1,249 research outputs found

    Locally adaptive vector quantization: Data compression with feature preservation

    Get PDF
    A study of a locally adaptive vector quantization (LAVQ) algorithm for data compression is presented. This algorithm provides high-speed one-pass compression and is fully adaptable to any data source and does not require a priori knowledge of the source statistics. Therefore, LAVQ is a universal data compression algorithm. The basic algorithm and several modifications to improve performance are discussed. These modifications are nonlinear quantization, coarse quantization of the codebook, and lossless compression of the output. Performance of LAVQ on various images using irreversible (lossy) coding is comparable to that of the Linde-Buzo-Gray algorithm, but LAVQ has a much higher speed; thus this algorithm has potential for real-time video compression. Unlike most other image compression algorithms, LAVQ preserves fine detail in images. LAVQ's performance as a lossless data compression algorithm is comparable to that of Lempel-Ziv-based algorithms, but LAVQ uses far less memory during the coding process

    An adaptive vector quantization scheme

    Get PDF
    Vector quantization is known to be an effective compression scheme to achieve a low bit rate so as to minimize communication channel bandwidth and also to reduce digital memory storage while maintaining the necessary fidelity of the data. However, the large number of computations required in vector quantizers has been a handicap in using vector quantization for low-rate source coding. An adaptive vector quantization algorithm is introduced that is inherently suitable for simple hardware implementation because it has a simple architecture. It allows fast encoding and decoding because it requires only addition and subtraction operations

    Weighted universal image compression

    Get PDF
    We describe a general coding strategy leading to a family of universal image compression systems designed to give good performance in applications where the statistics of the source to be compressed are not available at design time or vary over time or space. The basic approach considered uses a two-stage structure in which the single source code of traditional image compression systems is replaced with a family of codes designed to cover a large class of possible sources. To illustrate this approach, we consider the optimal design and use of two-stage codes containing collections of vector quantizers (weighted universal vector quantization), bit allocations for JPEG-style coding (weighted universal bit allocation), and transform codes (weighted universal transform coding). Further, we demonstrate the benefits to be gained from the inclusion of perceptual distortion measures and optimal parsing. The strategy yields two-stage codes that significantly outperform their single-stage predecessors. On a sequence of medical images, weighted universal vector quantization outperforms entropy coded vector quantization by over 9 dB. On the same data sequence, weighted universal bit allocation outperforms a JPEG-style code by over 2.5 dB. On a collection of mixed test and image data, weighted universal transform coding outperforms a single, data-optimized transform code (which gives performance almost identical to that of JPEG) by over 6 dB

    Online Product Quantization

    Full text link
    Approximate nearest neighbor (ANN) search has achieved great success in many tasks. However, existing popular methods for ANN search, such as hashing and quantization methods, are designed for static databases only. They cannot handle well the database with data distribution evolving dynamically, due to the high computational effort for retraining the model based on the new database. In this paper, we address the problem by developing an online product quantization (online PQ) model and incrementally updating the quantization codebook that accommodates to the incoming streaming data. Moreover, to further alleviate the issue of large scale computation for the online PQ update, we design two budget constraints for the model to update partial PQ codebook instead of all. We derive a loss bound which guarantees the performance of our online PQ model. Furthermore, we develop an online PQ model over a sliding window with both data insertion and deletion supported, to reflect the real-time behaviour of the data. The experiments demonstrate that our online PQ model is both time-efficient and effective for ANN search in dynamic large scale databases compared with baseline methods and the idea of partial PQ codebook update further reduces the update cost.Comment: To appear in IEEE Transactions on Knowledge and Data Engineering (DOI: 10.1109/TKDE.2018.2817526

    Data compression techniques applied to high resolution high frame rate video technology

    Get PDF
    An investigation is presented of video data compression applied to microgravity space experiments using High Resolution High Frame Rate Video Technology (HHVT). An extensive survey of methods of video data compression, described in the open literature, was conducted. The survey examines compression methods employing digital computing. The results of the survey are presented. They include a description of each method and assessment of image degradation and video data parameters. An assessment is made of present and near term future technology for implementation of video data compression in high speed imaging system. Results of the assessment are discussed and summarized. The results of a study of a baseline HHVT video system, and approaches for implementation of video data compression, are presented. Case studies of three microgravity experiments are presented and specific compression techniques and implementations are recommended

    Variable dimension weighted universal vector quantization and noiseless coding

    Get PDF
    A new algorithm for variable dimension weighted universal coding is introduced. Combining the multi-codebook system of weighted universal vector quantization (WUVQ), the partitioning technique of variable dimension vector quantization, and the optimal design strategy common to both, variable dimension WUVQ allows mixture sources to be effectively carved into their component subsources, each of which can then be encoded with the codebook best matched to that source. Application of variable dimension WUVQ to a sequence of medical images provides up to 4.8 dB improvement in signal to quantization noise ratio over WUVQ and up to 11 dB improvement over a standard full-search vector quantizer followed by an entropy code. The optimal partitioning technique can likewise be applied with a collection of noiseless codes, as found in weighted universal noiseless coding (WUNC). The resulting algorithm for variable dimension WUNC is also described

    S-TREE: Self-Organizing Trees for Data Clustering and Online Vector Quantization

    Full text link
    This paper introduces S-TREE (Self-Organizing Tree), a family of models that use unsupervised learning to construct hierarchical representations of data and online tree-structured vector quantizers. The S-TREE1 model, which features a new tree-building algorithm, can be implemented with various cost functions. An alternative implementation, S-TREE2, which uses a new double-path search procedure, is also developed. S-TREE2 implements an online procedure that approximates an optimal (unstructured) clustering solution while imposing a tree-structure constraint. The performance of the S-TREE algorithms is illustrated with data clustering and vector quantization examples, including a Gauss-Markov source benchmark and an image compression application. S-TREE performance on these tasks is compared with the standard tree-structured vector quantizer (TSVQ) and the generalized Lloyd algorithm (GLA). The image reconstruction quality with S-TREE2 approaches that of GLA while taking less than 10% of computer time. S-TREE1 and S-TREE2 also compare favorably with the standard TSVQ in both the time needed to create the codebook and the quality of image reconstruction.Office of Naval Research (N00014-95-10409, N00014-95-0G57

    Implementation issues in source coding

    Get PDF
    An edge preserving image coding scheme which can be operated in both a lossy and a lossless manner was developed. The technique is an extension of the lossless encoding algorithm developed for the Mars observer spectral data. It can also be viewed as a modification of the DPCM algorithm. A packet video simulator was also developed from an existing modified packet network simulator. The coding scheme for this system is a modification of the mixture block coding (MBC) scheme described in the last report. Coding algorithms for packet video were also investigated

    Data compression in remote sensing applications

    Get PDF
    A survey of current data compression techniques which are being used to reduce the amount of data in remote sensing applications is provided. The survey aspect is far from complete, reflecting the substantial activity in this area. The purpose of the survey is more to exemplify the different approaches being taken rather than to provide an exhaustive list of the various proposed approaches
    • …
    corecore