distance between any two samples should be

zero. Table 4.4 and 4.5 summarize the results for real datasets. We see that, our algorithm

gives better results for constant biclusters. Table 4.4 shows that the average maximum

distance score for Dataset_1 is very low for our algorithm followed by Cheng and

Church, Iterative Search Algorithm, BiMax and OPSM. Similarly, Table 4.5 shows that

46

the average maximum distance score for Dataset_2 is very low for our algorithm

followed by BiMax, Iterative Search Algorithm, Cheng and Church, and OPSM. Average

maximum distance score is very high for some of the algorithms such as OPSM, BiMax

etc. because, they focus on biclusters with coherent evolutions and compactness is not the

right validation measure for such type of biclusters. We may get very high maximum

distance between samples for biclusters with coherent evolutions.

Algorithm

Name

Parameter Settings Number of

Biclusters

Avg max distance between two

conditions in a Bicluster

Our

Algorithm

P1: 7, P2: 0; P3: 4, P4: 4 11 134.01

P1: 3, P2: 0; P3: 2, P4: 2 16 67.74

Cheng and Church 10 109.54

Iterative Search Algorithm 3 7011.71

OPSM 10 9392.10

BiMax 26 8718.92

Table 4.4: Biclustering results for Dataset_1. (P1: Neighbor Threshold, P2: Similarity

Threshold, P3: Minimum Number of Genes, and P4: Minimum Number of Conditions)

Algorithm

Name

Parameter Settings Number of

Biclusters

Avg max distance between

two conditions in a Bicluster

Our

Algorithm

P1: 0.5, P2: 0; P3: 4, P4: 4 722 3.08

P1: 0.4, P2: 0; P3: 2, P4: 2 1298 2.55

Cheng and Church 10 17.41

Iterative Search Algorithm 38 11.54

OPSM 12 22.83

BiMax 1938 4.59

Table 4.5: Biclustering results for Dataset_2. (P1: Neighbor Threshold, P2: Similarity

Threshold, P3: Minimum Number of Genes, and P4: Minimum Number of Conditions)

47

4.5 Discussion

We have used different approach than other previous biclustering algorithms for

finding biclusters in a gene expression data. As we discussed earlier, most of the

algorithms either start with both all rows and columns or start with random initial seed

and then use greedy approach to find the biclusters. Therefore, the method is unable to

search the space of all possibilities exhaustively. The structure of our method makes it

possible to search every possible biclusters. Our primary results show that, our method is

very good to find constant biclusters. Also, this approach looks promising to find other

types of biclusters.

Our method of finding biclusters in a gene expression matrix has a vast scope for

improvements and advancements. The process of finding similar vertices in two networks

can be improve using combination of several combinatorial properties instead of using

only clustering coefficient, and betweenness centrality. This will help for finding

biclusters of type coherent values, and coherent evaluation. Also, we can improve this

method to find overlapping biclusters.

48

Chapter 5

Efficient Algorithm to Finding Communities in Dynamic

Networks

5.1 Community Detection

Community detection in a networks concerns collecting similar objects under one

group. Objects in the same community are similar to each other and different from

objects in the other communities. Two common methods for community detection are,

divisive and agglomerative. Divisive method is a “top down” approach where initially all

objects are in one community and then they divided into communities according to a

similarity measure. Agglomerative method is a “bottom up” approach where at first each

object is in its own community and then pairs of communities are merged according to

similarity measure. A dendrogram, a branching diagram, represents the hierarchy of

connections in the agglomerative method. In the network, we group vertices according to

the edge structure such that there are many edges within the group and very few between

the groups. We get densely connected components of the graph by applying community

detection algorithm on them.

A popular method for community detection is based on maximization of a metric

known as modularity proposed by Newman and Girvan [29]. Clauset, Newman and

Moore [30] proposed an algorithm (this algorithm will be referred as “CNM” in this

document) to efficiently obtain high modularity in large networks. This algorithm uses

49

greedy approach, where each vertex is in its own community followed by repeatedly join

two communities whose amalgamation produces the maximum increase in modularity.

5.2 CNM Algorithm / Static Community Detection Algorithm

CNM algorithm uses modularity property of a network to find the communities.

Modularity is a property of a network and measures the difference between the edges

present within a group of vertices to the edges expected from random connections

between them. The difference is normalized over the total number of edges in the graph.

A high modularity indicates that the two groups have high probability of belonging to

same community. Initially each vertex is assigned to a single community. Two

communities are merged if the operation maximizes the increase in the total modularity

of a network. The CNM algorithm proceeds in iterative steps combining communities

until the potential increase of modularity becomes negative. The final set of communities

is then identified as the closely connected groups of vertices in the network.

Let, _�� be an element of the adjacency matrix of the network,

_�� �
` a5b34��73 0 cd �345�637 � efg � e43 6hff3653g

Suppose the vertices are divided into communities such that vertex v belongs to

community cv. Then the fraction of edges that fall within communities, i.e., that connect

vertices that both lie in the same community, is

∑ _��i��� , ����� ∑ _���� � 12= � _��i��� , �����

50

Where the δ-function i�#, F� is 1 if # � F and 0 otherwise and = � 0& ∑ _���� is

the number of edges in the graph.

 This quantity will be large for good divisions of the network, in the sense of

having many within community edges, but it is not, on its own, a good measure of

community structure since it takes its largest value of 1 in the trivial case where all

vertices belong to a single community. However, if we subtract from it the expected

value of the same quantity in the case of a randomized network, we do get a useful

measure. The degree kv of a vertex v is defined to be the number of edges incident upon it

 � � � _���

The probability of an edge existing between vertices v and w if connections are

made at random but respecting vertex degrees is � �2= . Modularity Q is

j � 12= � k_�� ! � �2= l i��� , �����

The algorithm uses a greedy optimization in which, starting with each vertex

being the sole member of a community of one, we repeatedly join together the two

communities whose amalgamation produces the largest increase in Q. We continue this

process until we get negative maximum Q value.

The algorithm has running time m�=J 9-H �� for a network with ‘n’ vertices and

‘m’ edges and a depth, ‘d’ of the hierarchical community structure and is thus known to

perform efficiently on vertices up to 500,000 vertices [58].

51

Most community detection algorithms focus on finding the communities in static

i.e. non-evolving networks. However, most real world networks such as social networks

etc. evolve with the time. Networks change at each time step and most of the community

detection algorithm consider each step as a separate network. The information regarding

communities from the previous network is not used and communities have to recompute

as a whole. To run the community detection algorithm on the complete graph for even a

small change would be computationally very expensive. The efficiency of these

algorithms can be greatly improved if the re-computation is limited only to the portions

of the network that are affected by change. We propose a fast community detection

algorithm for real-time dynamic networks that take advantage of community information

computed in previous time steps. Our algorithm increases efficiency of the detected

community structure because of using community information from previous time step

networks.

5.3 Our Contribution / Dynamic Community Detection Algorithm

 (Text in this section is mostly paraphrased from our publication [59])

We propose a community detection algorithm for dynamic networks which

changes over time. Changes in the network involve addition or deletion of edges in the

network. Our algorithm is based on the greedy agglomerative technique of the CNM

algorithm. If the total numbers of edges in the network are sufficiently large, then a small

change in the number of edges would not affect the fraction of edges in the graph, i.e. the

values of Cij. Therefore, we first apply the CNM algorithm on the initial network

configuration and record each combination step, i.e. two communities that have merged

52

and value of increase in modularity due to merge. In every change in the network i.e.

addition or deletion of edges in the network, we define the two vertices associated with

the modified edge as being perturbed. The combination steps are replicated without any

recalculation if participating vertices are not perturbed. Once we get first perturbed vertex

in the combination step we switch back to CNM algorithm and continue until all the

communities have been identified. Given a modified edge (a, b); replicate the

combination steps of the previous time steps until vertex ‘a’ or vertex ‘b’ is encountered.

Then switch back to the original agglomerative algorithm continue as in the static case.

Pseudo code for Dynamic Community Detection Algorithm

Input: Network G0 and list of modified edges over time steps where t = 1, …, T.

Output: Community structure at time steps t = 1, …, T.

Steps:

1. The community structure of the input network G0 is initialized using the

original greedy agglomerative algorithm

2. Each combination step is stored as a triplet <i, j, dQ>, t = 0, where i and j are

communities that have merged and dQ is the increase in modularity due to

merge.

3. For iterations over time steps t = 1, …, T

a. Obtain change in edges. Let a and b be the vertices involved in the edge

change

b. Update network Gt-1 to G1 to include the change

53

c. Replicate combination steps of Gt-1 until vertex a or b is encountered

d. Revert to original agglomerative algorithm

e. Continue until increase of modularity, dQ is negative

f. Delete combination steps for Gt-1

g. Store all the combination steps Gt

4. End

Data Structure for Dynamic Networks (CSR format)

Graphs can be represented as an adjacency matrix where rows and columns are

labeled by graph vertices and value of adjacency matrix (Vi, Vj) is 1 if there is an edge

between vertex Vi and vertex Vj otherwise 0. Adjacency matrix of large graphs is usually

sparse matrix where most of the matrix values are zeros. Data structures for dynamic

networks include adjacency lists, such as those used in [60], which are easy to modify

through addition and deletion of elements to the list. However, adjacency list can

potentially occupy non-contiguous addresses; it is not efficient memory utilization.

Compressed row storage method [61] is a popular format for representing sparse

matrices. This method stores the non-zero elements of a sparse matrix into a linear array.

In this method all the information about sparse matrix is stored into three vectors as

described below,

a. Values: stores the non-zero values of a sparse matrix by walking down each

column and writing a non-zero values

b. Columns: Value of Columns[i] is the number of the column of adjacency matrix

that contains the Values[i] element.

54

c. RowIndex: Value of RowIndex[i] gives the index of the element of the Values

array of the first non-zero element in a row ‘i’ of adjacency matrix.

The example of compressed row storage format for storing small graph is shown

in Figure 5.1

In our implementation we used the compressed row storage method with few

modifications. To identify the community structure, we added an extra vector C_ID to the

original storage format. C_ID vector stores the community ID for each vertex. When an

edge is deleted, the corresponding value is set to zero; when an edge is added, a new

entry and value is added to the existing arrays. The advantages of this modified data

structure are high cache utilization and easy to implement. However, due to addition of

edges and deleted edges are represented by zeros the network tends to become larger as

the number of modification increases.

a. Network of 5 Vertices

 1 2 3 4 5

1 - W1 - - -

2 W2 - W3 - W4

3 - W5 - - -

4 - - - - W6

5 - W7 - W8 -

b. Adjacency matrix for the network

1 2

3 4

5

55

C_ID 1 2 3 4 5

Index 1 2 5 6 7 9

Columns 2 1 3 5 2 5 2 4

Values W1 W2 W3 W4 W5 W6 W7 W8

c. CSR format for the original network

d. Original network with edge (1, 3) added

C_ID 1 2 3 4 5 1 3

Index 1 2 5 6 7 9 10 11

Columns 2 1 3 5 2 5 2 4 3 1

Values W1 W2 W3 W4 W5 W6 W7 W8 W9 W10

e. CSR format for the modified network

Figure 5.1: The CSR Format for a network. a) The original network. b) The sparse

adjacency matrix corresponding to the network. The values represent the increase in

modularity if the row and column are to be merged. c) The CSR format for the sparse

matrix. d) The original network with new edge (1, 3) added. e) Modification to the

original sparse matrix to add entries for edge (1, 3) and (3, 1).

1 2

3 4

5

56

5.4 Results

In this section, we describe the results of our dynamic community detection

algorithm method on a publicly available dataset on scientific collaboration. We use

dynamic network data where all changes are available a priori and they are processed one

change at a time.

DBLP database presents information on computer science publications listed in

the DBLP Computer Science Bibliography [62]. The data in this dataset provides a

snapshot of the bibliography as of April 12, 2006. The DBLP dataset maps each entry in

the original DBLP data to one of six types of objects representing different types of

publications. It includes links from publications to their authors and editors and from

papers to the journal, proceedings, or book in which they appear, as well as citation links

from one publication to another. From this data, we derive a dynamic co-authorship

network for year 2000 and 2001 to test our algorithm. Both the networks (Year 2000 and

2001) have 3252 vertices. Network for year 2000 has 10997 edges and network for year

2001 has 11159 edges. Vertices in the network represent authors and edges represent co-

authorship.

Network Name Vertices Edges

Year 2000 3252 10997

Year 2001 3252 11159

Table 5.1: Network Information

There are 2169 changes in the edges (1124 additions and 1044 deletions) from

network of year 2000 to year 2001. We experiment with multiple changes at a time from

1 change at a time to 2, 4, 8, and 10 changes at a time. We compare the time required for

57

our dynamic algorithm and static algorithm at each step. We alternate the modifications

between addition and deletion of edges to satisfy our assumption that small number in the

number of edges would not affect the value of Cij. However, in the DBLP dataset for year

2000 and 2001, there are 80 more additions than deletions, i.e. 2% change in the number

of edges in the network. This change does slightly affect results during the final

modification. The results and observations of our experiments are described below,

Figure 5.2: Difference in maximum modularity of the static and dynamic method over

each network. The X-axis plots the number of modifications and the Y-axis plots the

difference in the modularity. Top: One change per time step and Bottom: Two changes

per time step

In order to find the correctness of our dynamic algorithm, we compare the

maximum modularity obtained by our dynamic algorithm with the original static

algorithm at each step. We can see in the Figure 5.2 and 5.3, the maximum modularity

58

obtained by two algorithms remain nearly same except the final few modification steps,

where they diverge. The difference in the modularity between two methods during final

steps is generally within 5%, except in the case of one change per step where different in

modularity increase to almost 25%.

Figure 5.3: Difference in maximum modularity of the static and dynamic method over

each network. The X-axis plots the number of modifications and the Y-axis plots the

difference in the modularity. Top: Four changes per time step, Middle: Eight changes per

time step and Bottom: Ten changes per time step

59

Then we compare the execution time of our dynamic algorithm with the original

static algorithm. We compare the results only for time steps 1 to 2100, because solutions

of the static and dynamic algorithms are equivalent in this range. We calculate the

percentage of improvement using following formulae,

�N,%,#G8#=: ! (L�%=#G8#=:�N,%,#G8#=: n 100

Figure 5.4, and 5.5 show that our dynamic algorithm is faster than the original

static algorithm. Efficiency increases with the number of modifications. The speedup can

be as much as 30% with an average of 13%.

Figure 5.4: Percentage speedup of the dynamic method over the static method at each

network. The X-axis plots the number of modification and the Y-axis plots the speedup.

Top: One change per time step and Bottom: Two changes per time step

60

Figure 5.5: Percentage speedup of the dynamic method over the static method at each

network. The X-axis plots the number of modification and the Y-axis plots the speedup.

Top: Four changes per time step, Middle: Eight changes per time step and Bottom: Ten

changes per time step

5.5 Discussion

 Our goal has been to design an efficient algorithm for dynamic community

detection by extending static agglomerative technique and comparing our results with the

static algorithm results. We see from the results, that our algorithm improves the

execution time of a static agglomerative method, while maintaining quality of solution as

measured by the maximum modularity of the network. However, repeated applications of

61

the dynamic method too many changes of the same type can hamper the quality of the

results.

62

Chapter 6

Conclusion and Future Work

 Combinatorial properties can be useful in analysis of different types of networks.

We used these properties to analysis of networks of two different areas; software

engineering and bioinformatics. In software engineering, we quantify and evaluate the

difference between networks representing different versions of JHotDraw 5. These graph

theory based metrics provide important insight into understanding how JHotDraw

evolved. This approach can be applied to understand the evolution of most complex

networks systems. In bioinformatics, we used combinatorial properties to develop a new

biclustering algorithm. Our primary results show that this approach looks promising to

find different types of biclusters by comparing the similarity between networks. In final

part, we designed an efficient community detection algorithm for dynamic networks by

extending a static agglomerative method. Our dynamic algorithm can improve the

execution time of a static agglomerative method.

 As a part of future work, we can try to look into other metrics for large scale

networks and algorithmic approaches for quantifying the disruption caused by large scale

changes between versions of software networks and for finding the similarities between

biological networks. Here, we demonstrated use of graph based metrics to evaluate the

difference between networks representing versions of software system. However, this

approach can be used to estimate the degree of change in evolving networks. In

community detection, we can design dynamic community detection algorithm for

63

divisive methods. We can also improve the efficiency of the algorithm by a more

selective search of the dendrogram.

64

References

[1] M. Newamn, “Scientific collaboration networks: Ii. shortest paths, weighted

networks, and centrality”, Phys. Rev. E, vol. 016132, 2001.

[2] A. Barbour and D. Mollison, “Stochastic Processes in Epidemic Theory”. Springer,

1990, ch. Epidemics and random graphs, pp. 86–89

[3] J. L. Gross and J. Yellen, “Handbook of Graph Theory and Applications”. CRC

Press, 2004.

[4] A. L. Barabasi, H. Jeong, Z. Neda, E. Ravasz A. Schubert, and T. Vicsek, “Evolution

of the social network of scientific collaborations”, Phys, vol. 311, pp. 590–614,

2002.

[5] C. R. Myers, “Software systems as complex networks: Structure, function and

evolvability of software collaboration graphs”, Phys. Rev. E, vol. 68, 2003.

[6] A. Chatzigeorgiou, N. Tsantalis, and G. Stephanides, “Application of graph theory to

OO software engineering”, in Proc. of the Intl. Workshop on Interdisciplinary

Software Engineering Research (WISER ’06), 2006, pp. 29–36.

[7] L. Wang, Z. Wang, C. Yang, L. Zhang, and Q. Ye, “Linux kernels as complex

networks: A novel method to study evolution”, in Intl. Conference on Software

Maintenance (ICSM ’09), 2009, pp. 41–50.

65

[8] M. Savi´c, M. Ivanovi´c, and M. Radovanovi´c, “Characteristics of class

collaboration networks in large Java software projects”, Information Technology

and Control, vol. 40, no. 1, pp. 48–58, 2011.

[9] Brown P, Botstein D: “Exploring the new world of the genome with DNA

microarrays”. Nature Genetics 1999, 21:33-37.

[10] Y. Cheng and G.M. Church, “Biclustering of Gene-Expression Data”, Proc. Eighth

Int’l Conf. Intelligent Systems for Molecular Biology (ISMB ’00), pp. 93-103, 2000.

[11] J.A. Hartigan, “Direct Clustering of a Data Matrix”, J. Am. Statistical Assoc.

(JASA), vol. 67, no. 337, pp. 123-129, 1972.

[12] B. Mirkin, “Nonconvex Optimization and its Applications”, Math. Classification and

Clustering, Kluwer Academic Publishers, 1996.

[13] Harpaz R, Haralick R: “Mining Subspace Correlations”. IEEE Symposium on

Computational Intelligence and Data Mining 2007, 335-342

[14] Dhillon I, Mallela S, Modha D: “Information-theoretic co-clustering”. Proceedings

of the ninth ACM SIGKDD international conference on Knowledge discovery and

data mining ACM Press New York, NY, USA; 2003, 89-98

[15] R. Peeters, “The Maximum Edge Biclique Problem Is NP Complete”, Discrete

Applied Math., vol. 131, no. 3, pp. 651-654, 2003.

[16] Madeira S, Oliveira A: “Biclustering Algorithms for Biological Data Analysis: A

Survey”. IEEE Transactions on Computational Biology and Bioinformatics 2004,

1:24-45.

66

[17] Tanay A, Sharan R, Shamir R: “Biclustering Algorithms: A Survey”. Handbook of

Computational Molecular Biology 2005, 9:26-1.

[18] D. Bozdag, A.S. Kumar, U. Catalyurek: “Comparative Analysis of Biclustering

Algorithms”, ACM International Conference on Bioinformatics and Computational

Biology, 2010

[19] T. Murali and S. Kasif, “Extracting Conserved Gene Expression Motifs from Gene

Expression Data”, Proc. Pacific Symp. Biocomputing, vol. 8, pp. 77-88, 2003.

[20] A. Tanay, R. Sharan, and R. Shamir, “Discovering Statistically Significant

Biclusters in Gene Expression Data”, Bioinformatics, vol. 18, pp. 36-44, 2002.

[21] J. Ihmels, S. Bergmann, and N. Barkai, “Defining Transcription Modules Using

Large-Scale Gene Expression Data”, Bioinformatics, vol. 20, pp. 1993-2003, 2004.

[22] A. Ben-Dor, B. Chor, R. Karp, and Z. Yakhini, “Discovering Local Structure in

Gene Expression Data: The Order-Preserving Sub- Matrix Problem”, Proc. Sixth

Ann. Int’l Conf. Computational Biology (RECOMB ’02), pp. 49-57, 2002.

[23] D. Bozdag, J. D. Parvin, and U. Catalyurek. “A biclustering method to discover co-

regulated genes using diverse gene expression datasets”. In Proc. of International

Conference on Bioinformatics and Computational Biology, volume 5462, pages

151–163, April 2009.

[24] Prelic, A., et al., “A systematic comparison and evaluation of biclustering methods

for gene expression data”, Bioinformatics 2006 22(9):1122-1129.

67

[25] M. Porter, N. Mucha, P. J., M. E. J., A. J. Friend, “Community structure in the

united states house of representatives”, Physica A. 386 (2007) 414–438.

[26] A. L. Barabasi, H. Jeong, E. Ravasz, Z. Neda, A. Schuberts, T. Vicsek, “Evolution

of the social network of scientific collaborations”, Physica A. 311 (2002) 590–614.

[27] K. Voevodski, S. H. Teng, Y. Xia, “Finding local communities in protein

networks”, BMC Bioinformatics 10 (10) (2009) 297

[28] K. Atkins, J. Chen, V. S. Anil Kumar, A. Marathe, “Structure of electrical networks:

A graph theory based analysis”, International Journal of Critical Infrastructures 5

(2009) 265–284.

[29] M. E. J. Newman, M. Girvan, “Finding and evaluating community structure in

networks”, Phys. Rev. E 69 (2) (2004) 026113.

[30] A. Clauset, M. E. J. Newman, C. Moore, “Finding community structure in very

large networks”, Phys. Rev. E 70 (6) (2004) 066111.

[31] Guimera R, Sales M and Amaral, “Modularity from fluctuations in random graphs

and complex networks”, 2004 Phys. Rev. E 70 025101

[32] Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte, Etienne Lefebvre,

“Fast unfolding of communities in large networks”, Journal of Statistical

Mechanics: Theory and Experiment, 1742-5468, P10008 (12 pp.), 2008

[33] C. Tantipathananandh, T. Berger-Wolf, D. Kempe, “A framework for community

identification in dynamic social networks”, in: Proceedings of the 13th ACM

68

SIGKDD international conference on knowledge discovery and data mining, 2007,

pp. 717–726.

[34] H. Ning, W. Xu, Y. Chi, Y. Gong, T. Huang, “Incremental spectral clustering with

application to monitoring of evolving blog communities”, in: SIAM Int. Conf. on

Data Mining, 2007, pp. 261–72.

[35] I. X. Y. Leung, P. Hui, P. Li`o, J. Crowcroft, “Towards real-time community

detection in large networks”, Phys. Rev. E 79 (2009) 066107.

[36] P. J. Mucha, T. Richardson, K. Macon, M. A. Porter, J.-P. Onnela, “Community

structure in time-dependent, multiscale, and multiplex networks”, Science 328

(2010) 876–878.

[37] E. B. Swanson, “The dimensions of maintenance”, in Intl. Conference on Software

Engineering (ICSE ’76), 1976, pp. 492–497.

[38] I. Thapa and H. Siy, “Assessing the impact of refactoring activities on the JHotDraw

project”, in ACM Symp. on Applied Computing, 2010.

[39] JHotDraw, http://www.jhotdraw.org [15 September 2010]

[40] K. Inoue, R. Yokomori, T. Yamamoto, M. Matsushita, and S. Kusumoto, “Ranking

significance of software components based on use relations”, IEEE Transactions on

Software Engineering, vol. 31, no. 3, pp. 213–225, March 2005

[41] R. Yokomori, H. Siy, M. Noro, and K. Inoue, “Assessing the impact of framework

changes using component ranking”, in Intl. Conference on Software Maintenance

(ICSM ’09), Edmonton, Canada, 2009, pp. 189–198

69

[42] Matlb BGL Library, http://www.stanford.edu/˜dgleich/programs/matlab bgl/

[43] P. Paymal, R. Patil, S. Bhowmick and H. Siy, “Measuring Disruption From

Software Evolution Activities Using Graph-Based Metrics”, Proceedings of the

International Conference on Software Maintenance (ICSM) (ERA Track) 2011

[44] J. Ellson, E. R. Gansner, E. Koutsofios, S. C. North, and G. Woodhull, “Graphviz

and dynagraph - static and dynamic graph drawing tools”, in Graph Drawing

Software. Springer-Verlag, 2003, pp. 127–148

[45] B. H. Good, Y. de Montjoye, and A. Clauset, “The performance of modularity

maximization in practical contexts”, Phys, vol. 82, p. 046106, 2010.

[46] McQuitty LL: “Similarity analysis by reciprocal pairs for discrete and continuous

data.” Educational Psychol Measurement 1966, 26:825-831.

[47] MacQueen J: “Some methods for classification and analysis of multivariate

observations”. In Proceedings of the 5th Berkeley Symposium on Mathematical

Statistics and Probability. Statistics. Edited by: Le Cam LM, Neyman J. Berkeley,

CA, USA: University of California Press; 1967:1:281-297

[48] K. Y. Yip, D. W. Cheung, and M. K. Ng. Harp: “A practical projected clustering

algorithm”. IEEE Transactions on Knowledge and Data Engineering, 16(11):1387–

1397, 2004.

[49] H. Cho, I. Dhillon, Y. Guan, and S. Sra., “Minimum sum-squared residue based co-

clustering of gene expression data”. In SIAM International Conference on Data

Mining, pages 114–125, 2004.

70

[50] O. Kuchaiev, T. Milenkovic, V. Memisevic, W. Hayes, N. Przulj "Topological

network alignment uncovers biological function and phylogeny", Journal of the

Royal Society Interface, 2010, 7:1341-1354

[51] Milenkovic´, T. & Przˇulj, N. 2008, “Uncovering biological network function via

graphlet degree signatures”. Cancer Inform. 6, 257–273.

[52] J. Handl, J. Knowles, and D. B. Kell, “Computational cluster validation in post-

genomic data analysis”, Bioinformatics 21 (15), 3201, Year 2005.

[53] I. Gat-Viks, R. Sharan, and R. Shamir, “Scoring clustering solutions by their

biological relevance”, Bioinformatics, 19: 2381-2389

[54] A. Prelic, S. Bleuler, Philip, Zimmermann, A. Wille, P. Bühlmann, W. Gruissem, L.

Hennig, L. Thiele, E. Zitzler, “A systematic comparison and evaluation of

biclustering methods for gene expression data”. Bioinformatics, 2006: 1122~1129

[55] Barkow, S., Bleuler, S., Prelic, A., Zimmermann, P., and E. Zitzler. “BicAT: a

biclustering analysis toolbox,” Bioinformatics, 2006 22(10):1282-1283

[56] Jaccard, Paul (1901), "Étude comparative de la distribution florale dans une portion

des Alpes et des Jura", Bulletin de la Société Vaudoise des Sciences Naturelles 37:

547–579

[57] Elena Deza & Michel Deza, “Encyclopedia of Distances”, page 94, Springer

71

[58] K. Wakita, T. Tsurumi, “Finding community structure in mega-scale social

networks”, in: Proceedings of the 16th international conference on World Wide Web,

ACM, 2007, pp. 1275–76

[59] S. Bansal, S. Bhowmick and P. Paymal, “Fast Community Detection For Dynamic

Complex Networks”, Communications in Computer and Information Science

Volume 116. Proceedings of the Second Workshop on Complex Networks,

CompleNet 2010

[60] D. A. Bader, A. Amos-Binks, C. Chavarrsa-Miranda, D. andHastings, K. Madduri,

P. S. C., “STINGER: Spatio-Temporal Interaction Networks and Graphs (STING)

Extensible Representation”, Tech. rep., Georgia Institute of Technology (2009).

[61] Y. Saad, “Iterative Methods for Sparse Linear Systems”, PWS Publishing Company,

1995

[62] The DBLP Computer Science Bibliography, http://dblpVis.uni-trier.de

	University of Nebraska at Omaha
	DigitalCommons@UNO
	12-2011

	Application Oriented Analysis of Large Scale Datasets
	Prashant Shivaji Paymal
	Recommended Citation

	Microsoft Word - $ASQ127532_supp_undefined_0D2A3826-87D7-11E1-9E1C-F54FEF8616FA.docx

