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Abstract 

 Diverse application areas, such as social network, epidemiology, and software 

engineering consist of systems of objects and their relationships. Such systems are 

generally modeled as graphs. Graphs consist of vertices that represent the objects, and 

edges that represent the relationships between them. These systems are data intensive and 

it is important to correctly analyze the data to obtain meaningful information. 

Combinatorial metrics can provide useful insights for analyzing these systems. In this 

thesis, we use the graph based metrics such as betweenness centrality, clustering 

coefficient, articulation points, etc. for analyzing instances of large change in evolving 

networks (Software Engineering), and identifying points of similarity (Gene Expression 

Data). Computations of combinatorial properties are expensive and most real world 

networks are not static. As the network evolves these properties have to be recomputed. 

In the last part of thesis, we develop a fast algorithm that avoids redundant re-

computations of communities in dynamic networks.  
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Chapter 1 

Introduction 

 
Analysis of large datasets is a crucial component in advancing our understanding 

in diverse applications areas, such as social networks [1], epidemiology [2] and software 

engineering. The data from these fields are generally represented as systems of 

interacting entities. Two popular methods of expressing this information are (i) as 

networks where vertices are the objects and edges associated relations (for example, 

social networks) or (ii) as matrices where the rows represent the entities and the columns 

the features defining them (for example differentially expressed levels of genes). Most 

analysis techniques are application agnostic that is they are not designed with the end 

objective in mind. The mathematical models are rarely corroborated from an application 

user’s point of view. In this thesis, we demonstrate how combinatorial properties relate to 

application characteristics and validate our results by analyzing evolving networks from 

two very different application areas; software engineering and bioinformatics. 

Understanding how networks evolve over time is an important analysis task. 

However, due to the large number of components in most real world systems, it is 

difficult to get a quick summary of network evolution. Therefore, there has been little 

study in understanding the change in dynamic networks. In the first part of this thesis, we 

explore combinatorial metrics to quantify the difference between networks representing 

the evolution of JHotDraw software over several versions. 
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In the second part of this thesis, we explore combinatorial metrics to find the 

similarities between networks. We apply our similarity criteria to develop a new 

biclustering algorithm for improve analysis of microarray data. Biclustering represents an 

ideal approach for mining meaningful relationships from the massive data because it 

allows simultaneous clustering of both the entities and conditions. 

Computation of combinatorial properties is a key to network analysis. However, 

real world networks are not static they evolve with the time. Therefore, for each evolution 

the graph properties have to be recomputed. In the final part of this thesis, we develop 

community detection algorithm, an important network characteristics, that reduces 

redundant computations on dynamic networks.  

1.1 Contribution 

Given below is list of our significant contributions,  

• We have explored combinatorial metrics to quantify and evaluate the difference 

between networks. Our results provide important insights in understanding the 

rate of evolution networks. 

• We have done a comprehensive research on different biclustering algorithms and 

developed a new biclustering algorithm based on network similarity.  

• We have designed an efficient community detection algorithm for real-time 

dynamic networks that takes advantage of the information computed in previous 

time steps to avoid extra computations.  
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1.2 Outline of Thesis 

 This thesis is organized as follows. In Chapter 2, we discuss background 

information about graph theory. In Chapter 3, we present use of combinatorial metrics to 

analyze the evolution of networks representing JHotDraw software. In Chapter 4, we 

explore the combinatorial properties to find the similarities between networks and present 

a new biclustering algorithm for analysis of microarray data. In Chapter 5, we study 

analysis of dynamic networks and present community detection algorithm for dynamic 

networks. In Chapter 6, we discuss our concluding remarks and present potential ideas 

for further research.  
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Chapter 2 

Background 

 
A graph is a mathematical object that captures the notion of connection. Many 

problems of practical interest can be represented by graphs. In computer science, graphs 

are used to represent different networks such as social networks, software engineering 

networks, and biological networks, etc. Each of these networks consists of set of vertices 

and edges. For instance, people in the social networks, classes in the software engineering 

networks represent vertices in a graph and connection between people and classes 

represent edges in the social networks and software engineering networks respectively. 

Here, we introduce some network or graph terminology (based on the definitions 

provided in [3]). We classify the list of graph properties as, (i) vertex based properties, 

and (ii) network based properties.  Vertex based properties are defined per vertex of the 

network and network based properties are defined over entire network.   

 
2.1 Graph Terminology 

A graph is collection of vertices and edges. Formally, � � ��, �� consists of set 

of vertices � and edges �, where � 	 � 
 �. There are two types of graphs directed and 

undirected. A graph is directed if edges point in one direction from one vertex to another 

vertex, otherwise a graph is undirected. A directed graph � � ��, �� consists of a finite, 

nonempty set of vertices � and a set of edges �. Each edge is an ordered pair ��, �� of 

vertices. An undirected graph � � ��, �� consists of a finite, nonempty set of vertices � 

and a set of edges �. Each edge is a set 
�, �� of vertices.  
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Figure 2.1: Undirected Graph 

Graph Properties 

2.1.1 Vertex Based Properties 

• Degree 

The degree of a vertex in a graph is the number of edges the vertex has with the 

other vertices. The degree of vertex � is denoted as deg� ��. In directed graph, 

vertices have two different degrees, in-degree: the number of incoming edges and 

out-degree: the number of outgoing edges. In Figure 2.1, degree of vertices are, deg 

(V1) = 4, deg (V2) = 3, deg (V3) = 5, deg (V4) = 6, deg (V5) = 4, deg (V6) = 5, deg 

(V7) = 3, deg (V8) = 3, deg (V9) = 2, deg (V10) = 1. 

• Betweenness Centrality  

Most of the shortest paths in a network go through the vertices with the high 

betweenness centrality. Therefore, these vertices become more the central point 

controlling the communication. Betweenness Centrality of a vertex � is calculated as 

 1  3 

 4 

 6  5 

 7 

 2 

 8  9  10 
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sum of the ratio of the number of shortest path in the graph include vertex � to the 

total number of shortest path in the graph. The betweenness centrality �� ��� of a 

vertex � � � is the sum over all pairs of vertices �, � � �, of the fraction of shortest 

paths between u and w that pass through v  

�� ��� � � �� ������ ��,� � �� � � ��
 

Where �� ���� denotes the total number of shortest path between � and � that pass 

through vertex � and �� � denotes the total number of shortest paths between � 

and �.  

 In Figure 2.1, top three vertices with the highest betweenness centrality values are 

vertex 8 = 28, vertex 3 = 16.67, and vertex 6 = 16.67. 

• Clustering Coefficient 

Clustering coefficient is a measure of degree to which nodes in a graph tend to 

cluster together. It is calculated as the ratio of the edges between the neighbors of a 

vertex to the total possible connection between them. The higher the clustering 

coefficient it is more likely that a vertex is part of a dense module with closely 

interconnected dependencies. Formally, the clustering coefficient of a vertex � is as, 

�� �  2�� �� � !  1� 

 Where  ��   denotes the number of links connecting the  � neighbors of vertex # to 

each other.  
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In Figure 2.1, top three vertices with highest clustering coefficient values are 

Vertex 2 = 1.0, Vertex 7 = 1.0, and Vertex 1 = 0.67.  

2.1.2 Network Based Properties 

• Vertices 

Total number of vertices in a graph. There are total 10 vertices in the graph from 

Figure 2.1. 

• Edges 

Total number of edges in a graph. There are total 36 edges in the graph from 

Figure 2.1. 

• Degree Distribution 

The degree distribution is the probability distribution of degrees of the vertices 

over the network. Most scale free system like social and biological networks observe 

a power law based distribution [4] that is there are many vertices with low degree and 

the number of vertices exponentially go down as the degree increases. In Figure 2.1, 

degree of vertices are, deg (V1) = 4, deg (V2) = 3, deg (V3) = 5, deg (V4) = 6, deg 

(V5) = 4, deg (V6) = 5, deg (V7) = 3, deg (V8) = 3, deg (V9) = 2, deg (V10) = 1. 

Degree distribution is (d1, d2, …, dn-1), where dk is the number of vertices with degree 

k.  Degree Distribution for graph in Figure 2.1 is (1, 1, 3, 2, 2, 1). 

• Shortest Path and Diameter 

Shortest path is a path between two vertices in a graph such that sum of weights 

of participating edges is minimized. The diameter of a graph is the largest value of all 

the shortest paths. In Figure 2.1, shortest path between vertex 1 and vertex 9 is 3 and 

diameter of a graph is 4, because that is the maximum value of all the shortest paths.  
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• Articulation Point 

A vertex in a connected undirected graph is an articulation point if removal of that 

vertex and all edges incident to it result in a disconnected graph. Articulation points 

in a graph are critical to communication; all paths between certain vertices have to 

pass through articulation point. In Figure 2.1, vertex 8 and vertex 9 are the 

articulation points.  

• Modularity 

Modularity is a property of a network and a specific proposed division of that 

network into communities. Modularity in a network is computed as, ∑ ���� !  %�&�,�  

where ��� is the percentage of the number of edges per community ��  and %� is the 

percentage of the edges connected to Community ��.  
Modularity of the graph in Figure 2.1 is 0.057 with the communities, Community 

1: Vertex 1, 2, and 3, Community 2: Vertex 4, 5, 6, and 7, Community 3: Vertex 8, 9, 

and 10. 

2.2 Brief Outline of Our Applications 

2.2.1 Software Engineering 

We can represent different versions of software systems as networks. The usage 

dependencies in each version can be modeled as a directed network, where vertices 

represent different modules in the software system and each edge ��, �� represents a 

dependency from module � to module �. We compute several graph properties for each 

network such as, in-degree and out-degree: which gives number of dependencies of a 

module in the software system, diameter of a network gives critical path in the system, 
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high betweenness centrality represents more calls to the module representing vertex in the 

system, articulation points represent important module in systems, etc. Our goal is to 

investigate several ways of measuring the amount of disruption by examining changes in 

combinatorial properties across the different software version.   

Several researchers have also applied graph theory measures to study software 

systems. Myers [5] analyzed  6 software projects and found them to be scale-free, small-

world networks. Chatzigeorgiou et al. [6] applied graph theory to detect design patterns, 

and improve coupling and cohesion. They performed a case study on three software 

systems and observed that software networks are scale-free. Wang et al. [7] conducted an 

analysis of 223 versions of the Linux kernel, and also observed these networks to be 

scale-free and satisfy small-world properties. Savic et al. [8] arrived at the similar 

conclusion in an analysis of 5 open source projects.  

2.2.2 Bioinformatics 

Microarray data analysis emerges in the decade as a key method for obtaining 

correlation among genotype and phenotype information. DNA microarray technology 

measures the gene expression level of thousand of genes under multiple experiment 

conditions [9]. This technology has been widely used in many areas of biology. It helps 

in the identification of new genes, and to understand their functioning and expression 

levels under different conditions. Microarray technology also helps researches to learn 

more about different diseases especially the study of cancer. It can also be used in the 

study of correlation between therapeutic responses to drugs and the genetic profiles of the 

patients, and impact of toxins on the cells and their passing on to the progeny. Large 

amount of data is produced in the microarray technology and it’s very difficult to 
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understand such a large data. Proper analysis of the data is important to extract 

biologically relevant information. Microarray data can be represented as matrix where 

rows correspond to different genes and columns to experimental conditions. One 

important analysis of microarray data is the discovery of biclusters, which are groups of 

genes that show similar behavior across specific group of experimental conditions.  

The term biclustering was first used by Cheng and Church [10] in gene expression 

data analysis. It is also referred as “direct clustering” [11], “box clustering” [12], 

“subspace clustering” [13], and “co-clustering” [14]. Biclustering problem has been 

shown to be NP-hard [11] [15], and almost all the approaches presented to date are 

heuristics. Many approaches for biclustering in expression data have been proposed. 

Several surveys about biclustering techniques have been published [16-18]. Some of the 

prominent biclustering methods are Cheng and Church [10], xMotifs [19], SAMBA [20], 

ISA [21], OPSMs [22], CPB [23], BiMax [24]. 

2.2.3 Community Detection 

Community structure is a network characteristic describing the propensity of 

groups of vertices to form dense connection within the group than across the groups. This 

characteristic is used in the analysis of networks for many applications including 

hierarchies of organization [25], collaboration networks [26], protein interactions [27], 

and stability of electrical grids [28]. The problem of community detection involves 

finding such connected groups in a given network has become popular algorithm in 

recent years.  
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Newman and Girvan [29] proposed a greedy agglomerative approach based on 

maximization of modularity for hierarchical community detection. Clauset, Newman and 

Moore [30] proposed fast implementation of a previous technique proposed by Newman 

et al. [29]. Guimera and Amaral [31] proposed community detection algorithm based on 

exhaustive modularity optimization via simulated annealing. However, Modularity 

maximization fails to identify communities smaller than a certain scale, therefore bring a 

resolution limit on the communities detected by a pure modularity optimization approach. 

Blondel et al. [32] proposed new technique based on a local optimization of Newman and 

Girvan modularity in the neighborhood of each vertex. This algorithm solves resolution 

method problem due to the intrinsic multi level nature of the algorithm.  

Tantipathananandh et al. [33] proposed an offline clustering framework based on 

finding optimal graph colorings. They presented heuristic algorithm which find near 

optimal solutions. Ning et al. [34] proposed an incremental algorithm which is initialized 

by a standard spectral clustering algorithm, followed by the updates of the spectral as the 

dataset evolves. Leung et al. [35] discussed the potential of the label propagation 

algorithm for dynamic network data. Mucha et al. [36] generalized the Laplacian 

dynamics approach to obtain a version of the modularity measure for multi slice (i.e. 

dynamic) networks. 

2.3 Relating Graph Properties to Application Domains  

The Table 2.1 presents the relation of different graph properties with the two 

application areas, software engineering, and bioinformatics. This provides an example of 
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how we can translate application characteristics into graph properties and use these 

properties to analyze the underlying systems. 

Graph 

Property 

Software Systems Biological Relevance 

Vertices Modules in the software systems Genes in gene expression matrix 

Edges Dependencies between modules in the 

software systems 

Similarity between genes under an 

experimental condition 

In-degree Number of dependencies of a module 

in the software systems 

Number of genes with the similar 

behavior under an experimental 

condition 

Out-degree 

Diameter Critical paths of the software systems Critical path of the biological 

networks 

Betweenness 

Centrality 

High: the more calls to the module 

representing the vertex 

In protein networks, it represents key 

connector proteins, i.e. bottlenecks, 

with particular functional properties 

Clustering 

Coefficient 

High: set of interdependent modules High: set of interdependent genes 

Articulation 

Point 

Important module in the software 

systems 

Important gene / protein in the 

biological network 

Modularity A high modularity indicates that the 

two groups of modules have high 

probability of belonging to same 

community 

High value of modularity indicate the 

two groups of genes have high 

probability of belonging to same 

community 

 

Table 2.1: Relation of graph properties and application domains 
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Chapter 3 

Analysis of Software Networks 

 
3.1 Introduction 

Software maintenance consists of four parts, Corrective Maintenance, Adaptive 

Maintenance, Perfective Maintenance, and Preventive Maintenance [37]. Corrective 

maintenance is performed after a fault or problem emerges in a system with the goal of 

restoring the functionality of the system. Adaptive maintenance required to adapt the 

software to new environment. Perfective maintenance is the process of receiving requests 

for enhancement or modifications and implementing them. Finally, Preventive 

maintenance deals with updating documentation to make the software more maintainable. 

Corrective Maintenance is considered as ‘traditional maintenance’, while others are part 

of ‘software evolution’.  

Understanding the evolution of networks is an important analysis task. However, 

due to large number of components in real world systems, it is difficult to get a quick 

summary of network changes. In this section, we explore different combinatorial metrics 

to quantify the difference between networks. We are interested in measuring the amount 

of disruptions by examining changes in combinatorial properties across networks. We 

demonstrate the use of combinatorial properties in understanding the evolution of 

software system networks. It is important to understand the evolution of software systems 

for assessing their long term maintainability. Inter-class relationships play important role 

in object oriented systems. We are interested in quantifying the extent to which such 
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relationships are disrupted or preserved in the midst of software evolution [38]. We 

explore combinatorial metrics to quantify and evaluate the difference between networks 

representing several versions of JHotDraw software. Our results show that these statistics 

provide important insights in understanding how the JHotDraw code evolved over time.   

 

3.2 Methodology  

We used six versions of JHotDraw 5 [39] from March 2001 to January 2004. 

These are referred as Version 1 to Version 6 in this document. The specific versions are 

listed in Table 3.1. We extracted use relationships such as inheritance and 

implementation, method calls and class member access, object declaration and 

instantiation from each version using SPARS-J [40-41]. Next, we represented each 

version as a directed graph, where vertices represent classes from software code and each 

edge (u, v) is a dependency from class u to class v. Our objective is to find the 

evolutionary characteristics such as: points of significant change in the software and how 

these changes affect crucial classes in the network using combinatorial or graph based 

metrics.  

We compute the values of the graph properties discussed in chapter 2 and their 

change in rankings to analyze these networks. We use the Matlab BGL library [42] to 

compute most of the properties. The communities are computed using a Matlab code 

based on the modularity maximization algorithm described in [30]. 
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Version Date Files Commit Messages 

Version 1 3/9/2001 304 Merge to JHotDraw 5.2 (using JFC/Swing GUI 

components) 

Version 2 10/24/2001 720 Before merge for version 5.3 (dnd, undo, …), 

merge dnd (before 5.3) 

Version 3 8/4/2002 392 After various merges.. (before 5.4 release) 

Version 4 11/8/2002 2 Refactor to use Standard Storage Format as a 

superclass 

Version 5 5/8/2003 44 Refatoring of Cursor. – java.awt.Cursor (class) 

has been systematically replaced 

Version 6 1/9/2004 484 After renaming the CH.ifa.draw to org. jhotdraw 

 

Table 3.1: Commits with perfective changes in JHotDraw 

 

We measure the overall change in values and rankings of the vertices across 

different version by developing the following formulas,  

'%�  (#)*�+,#-� � ∑ | '%� �/0� !  '%� �� |� � 122 �345�6378-,%9 �:*,:; <�=>:*   
 

�%9�: (#)*�+,#-� � ∑ | �%9�:�/0� ! �%9�:�� |� � 122 �345�637?%; ��%9�:�/0�   
Where, Ranki, and Valuei represent the rank and value of the corresponding property in 

version i.  
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3.3 Results and Analysis  

(Text in this section is mostly paraphrased from our publication [43]) 

In this section, we present results of the combinatorial properties discussed in the 

section 3.2 and discuss how they provide us knowledge about the evolution of JHotDraw.  

3.3.1 Network and Vertex Properties 

The number of vertices in a network represents the number of classes in the 

network. As the versions evolve, some vertices are deleted and new ones are added. A 

comparison between the number of added, deleted and retained vertices in the network 

provides a rouge estimate of the difference between the versions. The number of edges in 

the network represents the dependencies in the software. Similar to vertices, as the 

versions evolve, some edges are deleted and new ones are added. A comparison between 

the number of added, deleted and retained edges across different versions gives an 

estimate of the scale of the evolution. 

Table 3.2 presents the values of network based properties for six version of 

JHotDraw software. The highest and second highest changes in additions and deletion of 

vertices, edges and articulation points are shown in bold and italic respectively. A value 

of vertices and edges increase across the versions this indicates that network grows over 

the time. We see that major changes happen in Version 2 to Version 3 and Version 4 to 

Version 5, because all the bold and italic values are under Version 3 and Version 5 in 

Table 3.2. Diameter and average path length do not grow that much this indicate that the 

new classes are added together as interdependent modules to the periphery rather than 

individually scattered across the systems. Articulation point’s increases version by 

version and this tells that in later versions there are more regions of potential disconnect. 
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The number of communities also increases version by version and it indicates that there 

are larger numbers of modules present in later versions. We also note that most of the 

vertices are concentrated amongst the top two communities, and most of the elements in 

consecutive communities are retained. The increase in communities is therefore due to 

the newly added vertices. 

 

Property V1 V2 V3 V4 V5 V6 

 

Vertices 159 177 302 339 528 544 

Add (Delete) 0 (0) 18 (0) 125 (0) 38 (1) 190 (1) 16 (0) 

 

Edges 775 832 1454 1684 2136 2167 

Add (Delete) 0 (0) 74 (17) 655 (33) 256 (26) 466 (14) 64 (33) 

 

Articulation Points 7 8 26 33 104 105 

Add (Delete) 0 (0) 1 (0) 18 (0) 7 (0) 71 (0) 1 (0) 

 

Diameter 6 6 7 9 9 9 

Average Path Length 2.27 2.29 2.54 2.7 3.4 3.3 

 

Communities 6 5 9 10 20 19 

Top Two Communities 112 139 211 233 335 304 

Common Elements 0 .80 .62 .84 .61 .88 

 

Table 3.2: Network-Based properties of different versions of JHotDraw. The Add 

(Delete) rows correspond to the properties in the previous row. The highest change in 

rows 3, 5 and 7 is marked by bold and the second highest by italics. 
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Figure 3.1 and 3.2 show the degree distribution of the in-degrees and out-degrees 

of the six versions. Both the distributions observe the power law based degree 

distribution, where the numbers of vertices per degree exponentially decrease the value of 

the degree. The in-degree distribution shows this property more prominently than the out-

degree distribution.  As per our previous findings, there is big change in Version 2 to 

Version 3 and Version 4 to Version 5 and out-degree distribution graph support that 

finding, as we clearly see similarity and difference between versions.  

 

 

 

Figure 3.1: In-degree Distribution across the six versions of JHotDraw 
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Figure 3.2: Out-degree Distribution across the six versions of JHotDraw 

 

Table 3.3 shows the values of vertex-based properties of the network. It shows 

change in the value disruption and rank disruption values across six versions calculated 

using formulas mentioned in section 3.2. The highest and second highest changes are 

marked as bold and italic fonts respectively. Here also, we see that there is significant 

change in the evolution of Version 2 to Version 3 and Version 4 to Version 5. We also 

compare the top 25 highest ranked vertices for each property. Retained Vertices present 

the vertices that are common in the set of top 25 vertices for consecutive versions. 

Vertices in Vi only means vertices that are present in the set of top 25 in Version Vi but 

not in Vi+1. Similarly Vertices in Vi+1 means vertices that are present in the top 25 in 

Version Vi+1 but not in Vi. Newly added vertices refer to the vertices which are newly 
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added in Vi+1 and present in top 25 highest ranked vertices. There is least number of 

retained vertices across the versions for clustering coefficient, which indicates once again 

that the changes involves adding a set of interdependent modules rather than adding 

modules separately to different parts of the software. There is no significant change for 

in-degree, out-degree and betweenness centrality in the highest ranked vertices. This 

shows that the critical paths of software are probably left unchanged. 

 

Property V1 – V2 V2 – V3 V3 – V4 V4 – V5 V5 – V6 

In Degree 

Value Disruption .0022 .0138 .0025 .0083 .0007 

Rank Disruption .014 .252 .06 .112 .016 

Change in Set of Top 25 Vertices 

Retained Vertices 24 20 20 21 23 

Vertices in Vi only 1 5 5 4 2 

Vertices in Vi+1 only 1 1 2 3 2 

Newly Added 

Vertices 

0 4 3 1 0 

Out Degree 

Value Disruption .0025 .0213 .009 .002 .002 

Rank Disruption 0.45 .292 .069 .209 .009 

Change in Set of Top 25 Vertices 

Retained Vertices 24 17 20 24 24 

Vertices in Vi only 1 8 5 1 1 

Vertices in Vi+1 only 1 4 4 1 1 

Newly Added 

Vertices 

0 4 1 0 0 
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Betweenness Centrality 

Value Disruption .0004 .0027 .0017 .0107 .0016 

Rank Disruption .051 .286 .074 .212 .012 

Change in Set of Top 25 Vertices 

Retained Vertices 24 17 20 17 22 

Vertices in Vi only 1 8 5 8 3 

Vertices in Vi+1 only 1 5 3 7 3 

Newly Added 

Vertices 

0 3 2 1 0 

Clustering Coefficient 

Value Disruption 0 .0088 0 .0056 0 

Rank Disruption .078 .370 .074 .157 .021 

Change in Set of Top 25 Vertices 

Retained Vertices 16 13 21 14 19 

Vertices in Vi only 8 12 3 11 3 

Vertices in Vi+1 only 1 2 3 2 3 

Newly Added 

Vertices 

8 10 0 9 3 

 

Table 3.3: Change in vertex-based properties across different versions of JHotDraw. The 

table shows the disruption in values and rank. It also compares the set of the top (highest 

ranked) 25 vertices. The highest and second highest change in disruption is marked by 

bold and italic. 

Figure 3.3 shows the correlation between in-out degree and betweenness 

centrality. There is positive correlation between degree and betweenness centrality. 

Classes with high importance (high in-out degree) have high dependencies (high 

betweenness centrality). Figure 3.4 shows the correlation between clustering coefficient 
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and betweenness centrality. Unlike the correlation between degree and betweenness 

centrality, there is negative correlation between clustering coefficient and betweenness 

centrality. We see that betweenness centrality value increases due to increase in edges 

and vertices. However, clustering coefficient values do not increase. Once again this 

observation indicates that the newly added vertices are clusters of interdependent 

modules added at the end of the paths.  

 

 

 

Figure 3.3: Positive correlation between in-out degrees and betweenness centrality 
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Figure 3.4: Negative correlation between clustering coefficient and betweenness 

centrality. Note that this plot was clipped at y = 500 to highlight the correlation. 

Figure 3.5 shows the spring layout graphs of networks, Version 1 and Version 2 

using GraphViz [44]. The vertex color and size represents the value of betweenness 

centrality and clustering coefficient respectively. The lighter color vertex indicates vertex 

with the high betweenness centrality value and the large size vertex represent the vertex 

with the high clustering coefficient value. We can see that there is negative correlation 

between clustering coefficient and betweenness centrality because the vertices at the 

peripheries are dark and larger in size. This also confirms our hypothesis that the newly 

added vertices are clusters of interdependent modules added at the end of the paths.  
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Version 1 

 

Version 2 

Figure 3.5: Networks representing Version 1 and Version 2. Lighter vertices indicate 

high betweenness centrality. Larger vertices indicate high clustering coefficient 
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3.3.2 Identifying Crucial Vertices 

We divide the vertices into four groups; High, Extra High, Low and Extra Low. A 

vertex is classify as ‘High’, if it is in top 25 rank for at least one of the following 

categories; high in-degree, high out-degree, high betweenness centrality and high 

clustering coefficient. A vertex is marked as ‘Extra High’, if it is in top 25 rank for at 

least two categories listed above. On the other hand, a vertex is consider as ‘Low’, if it 

has zero value for any one of the categories and it is not listed as a ‘High’ vertex. A 

vertex is marked as an ‘Extra Low’, if it has zero value for betweenness centrality as well 

as clustering coefficient. All remaining vertices go into category ‘Other’. “Extra High’ 

and ‘High’ vertices represent important classes in the software on the other hand ‘Low’ 

and ‘Extra Low’ vertices represent classes which are not important. They are peripheral 

classes and do not have any significant impact on the software as a whole.  

Figure 3.6 shows the percentage breakdown of all vertices in each category for all 

versions. We see that Version 1 - Version 2 show similar breakdown of vertices as does 

Version 3 – Version 4 and Version 5 – Version 6. This matches our previous observation 

that the major changes occurred between Version 2 to Version 3 and Version 4 to 

Version 5. Also, Version 1 and Version 2 have the largest number of ‘High’ and ‘Extra 

High’ vertices i.e. all important classes in the software are added in earlier versions of 

software. On the other hand, Version 5 and Version 6 have the largest number of ‘Low’ 

and ‘Extra Low’ vertices, which shows that as the software matures more peripheral 

functionalities are added.   
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Figure 3.6: Percentage breakdown of all vertices in each version 

 

3.3.3 Analysis of Newly Added Vertices 

Figure 3.7 shows the classification of newly added vertices for each transition. In 

Version 1 to Version 2 transition, maximum percentage of newly added vertices are high 

clustering coefficients i.e. well connected modules have been added into Version 2. In 

transition from Version 4 to Version 5 and Version 5 to Version 6 most of the newly 

added vertices are zero betweenness centrality and zero clustering coefficient. Again, it 

confirms our previous finding that in later versions of software newly added vertices 

represent peripheral classes.  
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Figure 3.7: Percentage of new vertices per impact group with respect to the total number 

of vertices added 

3.3.4 Analysis of Community Properties 

In large networks, communities represent subset of the network with highly 

connected vertices. For software networks, identifying communities help in discovering 

the working architecture of the software system where the communities are aggregate 

components consisting of classes that interact highly with each other. We applied a 

community detection algorithm [30] to discover such aggregate components and to track 

the stability of these components over time. In Table 3.2, we see that the number of 

communities increases. We also note that, most of the vertices are concentrated amongst 

the top two communities and most of the elements in consecutive communities are 

retained. The community detection method, though extensively used is still heuristics and 

has some drawbacks such a resolution limit, i.e. can’t find communities smaller than a 

certain size and sensitivity to tie-breakers, i.e. result can be significantly altered due to 

choices in tie-breaking [45]. In particular, later versions of the software have more 
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communities; most of the new communities have very few vertices (about two to three 

elements). Due to sensitivity of the algorithm these small communities are not 

meaningful and we therefore focus on the communities with larger membership (at least 

8 members).  

We note that each version has two large communities (over 50% of all of vertices) 

Table 3.4 compares these top two communities across all versions. We see that there is a 

large intersection between corresponding communities in consecutive versions, as 

indicated by the row ‘Common Elements’. We find that vertices in these large 

communities tend to be retained from one version to the next. The fact that these tend to 

be stable across versions gives us confidence of the validity of the community detection 

algorithm. In particular, across all versions, two large communities seem to be centered 

on two key interfaces, ‘draw.framework.Figure’, the main interface for all figures, and 

‘draw.framework.DrawingView’, the main interface for rendering drawings. A closer 

inspection across all versions indicates that one community has mostly figure and 

handler-related classes while the other has mostly drawing and toolbar-related classes. 

We observe that ‘Figure’ and ‘DrawingView’ are in the same package but ended up in 

different communities. Likewise, many detected communities cut across the hierarchical 

package structure, which seems to indicate that the working subset of classes are not 

confined to packages, but to some different aggregate. This hints at a potential division of 

classes for restructuring. 

 

 



29 

 

Property V1-V2 V2-V3 V3-V4 V4-V5 V5-V6 

Elements in Vi 112 139 211 233 335 

Elements in Vi+1 139 211 233 335 304 

Common Elements 112 132 197 204 269 

Percentage w.r.t Vi 1 .94 .93 .87 .80 

Percentage w.r.t Vi+1 .80 .62 .84 .61 .88 

 
Table 3.4: Analysis of similarities between large communities 

 
 
3.3.5 Impact on Quality 

After each version, we looked at all changed files during the transition of that 

version. The number of file involved in each revision is counted and we looked for the 

keyword “bug fix” in each file. Table 3.5 shows bug frequency after each version. We 

can see that after Version 3 it has the highest number of bug fixes and second highest 

after Version 5. These intervals with the high percentage of bug fixes follow the periods 

with the highest measures of disruption (Version 2 to Version 3 and Version 4 to Version 

5). 

 

Interval Total Files Changed Bug Fixes Percentage 

Post Version 1 94 0 0.00% 

Post Version 2 176 0 0.00% 

Post Version 3 172 38 22.09% 

Post Version 4 1720 120 6.98% 

Post Version 5 50 6 12.00% 

Post Version 6 89 1 1.12% 

 

Table 3.5: Bug Frequencies after Each Version 
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3.4 Discussion 

We have applied different combinatorial or graph-theory based metrics to study 

the evolution of networks representing JHotDraw 5 software. These metrics provide 

insight to understand disruption between versions. Our observations can be summarized 

as follows, 

a. The significant evolutionary changes occur between Version 2 to Version 3 and 

Version 4 to Version 5. 

b. Degree Distribution for all versions follows the power law an indication that these 

are scale free networks. 

c. The network has grown cumulatively. Newer vertices tend to get added in the 

peripheries.  

d. There is positive correlation between betweenness centrality and in-out degree. 

On the other hand there is negative correlation between betweenness centrality 

and clustering coefficient.  

e. The top 25 rankings of vertices were generally stable across versions. This 

indicates stability in the design.  

f. The bug frequency is higher after Version 3 and Version 5. The degree of 

disruption can help explain why bug incidence increases.  

g. The top two communities contained the bulk of the vertices in each version. There 

was significant overlap between corresponding communities across consecutive 

versions.  
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From these observations, it appears the original design was maintained throughout 

the different versions. One of the important finding is the quantification of the amount of 

disruption caused by different versions of code. We also note that the bug incidence is 

higher after version 3 and 5. The degree of disruption can contribute to explaining why 

the bug increases.  
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Chapter 4 

Analysis of Gene Expression Data 

 

4.1 Introduction 

Gene expression datasets are constructed in matrices, where each gene in a matrix 

corresponds to one row and each condition corresponds to one column. Each element in 

the matrix represents the expression level of a gene under a specific condition. There are 

number of methods for analyzing gene expression matrices, one of the most used 

methods is clustering such as hierarchical clustering [46], k-means clustering [47], etc. 

Clustering techniques use to group either genes (or conditions), such that genes (or 

conditions) of one group are similar to each other and different from other groups. Most 

of the clustering algorithms consider all the conditions to group genes and all the genes to 

group conditions. Traditional clustering algorithms have been successfully applied in 

many contexts. However, they suffer from some limitations in the analysis of large and 

heterogeneous collections of gene expression data. Standard clustering group genes (or 

conditions) based on global similarities in their expression profiles. However, due to 

large amount of diverse data, biologically related genes may not show similar behavior 

across all the conditions but in a subset of them. Also, traditional clustering generally set 

each gene in a single cluster, but many genes can be involved in different biological 

processes.  

Biclustering techniques have been presented as an alternative approach to 

traditional clustering. It performs clustering on genes and conditions simultaneously in 

order to identify subsets of genes that display similar expression patterns across subset of 
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conditions and vice versa. In traditional clustering algorithms, cluster of genes is selected 

considering all the conditions and cluster of conditions is selected considering all the 

genes. However, in biclustering algorithms, cluster of genes is defined using subset of 

conditions. Similarly, cluster of conditions is defined using subset of genes. Figure 4.1 

demonstrates the clustering and biclustering of a gene expression matrix. Clusters of 

genes (rows) (Figure 4.1 (a)) must contain all conditions (columns), and clusters of 

conditions (columns) (Figure 4.1 (b)) must contain all genes (rows). Biclusters (Figure 

4.1 (c)) correspond to arbitrary subsets of genes (rows) and conditions (columns).  

 

                Conditions             Conditions       Conditions 

 

 

 

 

 

(a) Clusters of Genes              (b) Clusters of Conditions               (c) Biclusters 

Figure 4.1: Clustering and biclustering of a gene expression matrix 

 

4.2 Background 

Consider gene expression data matrix, ‘A’ with set of rows ‘X’ and set of 

columns ‘Y’. Rows represent ‘n’ number of genes and columns represent ‘m’ number of 

conditions. Each cell of gene expression matrix represents expression level of gene under 

condition.  
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 Condition 1 Condition 2 … … Condition m 

Gene 1 a11 … … … a1m 

Gene 2 … … … … … 

… … ... … … … 

… … … … … … 

Gene n an1 … … … anm 

Table 4.1: Gene Expression Data Matrix 

A cluster of rows (genes) is subset of rows (genes) that shows similar behavior 

across all the columns (conditions). 

A cluster of rows (genes) �  �@, A� where,  @ �  
#1, #2, … , # �  C and   D�  � 

Similarly, a cluster of columns (conditions) is subset of columns (conditions) that 

shows similar behavior across all the rows (genes). 

A cluster of columns (conditions) �  �E, C� where,  E �  
F1, F2, … , F �  A and 

  D�  = 

On the other hand, a bicluster is a subset of rows (genes) that shows similar 

behavior across the subset of columns (conditions) and vice versa.  

A bicluster �  �@, E� where, 

@ �  
#1, #2, … , # �  C, and   D�  �, 

E �  
F1, F2, … , F �  A, and   D�  = 

So given a gene expression data matrix our goal is to identify different biclusters, 

such that each bicluster satisfies some specific characteristics of homogeneity.  
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Figure 4.2 illustrates types of biclusters proposed by Madeira et al. [16], They 

divided biclusters into four major classes, (i) Biclusters with constant values; where all 

the values are constant (Figure 4.2 (a)) (ii) Biclusters with constant values on rows or 

columns; where either rows or column values are constant (Figure 4.2 (b) (c)) (iii) 

Biclusters with coherent values; where each row and columns is obtained by addition or 

multiplication of the previous row and column by a constant value  (Figure 4.2 (d) (e)) 

and (iv) Biclusters with coherent evolutions; where the direction of change of values is 

important rather than the coherence of the value. The first three categories are based on 

the actual numeric values of the data matrix and try to find subsets of rows and columns 

with similar behavior. The fourth category tries to find coherent behaviors regardless of 

exact numeric values in the data matrix. Each of these types of biclusters have different 

significant for discovering important knowledge from gene expression data.  

Bozdag et al. [19] classifies biclustering patterns into two categories; (i) local 

pattern, and (ii) global pattern. A bicluster pattern is considers as local pattern, if it is 

defined on a single bicluster. All types of biclusters explained in the Figure 4.1 are come 

under local pattern, where no information is required about the elements outside the 

bicluster. On the other hand, in global pattern, the membership of a row (column) to a 

bicluster depends on the element of a row (column) external to the bicluster and/or on the 

membership of the row (column) to other biclusters.  
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             (a)                                                    (b)                                                    (c) 

 

 

 

 

 

   (d)                 (e)          (f)   

Figure 4.2: Examples of different types of biclusters [16] (a) Constant bicluster, (b) 

Constant rows bicluster, (c) Constant columns bicluster, (d) Coherent values (Addictive 

model), (e) Coherent values (Multiplicative model), (f) Coherent evolutions bicluster 

 

In recent years, several algorithms have been proposed to find different types of 

biclusters. Some of the widely known algorithms include Cheng and Church [10], 

Iterative Search Algorithm [21], Correlated Pattern Biclusters [23], OPSM [22], xMotif 

[19], HARP [48], MSSRCC [49], SAMBA [20]. Most of the algorithms use greedy 

approach that start with either all rows or columns, and then iteratively eliminate them to 

optimize the objective function or they start with a random initial seed and use heuristics 

to converge to the final bicluster. Every biclustering algorithm focuses on few 

biclustering types shown in Figure 4.2. Cheng and Church algorithm finds constant 

values, constant rows and constant columns types of biclusters. HARP finds constant 

values and constant rows types of biclusters but not other types of biclusters. xMotif is 
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meant to find biclusters with constant columns. Some of the biclustering algorithms 

address the problem of finding coherent evolutions across the rows and/or columns of the 

data matrix regardless of their exact values. OPSM is designed to find coherent trends of 

up-down regulations in biclusters. Similarly, Correlated Pattern Biclusters algorithm 

focuses on biclusters with coherent evolutions. Cheng and Church, OPSM, HARP and 

Correlated Pattern Bicluster algorithms discover ‘local patterns’, while MSSRCC and 

SAMBA algorithms discover ‘global pattern’. Some algorithms are designed to find 

overlapping biclusters, for e.g. Iterative Search Algorithm, SAMBA, and OPSM.    

 

4.3 Our Contribution 

We propose new biclustering algorithm which is based on the technique similar to 

graph alignment. Graph alignment is the problem of finding similarities between the 

structures of two or more graphs. Graph alignment is analogous to sequence alignments 

between genomes. Alignment in biological networks is very useful in bioinformatics 

research. Graph Aligner (GRAAL) [50] is one of the widely used algorithms for graph 

alignment. This algorithm is based on the network topology, which is the shape or 

structure of a network. GRAAL aligns pairs of vertices from different network based on 

their graphlet degree signature similarities [51], where a higher signature similarity 

between two vertices corresponds to higher topological similarity between their 

neighborhoods. GRAAL produces a global network alignment i.e. it aligns each vertex in 

smaller network to exactly one vertex in larger network. Thus, they do not allow gaps in 

alignments i.e. vertices without alignment in smaller network. Instead of finding 

alignment for all the vertices in smaller network with the larger network, we try to find 
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similar vertices between two networks using combinatorial properties, such as Clustering 

Coefficient, Betweenness Centrality, etc. (explained in Chapter 2). We divide our 

algorithm into three steps; 

 
Step 1: Graph Representation of Gene Expression Matrix 

We represent gene expression data matrix in a graph format by creating a graph 

for each condition. So, we get < number of graphs where < is the number of conditions 

in a given input gene expression data matrix. In each undirected graph � �  ��, ��, 

vertices (V) represent genes and edges (E) represent connections between genes 

according to the similarity criteria. There is an edge between two genes, if they show 

similar behavior under that condition. According to dataset, we set threshold value to 

decide the edge between genes. If the distance between expression values of two genes 

(e.g. G1 and G2) under that condition (e.g. C1) is less than the threshold value (Neighbor 

Threshold Value), then we add edge between G1 and G2 to the graph which is related to 

C1. There is an edge between two genes in a graph if, 

(#),%�G: >:,�::� ,�- H:�:) D�  <:#HI>-* 8I*:)I-9J �%9�: 
Figure 4.2 demonstrates how we represent gene expression matrix in a graph 

format. Figure 4.2 (a) is a sample gene expression matrix with 5 genes and N conditions. 

Figure 4.2 (b) is a graph representation of Condition 1 of gene expression matrix shown 

in figure 4.2 (a). In that graph there is an edge between vertex 1 (Gene 1) and vertex 2 

(Gene 2) because the distance between Gene 1 and Gene 2 is less than 2 (assume 

‘Neighbor Threshold’ value is 2). We apply similar procedure for all other conditions of 

gene expression matrix.  
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 C1 C2 … … Cn 

G1 10 … … … a1n 

G2 8 … … … … 

G3 10 ... … … … 

G4 4 … … … … 

G5 6 … … … Amn 

 
(a) Gene Expression Matrix 

 

 

 

(b) Graph representation for Condition 1 (Neighbor Threshold Value = 2) 

Figure 4.3: Example of graph representation of gene expression matrix 

Step 2: Similar Vertices (Genes) between Graphs 

Next, we find the similar vertices between different graphs. First, we compute a 

difference matrix D of differences between vertices in two graphs. Rows of D correspond 

to vertices in Graph 1 and columns correspond to vertices in Graph 2. When computing 

the differences between a vertex u from Graph 1 with a vertex v in Graph 2, we consider 

clustering coefficient and betweenness centrality values (explained in the Chapter 2) of 

all the vertices. The higher the clustering coefficient it is more likely that a vertex is a 

part of dense module with closely interconnected components and betweenness centrality 

of a vertex represents how often it occurs in dependency path.  

1 2 

3 4 

5 
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We calculate the clustering coefficient and betweenness centrality value for every 

vertex in Graph 1 and Graph 2.  

�9�),:*#�H �-:KK#G#:�, ���� (#KK:*:�G: �#, F� is calculated as, 

�� �%9�: -K �:,:; # K*-= �*%+I 1 !  �� �%9�: -K �:,:; F K*-= �*%+I 2 
�:,�::��:)) �:�,*%9#,L ���� (#KK:*:�G: �#, F� is calculated as, 

�� �%9�: -K �:,:; # K*-= �*%+I 1 !  �� �%9�: -K �:,:; F K*-= �*%+I 2 
Then, we compare all the vertices of Graph 1 and Graph 2 to find the difference 

between clustering coefficient and betweenness centrality values and calculate the matrix 

D.  

(#KK:*:�G: ?%,*#; �#, F� �  �� (#KK:*:�G: �#, F� M  �� (#KK:*:�G: �#, F� 
We consider ‘�:*,:; #’ of Graph 1 is similar to ‘�:*,:; F’ of Graph 2, if 

(#KK:*:�G: ?%,*#; �#, F� D�  N#=#9%*#,L 8I*:)I-9J �%9�: 

Using above procedure, we find the similar vertices between two graphs. First 

step gives us < graphs (< is the total number of conditions in gene expression matrix: G1, 

G2…, and Gn). We can compare all the graphs by two ways in order to find similar 

vertices between them, (i) compare G1 and G2, G2 and G3 and so on, and (ii) compare G1 

and G2, G1 and G3, …, G1 and Gn, G2, and G3, …, G2 and Gn and so on. At the end of this 

step, we get similar vertices between different graphs i.e. pair of genes which shows 

similar behavior under conditions.  
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Step 3: Finding Biclusters 

In the previous step, we get the similar vertices across different graphs; using that 

information in this step, we find different biclusters. Assume, we get the following 

similar vertices in different graph comparisons, In Comparison of Graph 1 and Graph 2; 

similar vertices are V1 – V2, V4 – V8, V5 – V7, etc. 

 

Comparison 1 (Graph 1 and Graph 2): V1 – V2, V4 – V8, V5 – V7, … 

Comparison 2 (Graph 4 and Graph 5): V7 – V9, V4 – V8, V1 – V10, V5 – V7, … 

Comparison 3 (Graph 5 and Graph 6): V4 – V8, V15 – V16, V5 – V7, V11 – V22, … 

Comparison 4 (Graph 8 and Graph 9): V1 – V3, V4 – V8, V5 – V7, … 

 

In this step, we find the common pairs of similar vertices between different graph 

comparisons. In above example, we get following common vertices in different graphs, 

Common Vertices (Genes): 4, 8, 5, And 7 in 

Graphs (Conditions): 1, 2, 4, 5, 6, 8, And 9 

In our graph representation of gene expression matrix, vertices represent genes 

and graphs represent the conditions. Therefore, we get the set of vertices (Genes), which 

are common across different graphs (set of conditions). In other words, we get the set of 

genes which shows similar behavior across set of conditions. Similarly, we find all 

common pairs of similar vertices between different graph comparisons. Then, we filter 



42 

 

the results by applying two conditions (i) minimum number of genes in a bicluster, and 

(ii) minimum number conditions in a bicluster.  

  

4.4 Results and Assessment 

Many Biclustering algorithms produce different results for same gene expression 

datasets. Moreover, same algorithm produces different results for different parameter 

settings. One of the important things in deciding the better algorithm is to check 

correctness of the results. All validations techniques of traditional clustering algorithms 

can be divided in to two types; internal validation measures and external validation 

measures [52]. Internal validation techniques are based on the data intrinsic to the data 

alone; they don’t use additional knowledge in the form of true clusters. On the other 

hand, external validation measures evaluate clustering results based on the correct 

clusters. In cases where true clusters are not available internal validation measure is 

useful. In most of the biclustering papers, external validation measures have been used to 

evaluate the results. Most of them recommend external validation measures because it is 

not clear how to extend notions such as homogeneity and separation to the biclustering 

context [53] and there are some issues with internal validation measures [52-53]. We 

used two types of datasets to test our algorithm, (i) synthetic datasets, and (ii) real 

datasets. For synthetic datasets, we used external validation techniques, because we 

already knew the true results, and for real datasets, where we did not know the true 

biclusters, we used internal validation techniques to validate the results.  
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4.4.1 Synthetic Datasets 

We generated synthetic datasets by implanting fixed size biclusters in matrices. 

All matrices are of size 50 rows (genes), and 50 columns (conditions). We implanted 10 

non-overlapping biclusters (with four genes and four conditions each) in every matrix 

with no noise. We created three different matrices for three types, namely Constant 

Biclusters, Constant Rows Biclusters, and Constant Columns Biclusters. Matrix 1 has 10 

implanted biclusters of type constant biclusters, matrix 2 has 10 implanted biclusters of 

type constant rows biclusters, and matrix 3 has 10 implanted biclusters of type constant 

columns bicluster. 

In order to validate the bicluster results, Prelic et al. [54] have used following 

gene match score formulae, which reflects the average of the maximum match scores for 

all biclusters in M1 with respect to the biclusters in M2 

N �?1, ?2� �  1| ?1 | � =%;�O&,P&��Q&  | �1 R �2 || �1 S �2 |�O0,P0��Q0  

In biclustering, genes as well as conditions play an important role. We need to 

check genes as well as conditions to validate the biclustering results. So, we added 

Jaccard coefficient [56] score of conditions 
| P0 R P& || P0 S P& | in above gene match score formula. 

Instead of only Jaccard coefficient score of genes, we took the average of Jaccard 

Coefficient score for genes and conditions, i.e. %�H T| O0 R O& || O0 S O& |  %�J | P0 R P& || P0 S P& |U.  

N �?1, ?2� �  1| ?1 | � =%;�O&,P&��Q& �O0,P0��Q0 %�H V| �1 R �2 || �1 S �2 |  %�J | �1 R �2 || �1 S �2 |W  
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Consider M1 = Result of an algorithm and M2 = True Result, then we calculate 

two scores, both scores take the maximum value of 1, if both the results are similar (M1 = 

M2).  NG-*: 1: N �?1, ?2� 

#. :. Z-� =�GI +:*G:�,%H: -K ,I: %9H-*#,I=’) *:)�9, #) #�G9�J:J #� ,I: ,*�: *:)�9,) 

NG-*: 2: N �?2, ?1� 

#. :. Z-� =�GI +:*G:�,%H: -K ,I: ,*�: *:)�9,) #) #�G9�J:J #� ,I: %9H-*#,I=’) *:)�9,) 
Table 4.2 shows results for synthetic datasets. All biclusters with constant values, 

constant rows, and constant columns found by our method, because both the scores for all 

three matrices are 1,  

 

Dataset Number of Biclusters Found Score 1 Score 2 

Matrix 1 (Constant) 10 1 1 

Matrix 2 (Constant Rows) 10 1 1 

Matrix 3 (Constant Columns) 10 1 1 

 

Table 4.2: Results on synthetic dataset 

4.4.2 Real Datasets 

We used two real datasets (sample datasets from “Biclustering Analysis Toolbox 

V2.2” [55]) to test on our algorithm. Table 4.3 shows description of these two datasets. 

Dataset_1 has 34 genes, 153 conditions and Dataset_2 has 419 genes and 70 conditions.  
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Dataset Number of Genes Number of Samples 

Dataset_1 34 153 

Dataset_2 419 70 

 

Table 4.3: Real Dataset Description 

Here, we did not know the true biclusters, so we decided to use internal validation 

measures. As a first step, we calculated compactness of the bicluster. It measures how 

closely related the objects in a bicluster are. There are different measures estimate the 

cluster compactness based on the distance, such as maximum or average pair wise 

distance, and maximum or average center-based distance. We calculated the Euclidean 

distance [57] between each pair of conditions in a bicluster, and found the maximum 

distance between conditions in a bicluster. 

��G9#J:%� J#),%�G: ��1, �2� �  \���2� !  �1��&]
�^0  

Then, we calculated average maximum distance between two conditions in a 

bicluster for all biclusters in a result. We compare our results with Cheng and Church, 

Iterative Search Algorithm, OPSM and BiMax biclustering algorithms (using BicAT 

Analysis Toolbox [55]). If we consider the constant biclusters, constant rows biclusters 

and constant columns biclusters, then the distance between any two samples should be 

zero. Table 4.4 and 4.5 summarize the results for real datasets. We see that, our algorithm 

gives better results for constant biclusters. Table 4.4 shows that the average maximum 

distance score for Dataset_1 is very low for our algorithm followed by Cheng and 

Church, Iterative Search Algorithm, BiMax and OPSM. Similarly, Table 4.5 shows that 
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the average maximum distance score for Dataset_2 is very low for our algorithm 

followed by BiMax, Iterative Search Algorithm, Cheng and Church, and OPSM. Average 

maximum distance score is very high for some of the algorithms such as OPSM, BiMax 

etc. because, they focus on biclusters with coherent evolutions and compactness is not the 

right validation measure for such type of biclusters. We may get very high maximum 

distance between samples for biclusters with coherent evolutions.    

 

Algorithm 

Name 

Parameter Settings Number of 

Biclusters 

Avg max distance between two 

conditions in a Bicluster 

Our 

Algorithm 

P1: 7, P2: 0; P3: 4, P4: 4 11 134.01 

P1: 3, P2: 0; P3: 2, P4: 2 16 67.74 

Cheng and Church 10 109.54 

Iterative Search Algorithm 3 7011.71 

OPSM 10 9392.10 

BiMax 26 8718.92 

Table 4.4: Biclustering results for Dataset_1. (P1: Neighbor Threshold, P2: Similarity 

Threshold, P3: Minimum Number of Genes, and P4: Minimum Number of Conditions) 

Algorithm 

Name 

Parameter Settings Number of 

Biclusters 

Avg max distance between 

two conditions in a Bicluster 

Our 

Algorithm 

P1: 0.5, P2: 0; P3: 4, P4: 4 722 3.08 

P1: 0.4, P2: 0; P3: 2, P4: 2 1298 2.55 

Cheng and Church 10 17.41 

Iterative Search Algorithm 38 11.54 

OPSM 12 22.83 

BiMax 1938 4.59 

Table 4.5: Biclustering results for Dataset_2. (P1: Neighbor Threshold, P2: Similarity 

Threshold, P3: Minimum Number of Genes, and P4: Minimum Number of Conditions) 
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4.5 Discussion 

We have used different approach than other previous biclustering algorithms for 

finding biclusters in a gene expression data. As we discussed earlier, most of the 

algorithms either start with both all rows and columns or start with random initial seed 

and then use greedy approach to find the biclusters. Therefore, the method is unable to 

search the space of all possibilities exhaustively. The structure of our method makes it 

possible to search every possible biclusters. Our primary results show that, our method is 

very good to find constant biclusters. Also, this approach looks promising to find other 

types of biclusters. 

Our method of finding biclusters in a gene expression matrix has a vast scope for 

improvements and advancements. The process of finding similar vertices in two networks 

can be improve using combination of several combinatorial properties instead of using 

only clustering coefficient, and betweenness centrality. This will help for finding 

biclusters of type coherent values, and coherent evaluation. Also, we can improve this 

method to find overlapping biclusters.  
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Chapter 5 

Efficient Algorithm to Finding Communities in Dynamic 

Networks 

 

5.1 Community Detection 

Community detection in a networks concerns collecting similar objects under one 

group. Objects in the same community are similar to each other and different from 

objects in the other communities. Two common methods for community detection are, 

divisive and agglomerative. Divisive method is a “top down” approach where initially all 

objects are in one community and then they divided into communities according to a 

similarity measure. Agglomerative method is a “bottom up” approach where at first each 

object is in its own community and then pairs of communities are merged according to 

similarity measure. A dendrogram, a branching diagram, represents the hierarchy of 

connections in the agglomerative method. In the network, we group vertices according to 

the edge structure such that there are many edges within the group and very few between 

the groups. We get densely connected components of the graph by applying community 

detection algorithm on them. 

A popular method for community detection is based on maximization of a metric 

known as modularity proposed by Newman and Girvan [29]. Clauset, Newman and 

Moore [30] proposed an algorithm (this algorithm will be referred as “CNM” in this 

document) to efficiently obtain high modularity in large networks. This algorithm uses 
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greedy approach, where each vertex is in its own community followed by repeatedly join 

two communities whose amalgamation produces the maximum increase in modularity.  

 

5.2 CNM Algorithm / Static Community Detection Algorithm 

CNM algorithm uses modularity property of a network to find the communities. 

Modularity is a property of a network and measures the difference between the edges 

present within a group of vertices to the edges expected from random connections 

between them. The difference is normalized over the total number of edges in the graph. 

A high modularity indicates that the two groups have high probability of belonging to 

same community. Initially each vertex is assigned to a single community. Two 

communities are merged if the operation maximizes the increase in the total modularity 

of a network. The CNM algorithm proceeds in iterative steps combining communities 

until the potential increase of modularity becomes negative. The final set of communities 

is then identified as the closely connected groups of vertices in the network.  

Let, _�� be an element of the adjacency matrix of the network,  

_�� �  
`     a5b34��73 0      cd �345�637 � efg � e43 6hff3653g  

Suppose the vertices are divided into communities such that vertex v belongs to 

community cv. Then the fraction of edges that fall within communities, i.e., that connect 

vertices that both lie in the same community, is  

∑ _��i��� , �����  ∑ _���� �  12= � _��i��� , �����  
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Where the δ-function i�#, F� is 1 if # �  F and 0 otherwise and  = �  0& ∑ _����  is 

the number of edges in the graph. 

 This quantity will be large for good divisions of the network, in the sense of 

having many within community edges, but it is not, on its own, a good measure of 

community structure since it takes its largest value of 1 in the trivial case where all 

vertices belong to a single community. However, if we subtract from it the expected 

value of the same quantity in the case of a randomized network, we do get a useful 

measure. The degree kv of a vertex v is defined to be the number of edges incident upon it  

 � �  � _���  

The probability of an edge existing between vertices v and w if connections are 

made at random but respecting vertex degrees is  � �2= . Modularity Q is  

j �  12= � k_�� !  � �2= l i��� , �����  

The algorithm uses a greedy optimization in which, starting with each vertex 

being the sole member of a community of one, we repeatedly join together the two 

communities whose amalgamation produces the largest increase in Q. We continue this 

process until we get negative maximum Q value.  

The algorithm has running time m�=J 9-H ��  for a network with ‘n’ vertices and 

‘m’ edges and a depth, ‘d’ of the hierarchical community structure and is thus known to 

perform efficiently on vertices up to 500,000 vertices [58].  



51 

 

Most community detection algorithms focus on finding the communities in static 

i.e. non-evolving networks. However, most real world networks such as social networks 

etc. evolve with the time. Networks change at each time step and most of the community 

detection algorithm consider each step as a separate network. The information regarding 

communities from the previous network is not used and communities have to recompute 

as a whole. To run the community detection algorithm on the complete graph for even a 

small change would be computationally very expensive. The efficiency of these 

algorithms can be greatly improved if the re-computation is limited only to the portions 

of the network that are affected by change. We propose a fast community detection 

algorithm for real-time dynamic networks that take advantage of community information 

computed in previous time steps. Our algorithm increases efficiency of the detected 

community structure because of using community information from previous time step 

networks.  

 

5.3 Our Contribution / Dynamic Community Detection Algorithm 

      (Text in this section is mostly paraphrased from our publication [59]) 

We propose a community detection algorithm for dynamic networks which 

changes over time. Changes in the network involve addition or deletion of edges in the 

network. Our algorithm is based on the greedy agglomerative technique of the CNM 

algorithm. If the total numbers of edges in the network are sufficiently large, then a small 

change in the number of edges would not affect the fraction of edges in the graph, i.e. the 

values of Cij. Therefore, we first apply the CNM algorithm on the initial network 

configuration and record each combination step, i.e. two communities that have merged 
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and value of increase in modularity due to merge. In every change in the network i.e. 

addition or deletion of edges in the network, we define the two vertices associated with 

the modified edge as being perturbed. The combination steps are replicated without any 

recalculation if participating vertices are not perturbed. Once we get first perturbed vertex 

in the combination step we switch back to CNM algorithm and continue until all the 

communities have been identified. Given a modified edge (a, b); replicate the 

combination steps of the previous time steps until vertex ‘a’ or vertex ‘b’ is encountered. 

Then switch back to the original agglomerative algorithm continue as in the static case.  

 

Pseudo code for Dynamic Community Detection Algorithm  

Input: Network G0 and list of modified edges over time steps where t = 1, …, T. 

Output: Community structure at time steps t = 1, …, T.  

Steps: 

1. The community structure of the input network G0 is initialized using the 

original greedy agglomerative algorithm  

2. Each combination step is stored as a triplet <i, j, dQ>, t = 0, where i and j are 

communities that have merged and dQ is the increase in modularity due to 

merge.  

3. For iterations over time steps t = 1, …, T 

a. Obtain change in edges. Let a and b be the vertices involved in the edge 

change 

b. Update network Gt-1 to G1 to include the change 
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c. Replicate combination steps of Gt-1 until vertex a or b is encountered  

d. Revert to original agglomerative algorithm  

e. Continue until increase of modularity, dQ is negative 

f. Delete combination steps for Gt-1 

g. Store all the combination steps Gt 

4. End 

Data Structure for Dynamic Networks (CSR format)  

Graphs can be represented as an adjacency matrix where rows and columns are 

labeled by graph vertices and value of adjacency matrix (Vi, Vj) is 1 if there is an edge 

between vertex Vi and vertex Vj otherwise 0. Adjacency matrix of large graphs is usually 

sparse matrix where most of the matrix values are zeros. Data structures for dynamic 

networks include adjacency lists, such as those used in [60], which are easy to modify 

through addition and deletion of elements to the list. However, adjacency list can 

potentially occupy non-contiguous addresses; it is not efficient memory utilization.  

Compressed row storage method [61] is a popular format for representing sparse 

matrices. This method stores the non-zero elements of a sparse matrix into a linear array. 

In this method all the information about sparse matrix is stored into three vectors as 

described below,  

a. Values: stores the non-zero values of a sparse matrix by walking down each 

column and writing a non-zero values 

b. Columns: Value of Columns[i] is the number of the column of adjacency matrix 

that contains the Values[i] element. 
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c. RowIndex: Value of RowIndex[i] gives the index of the element of the Values 

array of the first non-zero element in a row ‘i’ of adjacency matrix. 

The example of compressed row storage format for storing small graph is shown 

in Figure 5.1 

In our implementation we used the compressed row storage method with few 

modifications. To identify the community structure, we added an extra vector C_ID to the 

original storage format. C_ID vector stores the community ID for each vertex. When an 

edge is deleted, the corresponding value is set to zero; when an edge is added, a new 

entry and value is added to the existing arrays. The advantages of this modified data 

structure are high cache utilization and easy to implement. However, due to addition of 

edges and deleted edges are represented by zeros the network tends to become larger as 

the number of modification increases.  

 

 

 
a. Network of 5 Vertices 

 1 2 3 4 5 

1 - W1 - - - 

2 W2 - W3 - W4 

3 - W5 - - - 

4 - - - - W6 

5 - W7 - W8 - 

 

b. Adjacency matrix for the network 

1 2 

3 4 

5 
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C_ID 1 2 3 4 5    

Index 1 2 5 6 7 9   

Columns 2 1 3 5 2 5 2 4 

Values W1 W2 W3 W4 W5 W6 W7 W8 

 

c. CSR format for the original network 

 

 

 

 

d. Original network with edge (1, 3) added 

C_ID 1 2 3 4 5 1 3    

Index 1 2 5 6 7 9 10 11   

Columns 2 1 3 5 2 5 2 4 3 1 

Values W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 

 

e. CSR format for the modified network 

Figure 5.1: The CSR Format for a network. a) The original network. b) The sparse 

adjacency matrix corresponding to the network. The values represent the increase in 

modularity if the row and column are to be merged. c) The CSR format for the sparse 

matrix. d) The original network with new edge (1, 3) added. e) Modification to the 

original sparse matrix to add entries for edge (1, 3) and (3, 1). 

 

 

 

1 2 

3 4 

5 
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5.4 Results 

In this section, we describe the results of our dynamic community detection 

algorithm method on a publicly available dataset on scientific collaboration. We use 

dynamic network data where all changes are available a priori and they are processed one 

change at a time.  

DBLP database presents information on computer science publications listed in 

the DBLP Computer Science Bibliography [62]. The data in this dataset provides a 

snapshot of the bibliography as of April 12, 2006. The DBLP dataset maps each entry in 

the original DBLP data to one of six types of objects representing different types of 

publications. It includes links from publications to their authors and editors and from 

papers to the journal, proceedings, or book in which they appear, as well as citation links 

from one publication to another. From this data, we derive a dynamic co-authorship 

network for year 2000 and 2001 to test our algorithm. Both the networks (Year 2000 and 

2001) have 3252 vertices. Network for year 2000 has 10997 edges and network for year 

2001 has 11159 edges. Vertices in the network represent authors and edges represent co-

authorship.  

Network Name Vertices Edges 

Year 2000 3252 10997 

Year 2001 3252 11159 

 
Table 5.1: Network Information 

There are 2169 changes in the edges (1124 additions and 1044 deletions) from 

network of year 2000 to year 2001. We experiment with multiple changes at a time from 

1 change at a time to 2, 4, 8, and 10 changes at a time. We compare the time required for 
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our dynamic algorithm and static algorithm at each step. We alternate the modifications 

between addition and deletion of edges to satisfy our assumption that small number in the 

number of edges would not affect the value of Cij. However, in the DBLP dataset for year 

2000 and 2001, there are 80 more additions than deletions, i.e. 2% change in the number 

of edges in the network. This change does slightly affect results during the final 

modification. The results and observations of our experiments are described below, 

 

Figure 5.2: Difference in maximum modularity of the static and dynamic method over 

each network. The X-axis plots the number of modifications and the Y-axis plots the 

difference in the modularity. Top: One change per time step and Bottom: Two changes 

per time step 

In order to find the correctness of our dynamic algorithm, we compare the 

maximum modularity obtained by our dynamic algorithm with the original static 

algorithm at each step. We can see in the Figure 5.2 and 5.3, the maximum modularity 
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obtained by two algorithms remain nearly same except the final few modification steps, 

where they diverge. The difference in the modularity between two methods during final 

steps is generally within 5%, except in the case of one change per step where different in 

modularity increase to almost 25%.  

 

Figure 5.3: Difference in maximum modularity of the static and dynamic method over 

each network. The X-axis plots the number of modifications and the Y-axis plots the 

difference in the modularity. Top: Four changes per time step, Middle: Eight changes per 

time step and Bottom: Ten changes per time step 
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Then we compare the execution time of our dynamic algorithm with the original 

static algorithm. We compare the results only for time steps 1 to 2100, because solutions 

of the static and dynamic algorithms are equivalent in this range. We calculate the 

percentage of improvement using following formulae, 

�N,%,#G8#=: ! (L�%=#G8#=:�N,%,#G8#=: n 100 

Figure 5.4, and 5.5 show that our dynamic algorithm is faster than the original 

static algorithm. Efficiency increases with the number of modifications. The speedup can 

be as much as 30% with an average of 13%.  

 

 

Figure 5.4: Percentage speedup of the dynamic method over the static method at each 

network. The X-axis plots the number of modification and the Y-axis plots the speedup. 

Top: One change per time step and Bottom: Two changes per time step 
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Figure 5.5: Percentage speedup of the dynamic method over the static method at each 

network. The X-axis plots the number of modification and the Y-axis plots the speedup. 

Top: Four changes per time step, Middle: Eight changes per time step and Bottom: Ten 

changes per time step 

 

5.5 Discussion 

 Our goal has been to design an efficient algorithm for dynamic community 

detection by extending static agglomerative technique and comparing our results with the 

static algorithm results. We see from the results, that our algorithm improves the 

execution time of a static agglomerative method, while maintaining quality of solution as 

measured by the maximum modularity of the network. However, repeated applications of 
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the dynamic method too many changes of the same type can hamper the quality of the 

results.  
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Chapter 6 

Conclusion and Future Work 

 
 Combinatorial properties can be useful in analysis of different types of networks. 

We used these properties to analysis of networks of two different areas; software 

engineering and bioinformatics. In software engineering, we quantify and evaluate the 

difference between networks representing different versions of JHotDraw 5. These graph 

theory based metrics provide important insight into understanding how JHotDraw 

evolved. This approach can be applied to understand the evolution of most complex 

networks systems. In bioinformatics, we used combinatorial properties to develop a new 

biclustering algorithm. Our primary results show that this approach looks promising to 

find different types of biclusters by comparing the similarity between networks. In final 

part, we designed an efficient community detection algorithm for dynamic networks by 

extending a static agglomerative method. Our dynamic algorithm can improve the 

execution time of a static agglomerative method.  

 As a part of future work, we can try to look into other metrics for large scale 

networks and algorithmic approaches for quantifying the disruption caused by large scale 

changes between versions of software networks and for finding the similarities between 

biological networks. Here, we demonstrated use of graph based metrics to evaluate the 

difference between networks representing versions of software system. However, this 

approach can be used to estimate the degree of change in evolving networks. In 

community detection, we can design dynamic community detection algorithm for 
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divisive methods. We can also improve the efficiency of the algorithm by a more 

selective search of the dendrogram. 
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