342 research outputs found

    Android Malware Clustering through Malicious Payload Mining

    Full text link
    Clustering has been well studied for desktop malware analysis as an effective triage method. Conventional similarity-based clustering techniques, however, cannot be immediately applied to Android malware analysis due to the excessive use of third-party libraries in Android application development and the widespread use of repackaging in malware development. We design and implement an Android malware clustering system through iterative mining of malicious payload and checking whether malware samples share the same version of malicious payload. Our system utilizes a hierarchical clustering technique and an efficient bit-vector format to represent Android apps. Experimental results demonstrate that our clustering approach achieves precision of 0.90 and recall of 0.75 for Android Genome malware dataset, and average precision of 0.98 and recall of 0.96 with respect to manually verified ground-truth.Comment: Proceedings of the 20th International Symposium on Research in Attacks, Intrusions and Defenses (RAID 2017

    HybridGuard: A Principal-based Permission and Fine-Grained Policy Enforcement Framework for Web-based Mobile Applications

    Get PDF
    Web-based or hybrid mobile applications (apps) are widely used and supported by various modern hybrid app development frameworks. In this architecture, any JavaScript code, local or remote, can access available APIs, including JavaScript bridges provided by the hybrid framework, to access device resources. This JavaScript inclusion capability is dangerous, since there is no mechanism to determine the origin of the code to control access, and any JavaScript code running in the mobile app can access the device resources through the exposed APIs. Previous solutions are either limited to a particular platform (e.g., Android) or a specific hybrid framework (e.g., Cordova) or only protect the device resources and disregard the sensitive elements in the web environment. Moreover, most of the solutions require the modification of the base platform. In this paper, we present HybridGuard, a novel policy enforcement framework that can enforce principal-based, stateful policies, on multiple origins without modifying the hybrid frameworks or mobile platforms. In HybridGuard, hybrid app developers can specify principal-based permissions, and define fine-grained, and stateful policies that can mitigate a significant class of attacks caused by potentially malicious JavaScript code included from third-party domains, including ads running inside the app. HybridGuard also provides a mechanism and policy patterns for app developers to specify fine-grained policies for multiple principals. HybridGuard is implemented in JavaScript, therefore, it can be easily adapted for other hybrid frameworks or mobile platforms without modification of these frameworks or platforms. We present attack scenarios and report experimental results to demonstrate how HybridGuard can thwart attacks against hybrid mobile apps

    Familial Clustering For Weakly-labeled Android Malware Using Hybrid Representation Learning

    Full text link
    IEEE Labeling malware or malware clustering is important for identifying new security threats, triaging and building reference datasets. The state-of-the-art Android malware clustering approaches rely heavily on the raw labels from commercial AntiVirus (AV) vendors, which causes misclustering for a substantial number of weakly-labeled malware due to the inconsistent, incomplete and overly generic labels reported by these closed-source AV engines, whose capabilities vary greatly and whose internal mechanisms are opaque (i.e., intermediate detection results are unavailable for clustering). The raw labels are thus often used as the only important source of information for clustering. To address the limitations of the existing approaches, this paper presents ANDRE, a new ANDroid Hybrid REpresentation Learning approach to clustering weakly-labeled Android malware by preserving heterogeneous information from multiple sources (including the results of static code analysis, the metainformation of an app, and the raw-labels of the AV vendors) to jointly learn a hybrid representation for accurate clustering. The learned representation is then fed into our outlieraware clustering to partition the weakly-labeled malware into known and unknown families. The malware whose malicious behaviours are close to those of the existing families on the network, are further classified using a three-layer Deep Neural Network (DNN). The unknown malware are clustered using a standard density-based clustering algorithm. We have evaluated our approach using 5,416 ground-truth malware from Drebin and 9,000 malware from VIRUSSHARE (uploaded between Mar. 2017 and Feb. 2018), consisting of 3324 weakly-labeled malware. The evaluation shows that ANDRE effectively clusters weaklylabeled malware which cannot be clustered by the state-of-theart approaches, while achieving comparable accuracy with those approaches for clustering ground-truth samples

    MONDEO: Multistage Botnet Detection

    Full text link
    Mobile devices have widespread to become the most used piece of technology. Due to their characteristics, they have become major targets for botnet-related malware. FluBot is one example of botnet malware that infects mobile devices. In particular, FluBot is a DNS-based botnet that uses Domain Generation Algorithms (DGA) to establish communication with the Command and Control Server (C2). MONDEO is a multistage mechanism with a flexible design to detect DNS-based botnet malware. MONDEO is lightweight and can be deployed without requiring the deployment of software, agents, or configuration in mobile devices, allowing easy integration in core networks. MONDEO comprises four detection stages: Blacklisting/Whitelisting, Query rate analysis, DGA analysis, and Machine learning evaluation. It was created with the goal of processing streams of packets to identify attacks with high efficiency, in the distinct phases. MONDEO was tested against several datasets to measure its efficiency and performance, being able to achieve high performance with RandomForest classifiers. The implementation is available at github

    Enhancing Cloud Security by a Series of Mobile Applications That Provide Timely and Process Level Intervention of Real-Time Attacks

    Get PDF
    Cyber threat indicators that can be instantly shared in real-time may often be the only mitigating factor between preventing and succumbing to a cyber-attack. Detecting threats in cloud computing environment can be even more of a challenge given the dynamic and complex nature of hosts as well as the services running. Information security professionals have long relied on automated tools such as intrusion detection/prevention systems, SIEM (security information and event management), and vulnerability scanners to report system, application and architectural weaknesses. Although these mechanisms are widely accepted and considered effective at helping organizations stay more secure, each can also have unique limitations that can hinder in this regard. Therefore, in addition to utilizing these resources, a more proactive approach must be incorporated to bring to light possible attack vectors and hidden places where hackers may infiltrate. This paper shares an insightful example of such lessor known attack vectors by closely examining a host routing table cache, which unveiled a great deal of information that went unrecognized by an intrusion detection system. Furthermore, the author researched and developed a robust mobile app tool that has a multitude of functions which can provide the information security community with a low-cost countermeasure that can be used in a variety of infrastructures (e.g. cloud, host-based etc.). The designed mobile app also illustrates how system administrators and other IT leaders can be alerted of brute force attacks and other rogue processes by quickly identifying and blocking the attacking IP addresses. Furthermore, it is an Android based application that also uses logs created by the Fail2Ban intrusion prevention framework for Linux. Additionally, the paper will also familiarize readers with indirect detection techniques, ways to tune and protect the routing cache, the impact of low and slow hacking techniques, as well as the need for mobile app management in a cloud

    Rohelisema tarkvaratehnoloogia poole tarkvaraanalüüsi abil

    Get PDF
    Mobiilirakendused, mis ei tühjenda akut, saavad tavaliselt head kasutajahinnangud. Mobiilirakenduste energiatõhusaks muutmiseks on avaldatud mitmeid refaktoreerimis- suuniseid ja tööriistu, mis aitavad rakenduse koodi optimeerida. Neid suuniseid ei saa aga seoses energiatõhususega üldistada, sest kõigi kontekstide kohta ei ole piisavalt energiaga seotud andmeid. Olemasolevad energiatõhususe parandamise tööriistad/profiilid on enamasti prototüübid, mis kohalduvad ainult väikese alamhulga energiaga seotud probleemide suhtes. Lisaks käsitlevad olemasolevad suunised ja tööriistad energiaprobleeme peamiselt a posteriori ehk tagantjärele, kui need on juba lähtekoodi sees. Android rakenduse koodi saab põhijoontes jagada kaheks osaks: kohandatud kood ja korduvkasutatav kood. Kohandatud kood on igal rakendusel ainulaadne. Korduvkasutatav kood hõlmab kolmandate poolte teeke, mis on rakendustesse lisatud arendusprotessi kiirendamiseks. Alustuseks hindame mitmete lähtekoodi halbade lõhnade refaktoreerimiste energiatarbimist Androidi rakendustes. Seejärel teeme empiirilise uuringu Androidi rakendustes kasutatavate kolmandate osapoolte võrguteekide energiamõju kohta. Pakume üldisi kontekstilisi suuniseid, mida võiks rakenduste arendamisel kasutada. Lisaks teeme süstemaatilise kirjanduse ülevaate, et teha kindlaks ja uurida nüüdisaegseid tugitööriistu, mis on rohelise Androidi arendamiseks saadaval. Selle uuringu ja varem läbi viidud katsete põhjal toome esile riistvarapõhiste energiamõõtmiste jäädvustamise ja taasesitamise probleemid. Arendame tugitööriista ARENA, mis võib aidata koguda energiaandmeid ja analüüsida Androidi rakenduste energiatarbimist. Viimasena töötame välja tugitööriista REHAB, et soovitada arendajatele energiatõhusaid kolmanda osapoole võrguteekeMobile apps that do not drain the battery usually get good user ratings. To make mobile apps energy efficient many refactoring guidelines and tools are published that help optimize the app code. However, these guidelines cannot be generalized w.r.t energy efficiency, as there is not enough energy-related data for every context. Existing energy enhancement tools/profilers are mostly prototypes applicable to only a small subset of energy-related problems. In addition, the existing guidelines and tools mostly address the energy issues a posteriori, i.e., once they have already been introduced into the code. Android app code can be roughly divided into two parts: the custom code and the reusable code. Custom code is unique to each app. Reusable code includes third-party libraries that are included in apps to speed up the development process. We start by evaluating the energy consumption of various code smell refactorings in native Android apps. Then we conduct an empirical study on the energy impact of third-party network libraries used in Android apps. We provide generalized contextual guidelines that could be used during app development Further, we conduct a systematic literature review to identify and study the current state of the art support tools available to aid green Android development. Based on this study and the experiments we conducted before, we highlight the problems in capturing and reproducing hardware-based energy measurements. We develop the support tool ‘ARENA’ that could help gather energy data and analyze the energy consumption of Android apps. Last, we develop the support tool ‘REHAB’ to recommend energy efficient third-party network libraries to developers.https://www.ester.ee/record=b547174
    corecore